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Abstract

This paper presents a comparison between control/state estimation methods

applied on Par2 parallel manipulator for pick-and-place applications, as well as a

discussion about the mechanical vibrations issue that may become important when

reaching very high accelerations. Real-time experiments were performed firstly to

compare two controllers (a linear Proportional-Derivative (PD) controller and a

nonlinear/adaptive Dual Mode (DM) controller) complied with the same High-gain

observer (HGO) in order to estimate the articular velocities, and secondly to compare

three state observers (a Lead-lag (LL) based, an Alpha-beta-gamma (ABG) and a

High-gain observer) complied with the same nonlinear DM controller. The stability

analysis of the Par2 robot under the control of the proposed Dual Mode controller

(complied with the High-gain observer for joint velocity estimation) is also provided.

Some small mechanical vibrations were noticed when reaching 20G of acceleration,

which means that it can become an important issue for higher accelerations. Some

suggestions are then made for future investigations, in order to avoid/damp these

vibrations.



Keywords: Parallel manipulators, Nonlinear control, Adaptive control, State

observers, Pick-and-place.

It is usually mentioned that parallel robots have attracted a considerable atten-

tion on the few past decades. It must be mentioned, however, that the first design

patent of a parallel robot (a motion platform for the entertainment industry) was

applied by J. E. Gwinnett in 1928, being issued in 1931 [1]. The first industrial

parallel robot (for automated spray painting) to be built was patented by W. L. V.

Pollard Jr. in 1942. A few years later (more precisely in 1947), the parallel robot

that became the most popular in the industry of that time (the variable-length-strut

octahedral hexapod for tire testing) was invented by E. Gough. During the 60’s, it

was K. Cappel who independently designed the very same hexapod, had it patented

and licensed to the first flight simulator companies, making it the first commercial

octahedral hexapod motion simulator. Yet, it was D. Stewart who, unintention-

ally, made Gough’s concept popular and proposed, once again, this idea for flight

simulators, machine tools and universal milling machines [1].

In the early 80’s, a new type of parallel robots was invented by R. Clavel, namely

the Delta robot [2]. Its basic idea consisted in the use of parallelograms, which allows

an output link to remain at a fixed orientation with respect to an input link.

Since then, several robots with the same concept have been designed, and its

applications vary from the packaging/pharmaceutical industrial domain (pick-and-

place/assembly tasks), the medical domain (i.e. carry a 20kg microscope for surgery

purposes) and even the entertainment domain (haptic game controllers).

The main advantages of parallel robots in comparison to their serial counterparts

are their higher stiffness and lighter structures, which allow them to achieve very

2



high accelerations/velocities. In order to achieve such accelerations and perform an

accurate movement, a good controller must be used. By using simple linear single-

axis controllers (such as a Proportional Derivative (PD) controller), the tracking

performance can be limited, especially when the robot has highly nonlinear dynamics

and/or when the velocities/accelerations are high [3]. In this case, a more advanced

(nonlinear/adaptive) controller is necessary.

Different nonlinear/adaptive controllers have already been used for the control of

parallel robots. In [3], a nonlinear adaptive feedforward controller was proposed for

the control of the Hexaglide (a 6 dof parallel robot), in addiction to a PD feedback

term. The main objective of this work was to show the convergence of the adaptive

parameters in simulation. In [4], a control scheme similar to the so called computed

torque controller1 [5] was also proposed to control the Hexaglide robot, but with

experimental results that showed a good improvement in the trajectory tracking

with respect to a PD controller, although no control signal has been presented.

***An adaptive fuzzy integral sliding mode controller has been proposed for parallel

manipulators in [6]. This method was shown to provide good trajectory tracking

performances and robustness without the undesired chattering effect of standard

sliding mode controllers. However, as only simulation results were provided, the

real-time experimental applicability of such control approach is still to be verified.

The importance of adequate identification of the parameters of parallel robots was

also emphasized in [7], [8].***

It is well known that in most control algorithms it is assumed that the joint veloc-

ities are available, that is, they need to be calculated or estimated. The easiest way

1With the modification that the dynamic model is computed from the desired values, instead
of the actual joint coordinates.
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to compute the articular velocities consists in a straight numerical derivative of the

measured articular positions. However, if the measured positions are noisy or do not

have a good enough resolution, this technique will amplify the noise/quantization

effect. In order to overcome this problem, an estimation of the articular velocities

by means of observer-based techniques must be considered. The choice of the es-

timation mechanism is strongly influenced by the existence of uncertainty in the

system model. Whereas model-based observers are usually restricted to cases where

the model is exactly known, filters can provide a model-independent means of esti-

mating velocity [9].

In this paper, two comparisons have been made. Firstly, a comparison between

the trajectory tracking performance obtained by using two different controllers (a

linear PD and a nonlinear/adaptive Dual Mode (originally referred as ’binary’ in

[10]) controller) complied with the same velocity estimator (High-gain observer),

and then a comparison between three velocity estimators (Lead-lag based, High-

gain and Alpha-beta-gamma observers) complied with the same nonlinear/adaptive

Dual Mode controller. Another contribution of this paper consists in the stability

analysis of the Par2 robot when controlled by the proposed Dual Mode controller,

while having the High-gain observer as velocity estimator.

It is also important to emphasize that even with a good controller and a good

state observer, it is very difficult to avoid mechanical vibrations for very high accel-

erations, which may cause loss of movements’ precision. Therefore, a list of possible

solutions to avoid/damp these vibrations is presented and discussed.

This paper is organized as follows. In section 1, the Par2 parallel robot is de-

scribed. Section 2 presents the general dynamics of the system. Section 3 introduces

the two proposed control algorithms, and shows that both of them need the velocity
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measurements. The proposed observers are described in section 4. The stability

analysis of the Par2 parallel manipulator is presented and discussed in section 5.

In section 6, there are two sub-sections: the first one presenting the experimental

results obtained by the two proposed controllers complied with the High-gain ob-

server, and the second one presenting the experimental results obtained by the Dual

Mode controller complied with three proposed observers. In section 7, a discussion

about the mechanical vibrations that were noticed for 20G of acceleration and about

possible solutions to avoid serious issues for higher accelerations is made. A conclu-

sion about the current results and eventual future prospects is presented in section

8.

