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Dual-Space Control of Extremely Fast Parallel
Manipulators: Payload Changes and the 100G

Experiment
Guilherme Sartori Natal, Ahmed Chemori and François Pierrot

Abstract—In this paper, three control schemes are proposed
and experimentally compared on the R4 redundantly actuated
parallel manipulator for applications with very high accelera-
tions. Firstly, a PID in operational space is proposed in order
to adequately take into consideration the actuation redundancy.
Because of its lack of performance, a dual-space feedforward
control scheme based on the dynamic model of R4 is proposed.
The improvements obtained with this controller allowed the
implementation of an experiment which consisted in the tracking
of a trajectory with a maximum acceleration of more than 100G.
However, such controller may have losses of performance in case
of any operational change (such as different payloads). Therefore,
a dual-space adaptive control scheme is proposed. The stability
analysis of the R4 parallel robot when controlled by the proposed
dual-space adaptive controller is provided. The objective of this
paper is to show that the proposed dual-space adaptive controller
not only maintains its good performance independently of the
operational conditions, but also has a better performance than
both the PID and the dual-space feedforward controllers, even
when the latter is best configured for the given case (which
confirms its applicability in an industrial environment).

Index Terms—Parallel manipulators, Adaptive control, Feed-
forward control, Actuation redundancy, Trajectory tracking.

I. INTRODUCTION

SERIAL robots have been firstly introduced in the industry
in 1961 by G. Devol and J. Engelberger to perform spot

welding and extract die castings (which were considered as
unpleasant tasks for humans) in General Motors car factory.
Their lack of stiffness and accuracy, however, restricts their
utilization in tasks that demand high accelerations and high
precision. To solve this issue, parallel robots have been pro-
posed. The main idea of their structure consists in using at
least two kinematic chains to support the end-effector (also
called traveling plate), each of these chains containing at least
one actuator. This will allow for a distribution of the load
between the different chains [1].

Even though parallel manipulators have important advan-
tages in terms of stiffness, speed/acceleration, accuracy and
payload compared to their serial counterparts, it was shown
in [2] that they have an important drawback: the abundance
of singularities in the workspace. These singularities can
be eliminated through redundancy in actuation [3], [4]. A
degree of actuation redundancy in a parallel manipulator is
the difference, represented by a positive integer, between the
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number of its actuators (actuated joints) and its degrees-of-
freedom (dof) [5]. The actuation redundancy also allows to
increase the traveling plate accelerations and to homogenize
the dynamic capabilities of the robot throughout its workspace
[6], and can also allow for more safety in case of breakdown
of individual actuators [7], [8]. Considering these features, the
R4 parallel manipulator [6] (which can be seen as a redundant
Delta-like robot [9]), has three degrees-of-freedom and four
actuators (1 degree of actuation redundancy).

In order to apply the vast control literature developed for
serial counterparts to parallel manipulators with redundant
actuation, there is a need to develop an efficient dynamical
model for parallel manipulators [10]. In the literature, different
control approaches have been proposed for redundantly actu-
ated parallel manipulators. A dynamics formulation that could
be applied to redundant parallel manipulators was presented
in [13]. Based on this formulation, redundant actuation was
used to eliminate undesired singularity effects in parallel
manipulators in [14], [10]. In these works, kinematic and
dynamic control methods were successfully implemented ex-
perimentally in task space (such that the actuation redundancy
is taken into account for the end-effector motion to be fully
considered [15]). In [16], a PID, an augmented PD (APD)
and a computed torque controller have been studied and
compared. In [17], in order to overcome the influence of
modeling errors and nonlinear friction, a nonlinear computed
torque control was introduced. In [18], a hybrid position/force
adaptive control for redundantly actuated parallel manipulators
has been proposed. In [15], an adaptive controller in task space
that included adaptive dynamics compensation, adaptive fric-
tion compensation and error elimination items was proposed
and experimentally tested on a redundantly actuated parallel
manipulator. The parameter adaptation law of this controller
was derived with the gradient descent algorithm. It is worth
to emphasize, however, that in none of the mentioned works
the effect of parameter changes (e.g. payload) was analyzed
(neither how the proposed controllers would have dealt with
such operational changes).

This work is an extension of [19], where we proposed a
dual-space adaptive controller and experimentally compared
it with a dual-space feedforward controller, without stability
analysis and the 100G experiment. In the present work we
discuss in more details about the evolution in time of all
the proposed control schemes for the R4 parallel manipulator
(according to the issues encountered during the performed
experiments). We also discuss about the behavior of both esti-
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mated parameters (mass and inertia) during the executed pick-
and-place trajectory tracking experiments (with and without
payload). The proof of stability of the system under the control
of the proposed dual-space adaptive controller is provided,
which is a contribution of this work, as well.

Firstly, a PID controller in operational space with the
Jacobian pseudo-inverse was proposed in order to take the
actuation redundancy into consideration in its design. Because
of its lack of performance, a dual-space feedforward controller
(which consists of the previous PID controller complied with
the desired Cartesian and articular accelerations feedforward)
was proposed and implemented such that the dynamics of
R4 could be compensated. Even though this control scheme
provided a good tracking performance with very high accelera-
tions, it had important losses of performance when operational
changes occurred (such as load changes). In order to deal with
this lack of robustness, a dual-space adaptive controller (based
on the previous controller complied with the adaptive control
scheme proposed in [20]) was then proposed and implemented.
Experimental results with and without payload show that this
adaptive controller is able to automatically compensate for
the operational changes in real-time, thus keeping its good
tracking performance independently of the scenario without
any need of manual readjustments of its parameters.

This paper is organized as follows. In Section II, a brief
description of the R4 parallel manipulator is presented. The
proposed control schemes, as well as the stability analysis
of the R4 parallel manipulator when under the control of
the proposed dual-space adaptive controller are detailed in
Section III. Section IV is devoted to the reference trajectories
generation. The experimental results are presented in Section
V. A discussion about the most important conclusion remarks
and future works is made in Section VI.