1 PAR2 PARALLEL MANIPULATOR

1.1 Description of the Par2 robot

Par2 is a two-dof parallel manipulator, illustrated in Figure 1, with the following

characteristics:

• the platform 6© is a rigid body,

• only the two inner arms 3© are actuated,

• the two other arms 4© are linked to the frame 1© through passive revolute

joints,

• inner arms 3© and 4© are connected to 6© with pairs of rods 5© mounted on

ball joints 7©,

• the rotations of the arms 4© are coupled in order to guarantee planar motions

along x and z axes.
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Figure 1: The two-dof parallel manipulator Par2: view of the robot (left), schematic view of its
mechanical structure (right)

*** The geometric parameters of the robot are summarized in Table 1, where:

• i: index of the kinematic chains (i = 1,2),

• larmi : length of arms PiAi,

• Lforearmi : length of arms AiBi,

• xp: abscissa of the points Pi defined by the parameters (D + d),

• dtp: length of the traveling plate B1B2.

Table 1: Geometric Parameters of Par2

li [m] Li [m] dtp [m] D [m] z0 [m]
0.375 0.825 0.1 0.25 0.9

***

The proposed architecture of the prototype has the following advantages [12]:
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Figure 2: Geometric parameters of Par2: Side view [11]

• the two coupled passive chains made a constrained system supporting almost

all the moments and force besides the driving forces,

• it can be designed with existing technologies and parts (can be made as light

as for Delta [13] or Par4 [14] robots),

• it is symmetric with respect to motion plane and the yoz plane in its centered

position.

The proper functioning of this two-dof parallel manipulator is guaranteed by

the coupling of the rotation of arms 4©. This constrains the platform of the robot

to evolve in one plane. The coupling means that the rotation of the first arm in

the clockwise direction involves the rotation of second one in the counterclockwise

direction. For more details about the prototype Par2, the reader is referred to [12].
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2 GENERAL MANIPULATOR DYNAMICS

The Lagrangian nonlinear dynamic model [15, 16] of robot manipulators that can

make use of the control and observation tools proposed in this paper is described in

its matrix form by the following equation:

I(q)q̈ + C(q, q̇)q̇ +G(q) + f(q, q̇) = τ (1)

where

qT =

[
q1, q2, ..., qn

]
∈ Rn is the vector of articular positions,

q̇T =

[
q̇1, q̇2, ..., q̇n

]
∈ Rn is the vector of articular velocities,

q̈T =

[
q̈1, q̈2, ..., q̈n

]
∈ Rn is the vector of articular accelerations,

I(q) ∈ Rn×n is the inertia matrix,

C(q, q̇) ∈ Rn×n is the matrix of Coriolis and centrifugal terms,

G(q) ∈ Rn is the vector of gravitational forces,

f(q, q̇) ∈ Rn is the vector of friction forces,

τ ∈ Rn is the vector of control inputs (torques generated by the actuators).

By considering that the dry friction has been neglected, the nonlinear dynamics

of Par2 is given as follows:

Itot

 q̈1

q̈2

 = τ +
g

2
(Marm +Mforearm)

 l1 cos(q1)

l2 cos(q2)

− JTmMtot

(
J̇mq̇ −

 0

g

)− fv
 q̇1

q̇2

 (2)
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where Itot = Imot+Iarm+JTmMtotJ , being Imot the motor driver inertia, Iarm the arm

inertia, Mtot = Mtp+n
Mforearm

2
, being Mtp the mass of the traveling plate (including

the payload), J is the Jacobian matrix and J̇ its first time derivative, g is the

gravitational acceleration, fv is the viscous friction coefficient, Marm and Mforearm

are the masses of the arms and forearms, respectively, l1 and l2 are the lengths of

the arms (l1 = l2) and L1 and L2 are the lengths of the forearms (L1 = L2). The

dynamic parameters are presented in Table 2.

Table 2: Dynamic Parameters of Par2

Imot [kg.m2] Iarm [kg.m2] Marm [kg] Mforearm [kg.m2] Mtp [kg] fv [N.m.s]
0.19 0.019 0.82 0.14 0.5 0.8

3 PROPOSED CONTROL SCHEMES: A PD CONTROLLER AND A

NONLINEAR/ADAPTIVE DUAL MODE CONTROLLER

In order to implement both controllers, the desired articular trajectory (denoted

by qd(t)) must be provided. This trajectory is supposed uniformly bounded, twice

continuously differentiable with its two first derivatives q̇d(t) and q̈d(t) also uniformly

bounded. In order to obtain this trajectory, the Cerebellum Path Generator [17] is

used. It generates the desired *task space (which, in the present work, is equivalent

to the Cartesian space)* trajectories that will be the input for the direct geometric

model of the robot [12]. This scheme is presented in the diagram of Figure 3:

3.1 Proportional-derivative controller

As widely known, the Proportional-Derivative (PD) controller consists in the

sum of a proportional and a derivative term, as follows:
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Figure 3: Details of the desired trajectories generation

τ = Kpej +Kdėj (3)

being τ the torques applied by the actuators (motors) of the robot, Kp, Kd the

proportional and derivative feedback gains, respectively, and

ej = qd − q , ėj = q̇d − q̇ (4)

where ej and ėj represent the joint position and velocity errors, qd and q̇d represent

the desired joint position and velocity and q and q̇ represent the actual joint position

and velocity.

3.2 NL/adaptive Dual Mode (DM) controller in the joint space

The Dual Mode controller consists in the original one of [18] with the inclusion

of a parametric projection law and the addition of a smooth saturation term which

was proposed only for disturbance compensation purposes, in order to improve the

robustness of the controlled system. The idea is to use a high adaptation gain

together with a projection of the estimated parameters such that, to large tracking

errors in the transient stage, the controller behaves approximately as a sliding mode

controller, generating an exponential convergence to a residual domain arbitrarily
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small, and to smaller errors, it behaves as a parametric adaptation law. Other

important advantages of the adaptation law in dual mode with respect to other

adaptation laws or known robust control algorithms are listed below:

• Generation of continuous control signals,

• Limitation of the values of the estimated parameters thanks to a projection,

which has the effect of reducing the effective gain of the controller when the

tracking error increases (reducing the sensitivity to measurement noises).

According to [18], the following errors in the joint space are introduced:

s = ėj + λej , q̇r = q̇d + λej (5)

where s is an auxiliary error, λ is a positive constant, and q̇r is the denominated

“reference velocity” [18],[19]. The control architecture is illustrated in Figure 4,

already considering the utilization of a state observer in order to estimate the joint

velocities (which are not available in this case), with ėj substituted by ˆ̇ej.

As illustrated in Figure 4, the control law consists in the sum of three terms: an

“adaptive term”, a “smooth variable structure term” and a “stabilizing term” (K).

The control input is given by:

τ = Y â+ d̄Sat(αs) +Ks (6)

where

Sat(αs) =
αs

||αs||+ 1
(7)
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Figure 4: Block diagram of the Dual Mode controller

being d̄ and α positive constants and K a symmetric positive definite matrix. The

function Sat(.) is continuous with respect to its argument (with continuous partial

derivatives and components limited to the interval [−1,+1]), and from Figure 5, it

is possible to notice that the higher the chosen α, the closer this function will be to

a sign(.) function.

The vector â represents an estimate of the unknown parameters of the system

given by the vector anom, and Y is the regressor vector (based on the dynamic model

of the system). The adaptation of these estimated parameters is given by:

˙̂
θ = −γProj(sTY, θ̂) = −σθ̂ − γsTY (8)

where
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Figure 5: The effect of the parameter α on the smooth variable structure term

θ̂ = â− anom (9)

is the difference between the currently estimated values and the nominal values of

the parameters. The adaptation gain γ is a real positive constant, and the variable

σ is adjusted as follows:

σ =

 0, if ||θ̂|| < Mθ or σeq < 0

σeq, if ||θ̂|| ≥Mθ and σeq ≥ 0
(10)

σeq = −γs
TY θ̂

||θ̂||2
(11)
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being Mθ the maximum possible value (assumed to be known) of the estimated

deviation of the parameters in relation to their nominal values, and ||θ̂||2 the 2-

norm of θ̂. Let us now consider the dynamic model of Par2 (2). By neglecting Mtot

(total mass of the robot, i.e. Mtot = Mtp + n
Mforearm

2
), which would actually be

represented by its estimate M̂tot in the implemented dynamic model of Par2 with

the Dual Mode controller, the computation of heavy multiplications between the

Jacobian matrices/derivative of Jacobian matrices are avoided. The dry friction

is also neglected to avoid using the nonlinear sign(.) in the adaptation process.

Therefore, a simplified dynamic model can be written (with the estimates of the

system parameters â, given below in (16)) in the form that follows:

Itot(q, â)q̈ +G(q, â) + f(q, q̇, â) = τ (12)

being G(q, â), in this case, given by:

G(q, â) = −g
2

(Marm +Mforearm)

 l1cos(q1)

l2cos(q2)

 (13)

The regressor vector Y = Y (q, q̇, q̇r, q̈r) can then be computed:

Itot(q, â)q̈r +G(q, â) + f(q, q̇r, â) = Y â (14)

where q̇r = q̇d + λej. Note that in (14) we use q̇r and q̈r instead of q̇ and q̈. The key

idea comes from eliminating undesirable steady-state position errors by restricting

them to evolve on a sliding surface [18] such as in robust sliding mode control [20].

By rewriting the simplified dynamics of the system such that it has the form

given in (14), one can find that:
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Y =

 q̈1r 0 q̇1r −l1cos(q1)

0 q̈2r q̇2r −l2cos(q2)

 (15)

and

â =



â1

â2

â3

â4


=



Iact + Iarm

Iact + Iarm

fv

g
2
(Marm +Mforearm)


(16)

As the system does not have a sensor to measure the joint velocities, the velocity

measurements are not available. So an estimator must be proposed and implemented

(in order to calculate Y , â and s in (6)). In the present work, three estimators have

been proposed and experimentally compared. They are described in the sequel.

4 PROPOSED OBSERVERS

To deal with the unavailability of velocity measurements, three techniques have

been implemented to estimate them. They are presented in the sequel:

4.1 Lead-lab based observer

The Lead-lag filter [21] has the following modified structure:

Gll(p) =
p

τ1p+ 1
(17)

where p is the Laplace operator. So, the smaller τ1 is chosen, the more accurate

the velocity estimation will be, but the more noise the estimated velocity will have.
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The idea of the Lead-lag based observer is then to approximately derivate the input

signals (in our case, the joint positions), as shown in the diagram of Figure 6:

. ^ 

Figure 6: Block diagram of the Lead-lag based observer

This diagram is detailed as follows:

ˆ̇q(t) = gll(t) ∗ q(t) (18)

where ˙̂q(t) is the estimated joint velocity, gll(t) is the inverse Laplace transform of

Gll(p), i.e, gll(t) = L−1[Gll(p)] and the operator * denotes the convolution between

two functions.

The main advantages of this method are its simplicity and computational effi-

ciency, but its main drawbacks are the following:

1. If τ1 is given a big value, a delay in the output will be generated and it will

cause an inaccurate velocity estimation;

2. If τ1 is given a very small value, there may be a considerable amplification of

the noise/quantization effects.

Then, τ1 must be chosen such that a compromise between 1. and 2. is achieved.

4.2 Alpha-beta-gamma observer

The Alpha-Beta (or Alpha-beta-gamma) observer [22] consists in a simplified

form of Kalman Filter [23] for mechanical systems that have as their states the
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positions and the velocities. Its main idea consists in estimating the next step of the

states of the system according to the usual equations of kinematics and to correct

these estimations through the multiplication of the positions’ estimation errors by

constant gains. The structure of this observer is detailed as follows:

• Estimation of the next step’s positions and velocities:

 xprev(k + 1) = xinnov(k) + T.vinnov(k) + 1
2
T 2.ainnov(k)

vprev(k + 1) = vinnov(k) + T.ainnov(k)
(19)

where xprev(k + 1) and vprev(k + 1) are the estimated positions and velocities for

the next step, xinnov(k), vinnov(k) and ainnov(k) are the updated positions, velocities

and accelerations obtained through a correction based on the estimation error of the

position, detailed as follows,

• Update of the estimated positions and velocities (also called innovation) based

on the position measurement:


xinnov(k) = xprev(k) + α.(xmeas(k)− xprev(k))

vinnov(k) = vprev(k) + β
T
.(xmeas(k)− xprev(k))

ainnov(k) = γ
T 2 .(xmeas(k)− xprev(k))

(20)

being α, β and γ the update gains, xmeas the measured positions and T the sampling

time.

In our case, the initial articular positions are known and the initial articular

velocities are equal to zero, since the robot starts its movements from rest. So,

xprev(1) and vprev(1) are initialized with these values, respectively. On the next

step, based on the new measured articular positions, there is the innovation process,
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on which xinnov, vinnov and ainnov are calculated and then used to compute the new

estimated states of the system (xprev and vprev) for the next step. To summarize,

the basic principle of this observer is illustrated in the block diagram of Figure 7.

Initial estimated states: 

New estimated states: 

Innovation based on measured positions: 

    End of 
Movement ? 