II. R4 PARALLEL MANIPULATOR

A. Description of the R4 robot

The R4 robot is a redundantly actuated parallel manipulator
designed to have the capability of reaching 100G of acceler-
ation. During its design, an optimization study was made in
order to identify the best configuration of its structure in order
to achieve such objective [6]. The most important variables
that were taken into consideration in this optimization process
were the maximum achievable accelerations and the total costs
of the components of this robot. From this analysis, it was
concluded that the best structure which would provide the
optimal relation between acceleration capabilities and cost
would have 4 actuators and 3 degrees of freedom (redundantly
actuated, cf. Fig. 1). This robot has a workspace of at least
a cylinder of 300 mm radius and 100 mm height, and each
of its four actuators (ETEL motor, model RTMB0140-100
[21]) has a maximum torque of 127 N.m. Its CAD schematic
view and side view are shown in Fig. 1. The platform of the
robot (with and without a payload of 200g) is shown in Fig.
2. Its geometrical parameters are summarized in Table I and
illustrated in Fig. 3, and its dynamics parameters are described
in Table II.

X
Y

Z

4 ACTUATORS

3-DOF

Fig. 1. Views of the R4 parallel manipulator: Schematic view of the CAD
design (left), side view of the robot prototype (right)

Fig. 2. View of the platform (traveling plate) of the R4 parallel manipulator:
without payload (left), with a payload of 200g (right)

B. Simplified Forward Dynamics

During the design phase of R4 parallel manipulator, some
simplifications were made in the dynamic model computation.
These simplifications were based on the following hypotheses:
• the joint frictions were neglected, as the components of

the robot were designed such that they would have very
small frictions between them,

• the inertia of the forearms was also neglected, and their
masses were split up into two parts each being artificially
considered to be located at both ends of the forearms (half
of the mass is transferred to the end of the arm (Ai),
whereas the other half is transferred to the traveling plate
(Bi)),

• gravity acceleration was neglected since the case studies
considered very high accelerations, and the integral part
of the controller is fast enough to compensate it.

These assumptions are discussed in more details in [6] and
[22]. The final expression of the robot’s simplified forward
dynamic model is derived from a combination of the arms
and the traveling plate equilibriums, and is given by [6]:

Ẍ = (MT + Jm
T ITJm)−1JTm(τ − IT J̇mẊ) (1)

where Ẋ ∈ Rm and Ẍ ∈ Rm are the vectors of
Cartesian velocities and accelerations; MT = Diag{Mtp +

n
Mforearm

2 }m×m = MtotIm×m is a diagonal mass matrix,
being Mtp the mass of the traveling plate, Mforearm the mass
of the forearm, Mtot the scalar value of the diagonal of MT ,
m = 3 the number of degrees-of-freedom and n = 4 the
number of motors; IT = Diag{Iact + Iarm}n×n = ItotIn×n
is a diagonal matrix with n diagonal terms, where Iact and
Iarm are the inertia of the actuators and the inertia of the
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Fig. 3. Illustration of the R4 parallel manipulator geometric parameters
(detailed in Table I): Top view (left), side view (right)

TABLE I
GEOMETRIC PARAMETERS OF R4 PARALLEL MANIPULATOR

rb [m] rtp [m] li [m] Li [m]
0.135 0.05 0.2 0.53

arms, respectively, and Itot is the scalar value of the diagonal
elements of IT ; Jm ∈ Rn×m and J̇m ∈ Rn×m are respectively
the generalized inverse Jacobian matrix and its first derivative;
τ ∈ Rn represents the torques vector generated by the
actuators. For further details on the mechanical design of the
R4 parallel manipulator, the reader is referred to [6].

C. Actuation redundancy and its effects on control

Even though the actuation redundancy is a good solution
to deal with the singularities of a parallel manipulator in its
workspace and to provide advantages in terms of mechanical
capabilities of the robot, it creates a new issue in terms of
control: classical articular control schemes are unable to deal
with dynamic effects in Cartesian space, and the integral term
of a linear PID controller will be disturbed by kinematic
inconsistencies.

0 0 0

Fig. 4. Illustration of actuation redundancy: Non-redundant case (left) and
redundantly actuated case (right)

This concept is illustrated in Fig. 4. Consider, for instance,
a system with one dof in the Cartesian space (end-effector
on the horizontal axis). In the first case, a linear actuator
(on the vertical axis) is added to control the position of this
end-effector. This means that the system is not redundantly
actuated (in this example, it has one measuring scale in joint
space and one dof in the Cartesian space). Thus, it is always
possible to converge to a zero joint space error (which has
a “0” mark). In the second case, a second linear actuator is
added. The system has now two measuring scales in joint space
and one dof in the Cartesian space, which means that it is
redundantly actuated. By analyzing Fig. 4, it is possible to
see that any geometric error (due to machining inaccuracies,

TABLE II
DYNAMICS PARAMETERS OF R4 PARALLEL MANIPULATOR

Mtp [kg] Mforearm [kg] Iact [kg.m2] Iarm [kg.m2]
0.2 0.065 0.003 0.005

assembly errors, backlash, thermal expansion, etc.) will make
it impossible to get all the measuring scales to reach a zero
error at the same time. Thus the joint space error vector will
never be zero, and this error will always have an effect on the
integral term of the controller.

III. PROPOSED CONTROL SCHEMES: FROM
CARTESIAN PID TO DUAL-SPACE ADAPTIVE

CONTROL
A. PID controller in the Cartesian space

The first proposed control scheme experimentally imple-
mented on the R4 parallel manipulator was the PID in opera-
tional space. The main objective of this controller was to take
into consideration the actuation redundancy of the manipulator.
If such characteristic is not considered in the controller design,
important internal forces may arise, compromising not only
the performance of the system, but also the safety of its
mechanical structure. This control scheme is illustrated in Fig.
5.

PID	  c I.K.	  
-‐	   MANIPULATOR	  

+	  Xd	   qd	  

q	  

Δq	   ΔX	   F	   q	  

Fig. 5. Block diagram of the proposed Cartesian PID controller

The desired trajectory Xd is given in the Cartesian space.
As only the joint positions are measured, this trajectory is
converted to the joint space through the inverse kinematics
(I.K. block in Fig. 5) of the robot [6], such that the correspond-
ing tracking error ∆q is computed in joint space. The joint
tracking error must then be reconverted to its equivalent ∆X
in Cartesian space in order to be used in the PID controller.
As the joint tracking errors ∆q are assumed to be significantly
small, since the sampling time ∆t is of only 0.1ms (10−4s),
let ∆q

∆t '
dq
dt . If this robot were not redundantly actuated, this

conversion would be made by using ∆X ' J−1
m ∆q, where

Jm ∈ Rn×m is the generalized inverse Jacobian matrix (which
maps the traveling plate velocity vector Ẋ to the joint velocity
vector q̇), being n the number of actuators and m the number
of dof of the robot. When the robot is not redundant, Jm is a
square matrix (n = m), therefore it can be inverted. However,
in the case of R4, which has 4 actuators (n = 4) and 3 dof
(m = 3), Jm cannot be inverted. The solution is then to use
the pseudo-inverse as follows:

∆X = H∆q (2)

being H the pseudo-inverse of Jm, that is H = J+
m =

(Jm
TJm)−1Jm

T . It is worth mentioning that the pseudo-
inverse applies as the Jacobian is not singular. The following
control law is then proposed:
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τ = HTF (3)

where F = (Kpec(t) + Ki

∫
ec(t)dt + Kd

dec(t)
dt ) is the force

applied on the traveling plate, ec = ∆X , and Kp, Ki and Kd

are the PID feedback gains.

B. The dual-space feedforward controller

When considering the dynamics of R4 parallel manipulator
(1), a dual-space feedforward controller was proposed. This
controller consists basically in a PID in the operational space
augmented with a feedforward of both desired Cartesian and
articular accelerations to improve its tracking performance.
This control approach is illustrated in Fig. 6, and detailed as
follows.

PID	  c	  I.K.	  
+	  

-‐	   MANIPULATOR	  
+	   +	  +	  

+	  

d²	  
dt²	  

d²	  
dt²	  

Xd	  
qd	  

q	  

Δq	   ΔX	   F	  

Xd	  
..	  

qd	  
..	  

q	  

Fig. 6. Block diagram of the proposed dual-space feedforward controller

As will be shown in the sequel, the dual-space feedforward
controller was chosen because the dynamics of the system (1)
can be rewritten in such a way that it will only be necessary
to add two feedforward terms (the Cartesian and joint desired
accelerations) to the Cartesian PID in order to improve its
tracking performance. A computed torque was not considered
here because it would require the computation of the whole
dynamics of the system (instead of using the much simpler
rewritten form to be presented as follows), which is prohibitive
for an application which demands such small sampling time,
even more if one considers that an adaptive process is to be
added to the control law.

1) Computation of the feedforward gains: In order to define
the feedforward gains of the dual-space controller, it is nec-
essary to take into consideration the dynamics of the system
(1). By multiplying its both sides by (MT + Jm

T ITJm), one
obtains:

(MT + Jm
T ITJm)Ẍ = Jm

T (τ − IT J̇mẊ) (4)

which results in:

MT Ẍ + Jm
T ITJmẌ = Jm

T τ − JmT IT J̇mẊ (5)

The torques term τ is isolated on the left side, and the
following expression is obtained:

Jm
T τ = MT Ẍ + Jm

T ITJmẌ + Jm
T IT J̇mẊ (6)

Both sides are then multiplied by the pseudo-inverse of JmT

(which will be named HT ):

τ = HTMT Ẍ + IT (JmẌ + J̇mẊ) (7)

where JmẌ + J̇mẊ = q̈. Then (7) can be rewritten as:

τ = HTMT Ẍ + IT q̈ (8)

By direct analysis of Fig. 6 and Eq. (8), it is clear that
the nominal values of the gains that should multiply Ẍd

and q̈d are, respectively, Kffc = Mtot and Kffa = Itot,
as MT = MtotIm×m and IT = ItotIn×n. When good
values of these parameters are chosen for a specific case, a
good tracking performance is expected. However, when an
operational change occurs (such as a change of load), an
important loss of performance can then be expected, because
these gains will not be automatically updated accordingly to
these changes.

This issue may even be prohibitive for the utilization of such
controller in an industrial application with possible changes in
the robot environment, if one considers, for instance, pick-and-
place tasks where a fast movement without payload is followed
by another fast movement with an unknown payload. In order
to deal with such issue, a dual-space adaptive controller is
proposed. It is detailed in the following.