No 

Yes END 

Measured positions 

Figure 7: Basic principle of the Alpha-beta-gamma observer’s algorithm

As the Lead-lag based observer, this observer has also the advantage of being

very computationally efficient and simple to implement, but it can provide a better

performance and robustness (cf. experimental results in section 6) since it is updated

at each sample time. One of its main disadvantages is that its gains must be chosen

such that a considerable amplification of the noises/quantization effect is avoided,

but even with less aggressive gains, fairly decent performances can be achieved.

4.3 High-gain observer

The High-gain observer (HGO) is a model-based observer that was proposed

in [24]. The main characteristic of this observer is that it takes into account the

model of the system, so it can generate a very good performance if a precise model

is available. However, even if this is not the case, this observer is robust because

at each time step a correction of the estimated states is made according to the
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comparison between the estimated positions and the measured ones. Its description

is given as follows:

 ˙̂x1 = x̂2 + 1
εαHGO1(x1 − x̂1)

˙̂x2 = 1
ε2
αHGO2(x1 − x̂1)− q̈d + F̂ (x̂, qd, q̇d) + Ĥ(x̂1, qd)τ

s
(21)

where

• x1 represents the position error (x1 = q̃) and x2, its first derivative (x2 = ˙̃q),

• x̂1 and x̂2 represent the estimated states,

• ε, αHGO1 and αHGO2 are positive gains,

• F̂ (x̂, qd, q̇d) = −I−1(x1, qd)[C(x, qd, q̇d)(x2 + q̇d)+G(x1, qd)], being the matrices

I, C and G those of the dynamic model (1),

• Ĥ(x̂1, qd) = I−1(x1, qd),

• τ s is the saturated torque (to avoid the ’peaking phenomena’).

The main characteristics of such observer are:

1. a precise model of the system must be used in order to obtain good perfor-

mances,

2. it is more complex (computationally and also concerning its implementation)

than the two previously described observers.

In the sequel, the stability analysis of the Par2 robot under the control of the Dual

Mode controller (complied with the High-gain observer for joint velocity estimation)

will be presented.
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5 STABILITY ANALYSIS

For the stability analysis of the Par2 robot, the following proposition is made:

Proposition 1. The Par2 parallel manipulator, modeled by (2), subject to bounded
disturbances (||d(t)|| ≤ dmax), in closed-loop with the Dual Mode nonlinear/adaptive
controller (6) with adaptation law as in (8) (having M̂tot and the dry friction ne-
glected), and involving an estimated velocity with the High-gain observer is uniformly
bounded under the following assumptions:

• ||θ̂(0)|| ≤ θM , therefore ||θ̂(t)|| ≤ θM ,∀t > 0,

• qd, q̇d and q̈d are bounded (adequately chosen reference trajectories),

• the Jacobian and its inverse exist and are bounded by a known constant J̄ ∈ <+

such that ||Jm(η)||, ||J−1
m (η)|| ≤ J̄ . The minimum singular value of Jm(η)

is assumed to be greater than a known small positive constant υ > 0, such
that Max{||J−1

m (η)||} is known a priori, and hence, all kinematic singularities
are avoided. The time-derivative of the Jacobian (J̇m) is also assumed to be
bounded. These assumptions are valid if one considers that the robot remains
far from singularities [26].

Under these assumptions, the tracking error ej will exponentially converge to the
residual domain given by:

||ej|| ≤ O(
1
√
γ

) +O(

√
εdmaxc(d̄)

k
) +O(ε) (22)

where O(.) represents the order of magnitude of the variables inside the brackets,
γ represents the adaptation gain, ε, dmax and c(d̄) correspond to configurable vari-
ables of the smooth variable structure term (where ε = 1

α
(being α defined in the

expression of Sat(αs), cf. (7)), dmax is the upper bound of ||d(t)|| and d̄ > dmax is a
positive gain), k represents a positive real constant which is considered proportional
(by commodity) to the stabilizing term “K” (K = kIn×n) and ε represents the gain
of the High-gain observer.

Consider the complete dynamic model of Par2 (2). This complete dynamic model

can be rewritten as:

Itotq̈ −Mglcos(q) + JTmMtotẌ + fv q̇ = τ (23)

20



where Mg =
Marm+Mforearm

2
g, Ẍ is the total Cartesian acceleration (having [0 g]T

incorporated into it) and l = l1 = l2. By considering that Ẍ = Jmq̈ + J̇mq̇, the final

expression is obtained:

Ieq q̈ −Mglcos(q) + JTmMtotJ̇mq̇ + fv q̇ = τ (24)

being Ieq = Itot+J
T
mMtotJm. In [16], the system to be controlled is written in general

form as:

I(q, a)q̈ + C(q, q̇, a)q̇ +G(q, a) + f(q, q̇, a) = τ + d(t) (25)

where a represents the real parameters of the system and d(t) is a bounded distur-

bance. If one writes (24) in the general form of (25), we would have I(q, a) = Ieq,

C(q, q̇, a) = JTmMtotJ̇m, G(q, a) = −Mglcos(q), f(q, q̇, a) = fv q̇.

The idea of this analysis is to firstly consider that, initially, the adaptive term

takes the complete dynamic model of Par2 into consideration, and then analyze the

effect of the neglected M̂tot on the controlled system.

If the complete model of Par2 had been considered in the adaptive term, one

would have the following control signal (which will be denoted as τCM instead of τ):

τCM = Îeq q̈r + JTmM̂totJ̇mq̇r − M̂glcos(q) + f̂v q̇r + d̄Sat(αs) +Ks (26)

which can be rewritten as in (6):

τCM = Y â+ d̄Sat(αs) +Ks (27)

being Y â = Îeq q̈r +JTmM̂totJ̇mq̇r− M̂glcos(q) + f̂v q̇r in this case. By substituting this

control law into (24), we obtain:
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Ieq q̈ + JTmMtotJ̇mq̇ −Mglcos(q) + fv q̇ = Îeq q̈r + JTmM̂totJ̇mq̇r − M̂glcos(q)+

+ f̂v q̇r +Ks+ d̄Sat(αs)

(28)

If one considers that q̈ = q̈r − ṡ (cf. (5)), the following closed-loop expression is

obtained:

************ Right-hand side multiplied by (-1)

(Îeq − Ieq)q̈r + (JTmM̂totJ̇m − JTmMtotJ̇m)q̇r − (M̂g −Mg)lcos(q) + (f̂v − fv)q̇r =

− Ieq ṡ− JTmMtotJ̇ms−K ′s− d̄Sat(αs)
(29)