C. Dual-space adaptive controller

The proposed dual-space adaptive control scheme is based
on the dual-space feedforward controller, presented above, and
the adaptive control scheme proposed in [20]. The most im-
portant characteristic of this control approach is its capability
of taking into consideration the dynamics of the system and
estimate its parameters automatically in real-time. Consider
the general Lagrangian dynamic model [23], [24] of robot
manipulators in the matrix form:

I(q)q̈ + C(q, q̇)q̇ +G(q) + f(q, q̇) = τ (9)

where I(q) ∈ Rn×n is the inertia matrix, C(q, q̇)q̇ ∈ Rn×1 is
the vector of Coriolis and centrifugal forces, G(q) ∈ Rn is the
gravity vector and f(q, q̇) ∈ Rn is the vector of friction forces
and τ ∈ Rn represents the torques generated by the actuators.
The general expression of the proposed control scheme is
given as follows:

τ = Î(q)q̈d + Ĉ(q, q̇)q̇d + Ĝ(q) +Kpej +Kdėj (10)

where ej = qd − q, being ėj its first derivative, Î , Ĉ, Ĝ are
the estimates of I , C and G, respectively. Considering the
rewritten dynamics of the R4 manipulator (8), we propose to
express (9) in dual-space. Then, the following control law is
proposed:

τ = HT M̂totẌd + Îtotq̈d +Kpej +Kdėj (11)

which can be rewritten in operational space as:

F = Y θ̂ +Kpcec +Kdcėc (12)

where Kpc and Kdc are positive feedback gains, ec = Xd−X ,
ėc = Ẋd − Ẋ , and:

Y =
[
I3×3Ẍd JTmI4×4q̈d

]
; θ̂ =

[
M̂tot

Îtot

]
(13)

being Y and θ̂ the regressor vector and the vector of estimated
parameters, respectively, and I3×3, I4×4 are introduced only
to emphasize the size of the involved vectors and matrices, not
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influencing the actual calculations. These estimated parameters
vary according to the following adaptation rule [20]:

˙̂
θi =



γiiφi, if ai < θ̂i < bi or
θ̂i ≥ bi and φi ≤ 0 or
θ̂i ≤ ai and φi ≥ 0

γii(1 +
bi − θ̂i
δ

)φi, if θ̂i ≥ bi and φi ≥ 0

γii(1 +
θ̂i − ai
δ

)φi, if θ̂i ≤ ai and φi ≤ 0

(14)

where
• θ̂i represents the estimate of the ith parameter,
• γii is the ith element of the diagonal adaptation gain

matrix γ,
• ai and bi are the lower and upper bounds of each

estimation, respectively,
• φi is the ith element of the column matrix φ = Y T s;

being s = ėc + λec, and λ(ec) = λ0

1+||ec|| , where λ0 is a
positive constant,

• δ is a positive constant.
The chosen adaptive gains were γ11 = 0.2 and γ22 =

1.5x10−4. These values were chosen such that the convergence
of the estimated parameters could be achieved quickly enough
for a very fast pick-and-place task, and such that it would
not be aggressive enough to negatively affect the trajectory
tracking performance of the manipulator. Considering an a
priori knowledge of the mass (with a maximum payload of
around 400g) and inertia of the robot, considering that the best
Kffc gain of the feedforward controller was 0.625 for the case
without payload and 0.825 for the case with a payload of 200g,
and taking into account that bigger payloads might be used in
future experiments, the chosen range for the parameter M̂tot

was of [0.525; 1] kg, which means a1 = 0.525 and b1 = 1. The
inertia parameter Îtot, which is equivalent to the feedforward
gain Kffa, the range was chosen as [0.006, 0.018] kg.m2,
which means a2 = 0.006 and b2 = 0.018. In this case study,
one concentrates more on the behavior of the parameter M̂tot,
as this is the parameter that directly compensates for the load
changes.

This adaptive control scheme is summarized in the block
diagram of Fig. 7, where d

dt represents the direct derivation of
∆X . The direct derivation is considered in this case because of
the high resolution encoders that are used to measure the joint
positions, as well as because of the very small sampling period
(which allows the generation of smooth derivative signals).D. Stability analysis

For the stability analysis of the parallel manipulator mod-
eled by (1), subject to bounded disturbances (||d(t)|| ≤ dmax),
in closed-loop with the dual-space adaptive controller (12)
with adaptation law (14), the following assumptions are con-
sidered:
• ||θ̂(0)|| ≤ Θ, where Θ = {θ | ai ≤ θi ≤ bi, 1 ≤ i ≤
p}, being ai and bi the chosen lower and upper bounds
for each estimated parameter θi and p the number of
estimated parameters,

Fig. 7. Block diagram of the proposed dual-space adaptive controller

• θ̂(t) ≤ Θδ , where Θ = {θ | ai − δ ≤ θi ≤ bi + δ, 1 ≤
i ≤ p}, for some δ > 0,

• Xd, Ẋd and Ẍd, as well as qd, q̇d and q̈d are bounded,
• the Jacobian and its inverse exist and are bounded by a

known constant J̄ ∈ R+ such that ||Jm(η)||, ||J−1
m (η)|| ≤

J̄ . The minimum singular value of Jm(η) is assumed
to be greater than a known small positive constant ϑ >
0, such that Max{||J−1

m (η)||} is known a priori, and
hence, all kinematic singularities are avoided. The time-
derivative of the Jacobian (J̇m) is also assumed to be
bounded. These assumptions are valid if one considers
that the robot remains far from singularities [10].

Under these assumptions, the following theorem is pro-
posed.

Theorem 1:
The Cartesian error eTss = [eTc ėTc ] will exponentially

converge to the following residual domain:

||ess||2 ≤ O(
dmax

λλmin(Q)
) +O(

1

γs
) (15)

where γs represents the adaptation gain (by commodity, we
considered that Γ = γsP , being Γ the adaptation gain matrix
and P a positive definite diagonal matrix) and Q is given by
[11]:

Q =

[
||Kpc|| 1

2
(||Kdc|| + 3

2
ρ1||Ḿ ||)

1
2
(||Kdc|| + 3

2
ρ1||Ḿ ||) ||Kdc||

2λ0

]
(16)

being ρ1 the upper bound of the desired velocity and ||Ḿ || =
||Ḿq(v)||, where Ḿq(v) = (vT ⊗ I)DqM

s(q), for any vector
v, is the vectorial representation of the partial derivative of
Ms = Ṁeq(q, q̇)− Ceq(q, q̇) with respect to q obtained from
Christoffel symbols Υ as follows:

Υ = λeT1 (Ṁeq − Ceq)e2 =
1

2
λeT1 (Ḿ(x2)e2−

−Ḿ(e2)x2 − Ḿ(x2)T e2) (17)

with x2 = Ẋ , e1 = ec and e2 = ėc.
Proof:

In order to analyze the stability of the redundantly actuated
parallel manipulator in closed-loop with the proposed dual-
space adaptive controller, let us firstly consider its dynamics,
recalled below:

(Mtot + JTmItotJm)Ẍ + JTmItotJ̇mẊ = JTmτ (18)
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which can be rewritten as:

Meq(q)Ẍ + Ceq(q, q̇)Ẋ = F (19)

or, equivalently to [11] in operational space, as:{
ẋ1 = x2

ẋ2 = −M−1
eq (Ceqe2 − F )

(20)

where x1 = X , x2 = Ẋ , Meq = (Mtot + JTmItotJm) and
Ceq = JTmItotJ̇m. It is now important to recall the applied
control scheme:

F = M̂totẌd + JTmÎtotq̈d +Kpcec +Kdcėc (21)

and then convert it to the Cartesian space (considering that
q̈d = Jm(qd, Xd)Ẍd+J̇m(qd, q̇d, Xd, Ẋd)Ẋd, then adding and
subtracting Jm(q,X)Ẍd + J̇m(q, q̇,X, Ẋ)Ẋd), gives:

F = M̂eqẌd+ĈeqẊd+JTmÎtot(J̃Ẍd+ ˙̃JẊd)+Kpcec+Kdcėc
(22)

where J̃ = Jm(qd, Xd) − Jm(q,X) and ˙̃J =
J̇m(qd, q̇d, Xd, Ẋd) − J̇m(q, q̇,X, Ẋ), which will be
considered as a bounded disturbance to the controlled
system (to be detailed later in the analysis). Firstly, the
analysis will be made while considering no disturbance
to the controlled system. Therefore, the control scheme in
operational space will be initially considered as follows:

F = M̂eqẌd+ĈeqẊd+Kpcec+Kdcėc = Y θ̂+Kpcec+Kdcėc
(23)

As it was shown in [11], a system of the form (20) controlled
by (23) with the adaptation law (14) is stable and converges
to:

||ess|| → 0 (24)

where eTss = [eTc ėTc ]. This means that, without disturbance,
both the position and velocity tracking errors will converge
to zero as time tends to infinity. However, the real system is
disturbed by:

d(t) = JTmÎtot(J̃Ẍd + ˙̃JẊd) (25)

This disturbance is bounded, because:
• The robot configuration is assumed to be far from

the actuation singularities [10]. Therefore, Jm(q,X)
and J̇m(q, q̇,X, Ẋ) are bounded [15]. If one consid-
ers that J̃ = Jm(qd, Xd) − Jm(q,X) and ˙̃J =
J̇m(qd, q̇d, Xd, Ẋd)−J̇m(q, q̇,X, Ẋ) and that Jm(qd, Xd)
and J̇m(qd, q̇d, Xd, Ẋd) are bounded, it is possible to
conclude that J̃ and ˙̃J are also bounded,

• Îtot is bounded because of the projection of the estimated
parameters in the adaptive law,

• Ẍd and Ẋd, as well as q̈d and q̇d are bounded (adequately
chosen reference trajectories).

Let us then substitute the proposed control scheme (23) with
adaptation law (14) into the dynamic model of the robot (19)
while considering the bounded disturbance d(t). This results
in:

M̂eqẌd + ĈeqẊd +Kpcec +Kdcėc + d(t) = MeqẌ + CeqẊ
(26)

By adding and subtracting MeqẌd + CeqẊd, one gets to:

Meq ëc + Ceq ėc + (M̂eq −Meq)Ẍd + (Ĉeq − Ceq)Ẋd+

+Kpcec +Kdcėc + d(t) = 0
(27)

which can be rewritten as:

Meq ëc + Ceq ėc = −Y θ̃ −Kpcec −Kdcėc − d(t) (28)

where Y = [Ẍd Ẋd] and θ̃ = [M̃T
eq C̃

T
eq]

T , being M̃eq =

M̂eq −Meq and C̃eq = Ĉeq − Ceq . Therefore, the expression
of the error dynamics can be written in state-space as follows:{

ė1 = e2

ė2 = −M−1
eq (Ceqe2 +Kpce1 +Kdce2 + Y θ̃ + d(t))

(29)

where e1 = ec and e2 = ėc. Consider, as in [11], the following
Lyapunov candidate (without disturbances):

V (t) =
1

2
eT1 Kpce1 +

1

2
eT2 Meqe2 +λ(e1)eT1 Meqe2 +

1

2
θ̃TΓ−1θ̃

(30)
being λ(e1) = λ0

1+||e1|| , where λ0 is a positive constant. This
Lyapunov candidate is guaranteed to be positive definite with
a sufficiently small choice of λ0, and can be rewritten as:

V (t) =
1

2
eTss

[
Kpc λMeq

λMeq Meq

]
ess +

1

2
θ̃TΓ−1θ̃ (31)

with ess = [eTc ėTc ]T . The objective is now to evaluate the
time-derivative of V (t), which is given by:

V̇ (t) = eT1 Kpce2 + eT2 Meq ė2 +
1

2
eT2 Ṁeqe2+

+ λeT2 Meqe2 + λeT1 Meq ė2 + λeT1 Ṁeqe2+

+ λ̇eT1 Me2 + θ̃TΓ−1 ˙̃
θ

(32)

Considering that ė2 = −M−1
eq (Ceqe2+Kpce1+Kdce2+Y θ̃)

and also the skew-symmetry property of the matrix (
Ṁeq

2 −
Ceq), one gets to:

V̇ (t) = −eT2 (Kdce2 + Y θ̃) + λeT2 Meqe2 − λeT1 (Ceqe2+

+Kpce1 +Kdce2 + Y θ̃) + λeT1 Ṁeqe2+

+ λ̇eT1 Me2 + θ̃TΓ−1 ˙̃
θ

(33)

which will be represented as:

V̇ (t) = ξ1 (34)

where ξ1 represents the right-hand side of (33). For such a
case, considering [11], we can conclude that:

V̇ (t) ≤ −λλmin(Q)||ess||2 (35)

where λmin(Q) represents the minimum eigenvalue of Q and:
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Q =

[
λmin(Kpc)

1
2
(||Kdc|| + 3

2
ρ1||Ḿ ||)

1
2
(||Kdc|| + 3

2
ρ1||Ḿ ||) λmin(Kdc)

2λ0

]
(36)

being ρ1 the upper bound of the desired velocity and Ḿq(v) =
(vT ⊗ I)DqM

s(q), for any vector v, as previously defined.
When considering the disturbance, the following expression
of the time-derivative of V (t) is obtained:

V̇ (t) = −eT2 (Kdce2 + Y θ̃ + d(t)) + λeT2 Meqe2−
− λeT1 (Ceqe2 +Kpce1 +Kdce2 + Y θ̃+

+ d(t)) + λeT1 Ṁeqe2 + λ̇eT1 Me2 + θ̃TΓ−1 ˙̃
θ

(37)

which is equivalent to:

V̇ (t) = ξ1 − (||eT2 + λeT1 ||)d(t) (38)

As d(t) can be negative, the conclusion for this stability
analysis is written as follows:

V̇ (t) ≤ −λλmin(Q)||ess||2 + (||eT2 + λeT1 ||)dmax (39)

It is clear that, in the present case, it is not possible to
guarantee that V̇ (t) is negative definite. However, it is possible
to manipulate λmin(Q) (by carefully choosing Kpc, Kdc and
λ0) such that the region where V̇ (t) is positive can be made
as small as possible, therefore guaranteeing that the system
error will converge to a residual domain that can be made as
small as possible (when not considering the saturation of the
actuators).

This is illustrated in Fig. 8 for the example that follows (with
||ess||2 = e2

1 + e2
2). Firstly, let us consider that λ = 0.01 and

λmin(Q) = 100 (configuration 1), and then consider that λ is
kept with the same value and λmin(Q) = 300 (configuration
2). In both cases, dmax = 5. It is possible to notice, as
illustrated in Fig. 8, that by only increasing Kpc and Kdc

(thus increasing λmin(Q)), the Lyapunov candidate V (t) will
converge to a considerably smaller residual domain. This is
because the increase of ||ess||2, after a certain point, will
cause the time-derivative of V (t) to become negative. As the
Lyapunov candidate V (t) also depends directly on ||ess||2 (cf.
the two first terms of (30)), this means that ||ess||2 will also
decrease after this point. Finally, one must consider that the
projection of the estimated parameters (14) is not necessary in
the case without disturbances. However, in our case we have
disturbances, which generates the need for a projection in the
adaptation algorithm (in order to guarantee the boundedness of
the estimated parameters). This projection may add a residual
error to the controlled system which is inversely proportional
to the adaptation gain [12]. This leads to the conclusion that:

||ess||2 ≤ O(
dmax

λλmin(Q)
) +O(

1

γs
) (40)

0 2 4 6 8 10 12 14 16

−2

−1

0

1

2

3

4

||e
ss

||2

V̇

 

 
Configuration 1
Configuration 2

Fig. 8. Illustration of the effect of the increase of λmin(Q) on the behavior
of V̇ (t) with respect to ||ess||2

IV. TRAJECTORY GENERATION

In this section, two proposed trajectories will be presented
and detailed. The first one consists in a spiral movement (cf.
Fig. 9) that was implemented for a maximum acceleration
of 20G (≈ 200m/s2, which provides a frequency of 6.5
revolutions per second). This trajectory was used as a case
study to compare the PID controller in operational space and
the dual-space feedforward controller. The second one consists
in a 3D pick-and-place trajectory as illustrated in Fig. 10. This
trajectory was implemented for a maximum acceleration of
30G with the dual-space feedforward controller as well as the
dual-space adaptive controller.

A. First proposed trajectory: Spiral movements in x-y plane

The desired x-y trajectory is described as follows:{
xd = Kmod 0.125 sin(2πfmovt)

yd = Kmod 0.125 sin(2πfmovt+
π

2
)

(41)

being Kmod = 0.5 sin( 2πt
15 + 11π

10 ) a modulation function
that guarantees a smooth variation of the circle’s radius in
order to avoid abrupt start/finish movements and fmov the
frequency of the circular movements (in Hz). The obtained
curve is illustrated in Fig. 9. The associated experiment has
the following procedure:

• the robot goes to its initial position (0, 0,−0.55)m and
stops,

• the robot starts moving while the radius of the circular
movement increases smoothly until it reaches 0.125m and
then decreases smoothly until the robot stops.

The objective of this case study is to evaluate the track-
ing performance that would be obtained by the addition of
the desired Cartesian/joint acceleration feedforwards to the
Cartesian PID controller. As will be detailed in Section V,
this performance improvement allowed for a safer increase of
the acceleration/velocity of the robot until 30G, which was
achieved on the second proposed trajectory.
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Fig. 9. Top view of the reference trajectory used in the first case study (spiral
in the x-y plane)

B. Second proposed trajectory: 3D pick-and-place movements

The objective of this trajectory is to evaluate the capability
of the proposed control schemes to deal with very high
accelerations/velocities in a pick-and-place task. The desired
trajectory was chosen such that movements of different dis-
tances would have to be performed in the same amount of
time. This would require different accelerations/velocities for
each one of them, demonstrating the good applicability of
the proposed dual-space control schemes. The trajectory in
question has the following sequence of movements:

1) Pick 1 - Place 1: From (-0.1,0.1)m to (0.1,-0.1)m,
2) Place 1 - Pick 2: From (0.1,-0.1)m to (0.1,0.1)m,
3) Pick 2 - Place 2: From (0.1,0.1)m to (-0.1,-0.1)m,
4) Place 2 - Pick 1: From (-0.1,-0.1)m to (-0.1,0.1)m.