*************

where K ′ = (k + fv)In×n = k′In×n, being In×n the identity matrix, used for com-

modity. As fv is a positive constant, the increase of K ′ in this analysis consequently

means the increase of K. Therefore, K ′ will be considered as K in the sequel, for a

simplification of the notation. The expression above is equivalent to the closed-loop

form:

I(q, a)ṡ+ C(q, q̇, a)s+Ks = Y ã− d̄Sat(αs) + d(t) (30)

being ***Y ã = −(Îeq − Ieq)q̈r − (JTm(M̂tot −Mtot)J̇m)q̇r + (M̂g −Mg)lcos(q)− (f̂v −

fv)q̇r***. To prove the stability of the proposed algorithm, let us consider the

following Lyapunov candidate function:
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V (t) =
1

2
(sT I(q, a)s+ ãTΓ−1ã) (31)

being Γ a symmetric positive definite matrix. The objective of the analysis is to have

a positive definite V (t) and analyze if V̇ (t) is negative definite in all the state-space

or if the region in which it would be negative can be made as large as one wants by

adjusting the control gains. By computing the time-derivative of (31), we obtain:

********************

V̇ (t) = sT I(q, a)ṡ+
1

2
sT İ(q, a)s+ ãTΓ−1 ˙̃a (32)

Considering (30) and the skew-symmetry of dI(q,a)
d(t)

− 2C(q, q̇, a), which ensures

that the Coriolis term C(q, q̇, a) will be canceled in the sequel as zT (dI(q,a)
d(t)
−2C(q, q̇, a))z =

0 for any z ∈ <, we get:

V̇ (t) = sT (Y ã+ d(t)− d̄Sat(αs)−Ks) + ãTΓ−1 ˙̃a (33)

*******************

By considering that the real parameters are constant, ˙̃a = ˙̂a = ˙̃θ =
˙̂
θ. Therefore,

with the definition of Sat(αs) (cf. (7)), we get to:

V̇ (t) = −sTKs+ sTd(t)− sT d̄

||s||+ ε
s+ θ̃T (Y T s+ Γ−1 ˙̂

θ) (34)

where ε = 1
α

. The proposed adaptation law (
˙̂
θ = −ΓProj(sTY, θ̂)) has the following

properties [10]:

i) θ̂ is uniformly continuous,
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ii) if ||θ(0)|| ≤ θM , then ||θ̂(t)|| ≤ θM , ∀ t > 0,

iii) ||Proj(y, θ)|| ≤ ||y||,

iv) θ̃TProj(y, θ̂) ≥ θ̃T ,

v) ||Proj(y, θ̂)|| is bounded if ||y|| is also bounded.

From (34) and property iv) of the projection algorithm (cf. (10),(11)), it is

possible to affirm that:

V̇ (t) ≤ −sTKs+ sTd(t)− sT d̄

||s||+ ε
s (35)

V̇ (t) ≤ −sTKs+ ||s||dmax − d̄
||s||2

||s||+ ε
(36)

As it is not possible to affirm that this function is negative definite, the properties

of disturbance attenuation and of stability of the proposed system must be analyzed.

For that, let us consider the two last terms of (36):

f(||s||) = ||s||dmax − d̄
||s||2

||s||+ ε
(37)

This function can be evaluated through Figure 8. From (37), it is possible to

notice that f(||s||) ≥ 0 for ||s|| ∈ [0,
dmaxε
d̄−dmax

], with d̄ > dmax, and f(||s||) < 0 for

||s|| > dmaxε
d̄−dmax

. From Figure 8, it is possible to notice that the interval in which

the function is positive is as small as one wants by increasing the gain d̄ and by

decreasing the gain ε (configuration 1: d̄ = 220, ε = 0.3; configuration 2: d̄ = 260,

ε = 0.1 and dmax = 200 in both cases), which guarantees that this function will be

positive only for a small region of ||s|| which will depend on d̄, ε and dmax.

By doing the derivative of f(||s||) with respect to ||s|| and making it equal to

zero, the value of ||s|| that maximizes f(||s||) can be found, and is given by the
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Figure 8: Effect of the increase of the gain d̄ and decrease of the gain ε on the decrease of the
positive region of ||s||

following:

||s||M = −ε+ ε

√
d̄

d̄− dmax
> 0 (38)

being the equivalent maximum value of f(||s||) given by:

f(||s||M) = εdmax

[
(−1 +

√
d̄

d̄− dmax
)− d̄

(−1 +
√

d̄
d̄−dmax

)2

dmax

√
d̄

d̄−dmax

]
(39)

where the expression between the square brackets is denoted as c(d̄), being then

possible to rewrite (39) as:

f(||s||M) = εdmaxc(d̄) (40)

Then, an upper bound on f(||s||) can be the following:

f(||s||) ≤ fmax = εdmaxc(d̄) (41)
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where fmax can be reduced to arbitrarily small values by increasing d̄ or decreasing

ε. We can therefore deduce that:

V̇ (t) ≤ −sTKs+ εdmaxc(d̄) (42)

It is now important to analyze the residual domain to which s (and in conse-

quence ej) will converge. Let us firstly consider the property of non-singularity of

inertia matrix:

Cm||s||2 ≤ sT I(q, a)s ≤ CM ||s||2 (43)

being Cm = λmin(I(q, a)) and CM = λmax(I(q, a)) positive and constant scalars

(equivalent to the minimum and maximum eigenvalues of I(q, a), respectively), if

the robot has revolute joints [27]. Adopting, by commodity, a matrix K = kIn×n,

we have:

k

CM
Cm||s||2 ≤

k

CM
sT I(q, a)s ≤ k||s||2 = sTKs (44)

If one considers (44) and (35), it is possible to conclude that:

V̇ (t) ≤ − k

CM
sT I(q, a)s+ εdmaxc(d̄) (45)

therefore, by substituting sT I(q, a)s = 2V (t)− ãTΓ−1ã (from (31)), we have:

V̇ (t) ≤ − 2k

CM
V (t) +

k

CM
ãTΓ−1ã+ εdmaxc(d̄) (46)

By choosing Γ = γP , being γ a positive real constant and P a positive definite

diagonal matrix, we can write:

26



γ−1 ||θ̃||2

λM(P )
≤ θ̃Tγ−1P−1θ̃ ≤ γ−1 ||θ̃||2

λm(P )
(47)

where λm and λM denote the minimum and the maximum eigenvalues of the matrix

P, respectively. By substituting (47) in (46) and considering that ã = θ̃, we obtain:

V̇ (t) ≤ − 2k

CM
V (t) +

k||θ̃||2

γCMλm(P )
+ εdmaxc(d̄) (48)

The projection algorithm has the property that ||θ̂|| ≤ θM , which means that

||θ̃|| ≤ 2θM . Therefore, the following inequality is obtained:

V̇ (t) ≤ − 2k

CM
V (t) +

4kθ2
M

γCMλm(P )
+ εdmaxc(d̄) (49)

Let us consider R =
4kθ2M

γCMλm(P )
+ εdmaxc(d̄), then (49) can be written as:

V̇ (t) ≤ −mV (t) +R (50)

where m = 2k
CM

. From the comparison lemma, it is possible to conclude that:

V (t) ≤ V (0)e−mt +
R

m
(1− e−mt) (51)

The following bound for V (t) is then obtained:

V (t) ≤ V (0)e−mt +
2θ2

M

γλm(P )
+
εdmaxc(d̄)

m
(52)

This means that the function V (t) is upper bounded, being the error s also

bounded. It is now important to define which will be the bound of s. From (43)

and (47), we can write:
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Cm
2
||s||2 ≤ 1

2
(Cm||s||2 +

||θ̃||2

γλM(P )
) ≤ V (t) (53)

and

V (0) ≤ 1

2
(CM ||s(0)||2 +

4θ2
M

γλm(P )
) (54)

By substituting (53) and (54) in (52) and rearranging the different terms, we

obtain:

||s||2 ≤
(CM
Cm
||s(0)||2 +

4θ2
M

γCmλm(P )

)
e−mt +

4θ2
M

γCmλm(P )
+

2εdmaxc(d̄)

Cmm
(55)

Finally, substituting m by its expression (m = 2k
CM

) and applying the triangle

inequality, we obtain:

||s|| ≤
√
CM
Cm
||s(0)||e−mt/2 +

2θM√
γCmλm(P )

(1 + e−mt/2) +

√
CMεdmaxc(d̄)

Cmk
γλm(P )

(56)

which can be rewritten as:

||s|| ≤ C||s(0)||e−mt/2 +
k1√
γ

+ C

√
εdmaxc(d̄)

k
(57)

where C =
√

CM

Cm
and k1 = 4θM√

Cmλm(P )
. The inequality (57) shows that the auxiliar

error s converges exponentially to an arbitrarily small region as the adaptation gain

γ and/or the parameter d̄ are increased and/or if the constant ε is decreased.

Therefore, it was shown that the proposed Dual Mode controller, when applied

to a manipulator modeled by (25) and considering the effects of disturbances uni-
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formly bounded by ||d(t)|| ≤ dmax, with initial condition of the estimated parameters

satisfying ||θ̂(0)|| ≤ θM and with d̄ > dmax guarantees the uniform boundedness of

all the signals of the system in closed-loop. In this case, with no disturbance on the

system (d(t) = 0), the auxiliar error s will exponentially converge to the following

residual domain:

||s|| ≤ O
( 1
√
γ

)
(58)

However, this conclusion would be valid only if the complete model had been

taken into consideration in the adaptive term, being d(t) = 0 in this case.

Now, let us consider the case of τCM2 which represents the two first terms of the

left-hand side of (29). It is given by:

τCM2 = (Îact−Iact+Îarm−Iarm+JTmM̂totJm−JTmMtotJm)q̈r+(JTmM̂totJ̇m−JTmMtotJ̇m)q̇r

(59)

In the implemented case, M̂tot was neglected such that the multiplication between

Jacobian matrices and time-derivative of Jacobian matrices would not be necessary

(as already mentioned in Section 3.2). Therefore, in the implemented case (cf.

(26),(27)), one would have the following two first terms of τCM , which will be named

τIC2 instead of τCM2:

τIC2 = (Îact − Iact + Îarm − Iarm − JTmMtotJm)q̈r + (−JTmMtotJ̇m)q̇r (60)

It is then possible to notice that the difference between them is equal to:

τCM2 − τIC2 = JTmM̂totJmq̈r + JTmM̂totJ̇mq̇r (61)
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Therefore, it would be considered as a disturbance to the controlled system:

d(t) = τCM2 − τIC2 = JTmM̂totJmq̈r + JTmM̂totJ̇mq̇r (62)

In [28], it is shown that the term d̄Sat(αs) compensates for bounded disturbances

if d̄ > dmax. The disturbance in the present case must therefore be evaluated.

By considering that s can be made as small as one wants by increasing γ (while

not considering saturation, which is the case of the present study), it is now necessary

to show that the disturbance d(t) is bounded. From (62) and (58), and considering

the assumptions mentioned in the beginning of the present proposition, one can

realize that:

• As the robot is assumed to remain far from singularities [26], Jm and J̇m are

bounded,

• M̂tot is bounded because of the adaptive law and the projection of the estimated

parameters,

• q̇r and q̈r are bounded, as q̇r = q̇d − λej and q̈r = q̈d − λėj, being q̇d and

q̈d bounded, λ a positive constant, and ej and ėj have been shown to be as

small as one wants (while not at saturation) without disturbance. It is worth

mentioning that ej(0) and ėj(0) are both equal to zero, which means that ej(t)

and ėj(t) will represent bounded inputs for q̇r and q̈r for t > 0, because the

increase of γ will decrease s (cf. (58)), and the smooth variable term will

decrease the effect of the disturbance.

Therefore, it is possible to conclude that the auxiliary error will converge to the

following residual domain:
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||s|| ≤ O(
1
√
γ

) +O(

√
εdmaxc(d̄)

k
) (63)

This analysis shows that the proposed Dual Mode nonlinear/adaptive controller

is able to guarantee the exponential convergence of the tracking errors of the Par2

parallel manipulator to the residual domain given by (63), which can be made as

small as possible by increasing γ and/or d̄ and decreasing ε (considering that there is

no saturation of actuation). However, in this analysis the whole state was considered

available (both joint positions and velocities), which is not the case. As the joint

velocities are not measured, they are estimated with the High-gain observer (HGO).

In [24], it was shown that the High-gain observer is able to recover the perfor-

mance of a system under state feedback control for sufficiently small ε, and that

it will act as a perturbation term of the order of ||ζ||, which is of the order of ε

to the closed-loop system under the state feedback control. Therefore, combining

our stability analysis (presented above) and the result of [24] on the HGO, one can

deduce that the closed loop system will converge to the following residual domain:

||s|| ≤ O(
1
√
γ

) +O(

√
εdmaxc(d̄)

k
) +O(ε) (64)

As the tracking error ej is related to the auxiliar error s by a linear filter, the

property of exponential convergence of s to a residual domain is preserved for ej

and ėj.