Each movement was performed in 0.08s without payload
(0.32s for the whole cycle), and in 0.1s with payload (0.4s
for the whole cycle). Their maximum height was equal to
2.5cm.

1

2

3

4

PICK 1

PICK 2

PLACE 1

PLACE 2

Fig. 10. Isometric view of the 3D pick-and-place trajectory

The trajectory generation algorithm used in this case was
a polynomial interpolation of degree five [25]. This algorithm
guarantees the continuity of the movement in position, velocity
and acceleration. The idea is to reach a desired final position
from a given initial position through the following function:

xf = xi + r(t)∆x, for 0 ≤ t ≤ tf (42)
where

r(t) = 10(
t

tf
)3 − 15(

t

tf
)4 + 6(

t

tf
)5 (43)

being xi, xf the initial and final positions, respectively, r(t)
a function that represents the trajectory between the two
positions (being its limits equal to r(0) = 0 and r(tf ) = 1),
∆x = xf − xi and tf the duration of the movement (chosen
by the user).

C. Third proposed trajectory: 100G vertical movements

In order to accomplish the objective of reaching 100G of
acceleration, a vertical trajectory (centered on the origin of
the x-y plane) was proposed. This trajectory was proposed
because the torques would be equally divided between the four
actuators, and also because of the symmetrical internal efforts
to be supported by the structure of the robot. This trajectory
is described by an expression similar to the one of the spiral
trajectory, but only on the z axis in this case:

zd(t) = Kmod 0.05 sin(2πfmovt) (44)
being Kmod the same modulation function of the spiral
trajectory used in Section IV-A to avoid an abrupt start/finish
of the movements, and fmov the frequency of the sinusoidal
movement (in Hz), being fmov = 22Hz. The desired trajec-
tory is illustrated in Fig. 15. The associated experiment has
the following procedure:
• the robot is steered to its initial position (0, 0,−0.55)m

and stops (initialization),
• the amplitude of the movement increases smoothly until

it reaches 0.05m and then decreases smoothly until the
robot stops.

V. REAL-TIME EXPERIMENTAL RESULTS

In this section, real-time experimental results obtained
through the application of the proposed control schemes de-
scribed in Section III on the parallel manipulator R4 described
in Section II in order to track the reference trajectories detailed
in Section IV are presented and discussed.

TABLE III
PARAMETERS OF THE CARTESIAN PID CONTROLLER

Kp Ki Kd
8000 600 40

TABLE IV
PARAMETERS OF THE DUAL-SPACE FEEDFORWARD CONTROLLER

Kp Ki Kd Kffc Kffa
8000 600 40 0.625/0.825 0.012
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TABLE V
CONFIGURATION OF THE DUAL-SPACE ADAPTIVE CONTROLLER

Adaptive gains γ11 = 0.2 / γ22 = 1.5e−4

Range of M̂tot (kg) [0.525;1]
Range of Îtot (N.m) [0.006;0.018]

λ0 100
δ 0.0001
Kp 8000
Kd 40

A. Description of the experimental testbed

The proposed control schemes were implemented in
Simulink/Matlab of Mathworks, being compiled using XPC
Target real-time toolbox, and uploaded to the target PC,
which managed the real-time task execution with a sampling
frequency of 10 kHz (sampling period of 0.1msec). Because
of such high sampling frequency, the utilization of external
measurement devices such as cameras for the measurement of
the position of the platform was not considered. The position
of the platform was calculated through the forward kinematics
of the robot, and the Cartesian velocity was obtained through
direct derivation of the calculated Cartesian position. The
experimental testbed of our prototype is displayed in Fig. 11,
where:

3 2

1

4

Fig. 11. View of the experimental testbed of R4 parallel manipulator

• the PC used for the development of the control schemes
in Simulink/Matlab is represented by item 1©,

• the dedicated target PC, responsible for the real-time
control of the robot, is represented by item 2©,

• the emergency stop button is represented by item 3©,
• the R4 parallel manipulator is represented by item 4©.
Four main experimental scenarios are proposed and imple-

mented on this testbed, namely:
1) comparison between PID and dual-space feedforward

controllers,
2) 100G experiment with the dual-space feedforward con-

troller,
3) dual-space feedforward controller overall performance

analysis,

4) comparison between dual-space feedforward and adap-
tive controllers.

Each of these scenarios is detailed and discussed in the
sequel.

B. Comparison between the Cartesian PID and the dual-space
feedforward controller

Based on this experiment, a first comparison will be made
between the Cartesian PID and the dual-space feedforward
controller for the case of the spiral trajectory in the x-
y plane for a maximum acceleration of 20G (equivalent
to fmov = 6.5Hz). This trajectory was selected for this
comparison because it is relatively simple both in terms of
the dynamics involved and also because of the symmetry of
the movements. The obtained results for this scenario are
given in Figs. 13-14. In Fig. 12, the movement along x-axis
(similar for y-axis, with a delay of 90◦) is illustrated. During
its initialization, the robot goes from the rest position to the
desired initial position (0, 0,−0.55)m, then the amplitude of
the circle starts to increase until it reaches 0.125m (reaching
a maximum acceleration of 20G), and then it decreases in
the same way until the robot stops. In order to compare the
performance of both controllers, Figs. 13-14 show a zoom
around the time interval of maximum amplitude.