6 REAL-TIME EXPERIMENTAL RESULTS

This section is divided in two main parts. The first part consists in presenting

and discussing the real-time experimental results obtained by the application of the
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two proposed controllers complied with the High-gain observer, and the second part

consists in presenting and discussing the real-time experimental results obtained

by the application of the nonlinear Dual Mode controller complied with the three

proposed observers, described in section 4, to the Par2 parallel manipulator described

in section 1. In both cases, the platform of the robot has to go from some initial

Cartesian position (xdi , zdi) to the desired final Cartesian position (xdf , zdf ) and then

return to the initial position (xdi , zdi), concluding the cycle. *** The Par2 robot

has two Wittenstein TPM 050 motors, which have a maximum torque of around

500N.m and a gear ratio of 21. The angular position of each motor is obtained

through a Heidenhain EQN1325 encoder that has a resolution of 8192 measurable

positions per revolution [25]. The experiments were executed with a sampling time

of 0.5msec (sampling frequency of 2KHz) ***.

6.1 Real-time experimental comparison between controllers

The corresponding task space reference trajectory, as well as the illustration of

the robot movements are plotted in Figure 9. The real-time experimental testbed

is displayed in Figure 10, where:

• the PC used for the development of the control schemes is represented by item

1©,

• the energy/drivers box, responsible for the control of Par2 parallel manipula-

tor, is represented by item 2©,

• the emergency stop button is represented by item 3©,

• the Par2 parallel manipulator is represented by item 4©.
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Figure 9: Illustration of the robot’s movements (top) and the desired task space trajectory x-z in
a larger scale (bottom)
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Figure 10: Par2 parallel manipulator experimental setup
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****** The trajectory tracking and the tracking errors in task space (computed

from the forward kinematic model of the robot) obtained by the PD controller and

by the DM controller for 20G of maximum acceleration are shown in Figures 11

and 12 and the control inputs are shown in Figure 13. The real-time implementa-

tion of both controllers consisted in 3 pick-and-place cycles. In such scenario, the

main control objective is to obtain the best possible tracking precision, specially

around the stop points (final positions of the trajectory, equivalent to the pick and

the place positions), which are emphasized in Table 4. These positions occur for

t ∈ [0.125, 0.175]s (final desired position) and for t ∈ [0.325, 0.375]s (back to the

initial desired position), being repeated in the equivalent intervals of the subsequent

cycles. The parameters of both PD and the proposed DM controllers (which were

chosen experimentally until the best performances were achieved in each case) are

summarized in Table 3. ******

Table 3: Parameters of the Control Approach

Parameter Description
Kp = 94.5 Proportional gain
Kd = 2.1 Derivative gain
λ = 25 Positive constant
K = 2I Matrix gain
d̄ = 2.5 Smooth variable structure gain
α = 0.05 Smooth variable structure slope

ε = 0.002, αHGO1 = αHGO2 = 1 HGO gains
Mθ = 0.25 Maximum adaptative parameters’ error
γ = 0.3345 Adaptive gain
Ts = 0.0005 Sampling time (s)

n = 3 Number of cycles

The evolution of the control signals is shown in Figure 13, where it is possible

to notice that the PD controller is delayed in comparison to the DM controller,
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Figure 11: One cycle pick-and-place trajectory tracking (in task space) for 20G obtained with the
PD controller (dashed line) and with the DM controller (dotted line)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
−0.05

0

0.05

e X
 (

m
)

 

 

Dual Mode
PD

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
−0.015

−0.01

−0.005

0

0.005

0.01

t (s)

e Y
 (

m
)

 

 

Figure 12: Tracking errors (in task space) for 20G obtained with the PD controller (dashed line)
and with the DM controller (solid line)
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Figure 13: One cycle torques for 20G obtained with the PD controller (dashed line) and with the
DM controller (solid line)

and the amplitudes of both signals were roughly similar. It is also important to

emphasize that the motors are kept far from their mechanical limits (a maximum

torque of approximately 500N.m). The performance details of the two controllers

are summarized in Table 4.

Table 4: Performance comparison between the proposed control approach and a conventional PD
controller (20G) *****

Performance PD DM

Error peaks (X) [−44.6, 44.9]mm [−30.7, 33.5]mm

Error peaks (Y) [−11.7, 6.2]mm [−4.05, 5.75]mm

Err. around stop points (X) -25.4 & 25.7mm -6.66 & 7mm

Err. around stop points (Y) -11.47 & -11.71mm -3.83 & 4.05mm

PD controller delayed i.r.t. DM controller
Control signals

Roughly similar amplitude values

36



6.2 Real-time comparison between state observers

The trajectory tracking and tracking errors in task space obtained by the DM

controller with the three proposed observers for 15G of maximum acceleration are

shown in Figures 14-16. The velocity tracking is presented in Figure 17 and the

estimated velocity errors are displayed in Figures 18 and 19. The control inputs are

shown in Figures 20 and 21. The parameters of the proposed observers are presented

in Table 5.

Table 5: Parameters of the proposed observers

τ1 = 0.001 LL time constant
ε = 0.002, αHGO1 = αHGO2 = 1 HGO gains
αabg = 0.95, βabg = γabg = 0.5 ABG gains
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Figure 14: One cycle pick-and-place trajectory tracking (in task space) for 15G obtained by using
the ABG (dashed line), the HGO (dotted line) and the LL (dash-dotted line) observers

The performance details of the three observers are summarized on Table 6.

As for the main reasons why the Alpha-beta-gamma observer was able to gener-
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Figure 15: One cycle pick-and-place trajectory tracking (in task space) for 15G obtained by using
the ABG (dashed line), the HGO (dotted line) and the LL (dash-dotted line) observers
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Figure 16: Tracking errors (in task space) for 15G obtained with the PD controller (dashed line)
and with the DM controller (solid line)
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Figure 17: One cycle joint velocity tracking obtained by using the ABG (dashed line), the HGO
(dotted line) and the LL (dash-dotted line) observers
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Figure 18: One cycle estimated joint velocity errors (peak errors inside limit of 5% of the velocity
amplitudes) obtained by using each observer (Motor 1)
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Figure 19: One cycle estimated joint velocity errors (peak errors inside limit of 5% of the velocity
amplitudes) obtained by using each observer (Motor 2)
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Figure 20: One cycle torques obtained by using each observer (Motor 1)
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Figure 21: One cycle torques obtained by using each observer (Motor 2)

Table 6: Performance comparison between the observers used with the DM controller (15G)

Performance ABG LL HGO

Error peaks (X) [−1.47, 3.56]mm [−4.39, 4.63]mm [−12.07, 16.71]mm

Error peaks (Y) [−0.49, 2.74]mm [−0.49, 3.99]mm [−1.55, 3.35]mm

More noisy More oscillating Smoother
Control signals

Roughly similar amplitude values

ate a better tracking performance than the Lead-lag based observer and the High-

gain observer, one can mention that:

1. for the implementation of the High-gain observer, important simplifications on

the model of the system were made such that it would be possible to represent

it on the Lagrangian matrix form given in equation (1). As this observer is

model-dependent, this may have caused a considerable loss of performance,

2. the Alpha-beta-gamma observer is naturally more performant than the Lead-

lag based observer because the latter consists only in a transfer function that

will generate an approximate value of the velocity, while the ABG observer
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Figure 22: Zoom on the vibrations generated by the DM controller for 15G at the end of the third
cycle

not only estimates the velocity but also corrects this estimation at each step

according to the estimation error of the position.

7 THE MECHANICAL VIBRATIONS ISSUE

While increasing the acceleration of the robot (up to 20G), some vibrations could

be noticed. By analyzing Figure 22 and 23, it is possible to notice the increase of

the vibrations on the articular positions (in amplitude and in duration) caused by

the increase of the acceleration from 15G to 20G, which caused an amplification on

the vibrations of the control signals (cf. Figures 24 and 25). Considering that our

objective is to reach considerably higher accelerations, this issue will become very

important.

In order to avoid such undesired behaviour of the system (loss of precision, or

even damages to the mechanical structure of the robot) for higher accelerations,

three solutions are suggested for future investigations, and they are summarized in
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Figure 23: Zoom on the vibrations generated by the DM controller for 20G at the end of the third
cycle
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Figure 24: Zoom on the vibrations generated by the DM controller for 15G at the end of the third
cycle
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Figure 25: Zoom on the vibrations generated by the DM controller for 20G at the end of the third
cycle

the following.

7.1 Optimization of the reference trajectories

This solution deals with the optimization of the reference trajectories with re-

spect to some variables, such as maximum torques, maximum accelerations/decelera-

tions, etc. In our case, the objective of the parametrization and the optimization of

these parameters would be to minimize the arised mechanical vibration on the stop

points, as illustrated in Figure 26.

Controller
+

Robot

Classical p&p trajectory

Optimized p&p trajectory

Reference trajectory Output

Figure 26: Effect of the pick-and-place (p&p) reference trajectories’ optimization on mechanical
vibrations’ reduction

44



Figure 27: Piezo patch (top) and its fixation process (bottom)

Figure 28: Arms of Par2 equipped with the piezo patches

7.2 Utilization of piezoelectric actuators on the arms of the robot

Controlled piezoelectric actuators can be used to damp/compensate vibrations.

For that, the basic idea consists in generating adequate forces against arised vi-

brations. The first step of this solution is to attach piezoelectric actuators on the

arms of the robot. Figure 27 shows the piezoelectric patches and how they are fixed

(glued) on the arms. The arms of Par2 equipped with the piezoelectric patches are

shown in Figure 28. The basic principle of sensing/actuation scheme used in [29] is

presented in Figure 29, with F (t) being the initial displacement field and w(t) the

white noise force disturbance. In the aim to test the feasibility of the piezoelectric

actuators solution in our case, the experimental setup of Figure 30 was carried out.

The scheme used in [29] consisted in using piezo patches as sensors and also as

actuators. In our tests, an accelerometer on the platform is used as a sensor instead.
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Figure 29: Diagram with the sensing/actuation scheme of the proposed solution in [29] to deal
with vibrations

1

2

3

4 5

6

7

Figure 30: Experimental setup of the piezo-actuators
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In Figure 30, 1© is the beam (arm of the robot), 2© is the accelerometer, 3© is the

amplifier (which has as an input signal between -10V and 10V, and an output signal

between 0 and 400V), 4© is the low frequency signal generator, 5© is the oscilloscope,

6© is the signal conditioner for the accelerometer and 7© is the base where the beam

is fixed.

***In [30], an identification process was performed to obtain the nominal model

of the patched beam that would synthesize a reduced order model with the H∞ loop-

shaping technique. Such approach was shown to be effective around the nominal

operating point, but outside of such operating point, the saturation of the control

efforts became relevant. In order to deal with such issue, an anti-windup strategy

was employed, which allowed achieving vibration attenuation on the whole operation

domain for a given configuration of the robot at the stop point.***

7.3 Consideration of the arms’ flexibility in the design of the controller

During the design of the Dual Mode controller, the Par2 robot was considered

rigid, which is not absolutely correct. The objective, when adopting this solution,

is to take into account the vibrations in the dynamic model of the robot and to

compensate them in the controller. For instance, in [31] a new method to control

a flexible manipulator with noncollocated output was proposed and implemented

in simulation, and a good control performance was obtained. The noncollocated

output means that, instead of the joint velocity (va), the end-point velocity (ve) is

fedback to the controller through the link dynamics (cf. illustration in Figure 31).
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Figure 31: Diagram of the flexible arm used in [31]

8 CONCLUSION AND FUTURE WORKS

In this paper, a comparison between control/state estimation methods applied

on the Par2 parallel manipulator was made, as well as a discussion about the me-

chanical vibrations issue that may become important when reaching very high accel-

erations. Real-time experiments were performed firstly to compare two controllers

(a linear Proportional-Derivative (PD) and a nonlinear/adaptive Dual Mode (DM)

controller) complied with the same High-gain observer (HGO) in order to estimate

the articular velocities, and then to compare three state observers (a Lead-lag (LL)

based, an Alpha-beta-gamma (ABG) and a High-gain observer) complied with the

same nonlinear/adaptive DM controller. Results showed that the DM controller

can generate a considerably better performance than the PD controller, and that

the ABG observer was able to generate the best estimation of the joint velocities

in this case study. Some small mechanical vibrations were noticed when reaching

20G of acceleration, which means that it can become an important issue for higher

accelerations. Some suggestions have then been made for future investigations, in

order to avoid/damp these vibrations. ***In the near future, an analysis about the
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effect of variation in the model parameters shall be made (such as experiments with

different load conditions). In addition, experiments with higher involved accelera-

tions shall be performed. New control schemes in the task (Cartesian) space shall

also be proposed and implemented.***
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