0 5 10 15 20

−0.1

−0.05

0

0.05

0.1

t (s)

X
 (

m
)

Fig. 12. View of the trajectory of the traveling plate along x-axis vs. time

By analyzing Fig. 13, it is possible to notice that the dual-
space feedforward controller provides a better tracking perfor-
mance than the classical Cartesian PID. The former is able to
keep the tracking errors within the interval [−1.55, 2.34]mm,
while the latter keeps them within [−4.62, 5.33]mm. This
means that the dual-space feedforward controller provides a
peak-to-peak (difference between the highest peak and the
lowest valley of a signal) error improvement of approximately
60%. The Root Mean Square Error (RMSE) can also be
used to evaluate the tracking performance of the proposed
controllers. The computation of the RMSE takes into consid-
eration all the three axes equally, as detailed in the following:

erms =
√
e2
rmsx + e2

rmsy + e2
rmsz (45)
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Fig. 13. Evolution of the resulting tracking errors for the PID controller (solid
line) and for the dual-space feedforward controller (dashed line)
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Fig. 14. Evolution of the torque of one actuator for the cases of the PID
controller (solid line) and the dual-space feedforward controller (dashed line)

where ermsx (and equivalently ermsy and ermsz ) is given by:

ermsx =

√
e2
x1

+ e2
x2

+ ...+ e2
xn

n
(46)

where n is the total number of elements of ex. The RMSE
shows an equivalent improvement in performance with the
dual-space feedforward controller (1.3 mm versus 3.6 mm,
which means an improvement of approximately 64%). Another
advantage of the dual-space feedforward controller was that
its control signal had a smaller peak-to-peak value than
the Cartesian PID (as shown in Fig. 14). These results are
summarized in Table VI.

With the conclusion that the Cartesian PID controller has a
relatively bad tracking performance even for a trajectory which
is relatively simple, the former was discarded for the next case
study.

C. The 100G experiment

The trajectory tracking obtained with the dual-space feed-
forward controller for the 100G vertical trajectory is displayed
in Fig. 15 (where the steering from the rest position to the
desired initial position, as well as the natural descent of the
end-effector (due to the gravity acceleration) after the motors
are turned off at the end of the experiment are illustrated).
A zoom on the period around the maximum acceleration
(maximum amplitude of the sinusoidal movement) for the
trajectory tracking and the torques are depicted in Figs. 16
and 17. The torque×angular velocity relation for each motor
is shown in Fig. 19.
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Fig. 15. Trajectory tracking obtained with the dual-space feedforward
controller for the 100G vertical trajectory, including initialization phase
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Fig. 16. Zoom on the trajectory tracking obtained with the dual-space
feedforward controller for the 100G vertical trajectory

From Fig. 16, it is possible to notice that the feedforward
controller is able to keep the system stable and with an accept-
able tracking error (inside the interval of [−3.31, 3.88]mm,
which is equivalent to a peak-to-peak error of approximately
7.2%) even while tracking a trajectory with such high acceler-
ation. By analyzing Fig. 17 (representing the evolution of the
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Fig. 17. Torques generated by the dual-space feedforward controller

Fig. 18. Mechanical limits of the motors of R4 parallel manipulator (3RBS)
for Tp and Tc, namely peak torque and constant torque, respectively
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Fig. 19. Illustration of the mechanical power admissibility of the actuators
during the 100G experiment vs. their mechanical limits
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Fig. 20. Evolution of the traveling plate Cartesian acceleration along the
z-axis for the 100G trajectory

control inputs (torques)), one can see that the four actuators
had a similar maximum amplitude and, from Fig. 19, one can
see that the the four motors are close to reaching their power
limits (maximum torque of 127N.m and maximum speed of
550rpm, as illustrated in Fig. 18 (Tp − 3RBS), which refers
to the characteristics of the chosen motors). The motors were
designed with a thermal protection system against overheating,
in order to guarantee that high temperatures would not affect
their performances [26]. Fig. 20 shows that the robot was able
to reach more than 100G of acceleration (which is equivalent
to approximately 981m/s2 if one considers that the gravity
acceleration is approximately 9.81m/s2) with the proposed
dual-space feedforward controller. The peaks of 1000m/s2 are
equivalent to around 102G of acceleration. The accelerations
of each axis were measured on R4 with a Silicon Designs
triaxial analog accelerometer (Model 2460-200) attached to
its end-effector.

In the sequel, we are interested in analyzing the performance
of the dual-space feedforward controller in details, especially
its limitations for an application involving operational changes.

TABLE VI
PERFORMANCE COMPARISON BETWEEN THE CARTESIAN PID AND THE

DUAL-SPACE FEEDFORWARD CONTROLLER

Performance PID Dual-space
Error peaks [−4.6, 5.3]mm (4%) [−1.5, 2.3]mm (1.6%)

RMSE 3.6 mm 1.3 mm
Control signals Dual-Space has slightly smaller peak-to-peak value

D. Dual-space feedforward controller performance analysis
In order to check the capabilities of this control approach

and analyze its lack of robustness, the 3D pick-and-place
trajectory presented in Section IV is proposed to be tracked
for two scenarios. Firstly, the parallel manipulator R4 will
track this trajectory without any payload at 30G of maximum
acceleration, then it will be tracked with a payload of 200g
at 20G of maximum acceleration. During initialization, the
robot goes from the rest position to the desired initial po-
sition (−0.1, 0.1,−0.55)m, then two cycles of the proposed
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3D pick-and-place trajectory are performed (total of eight
movements in 0.64 seconds without payload at 30G and a
total of eight movements in 0.8 seconds while carrying a
payload of 200g at 20G). The obtained results for this analysis
are depicted in Figs. 21-23. The trajectory tracking of the
feedforward controller can be visualized in Figs. 24 and 27
for Kffc = 0.825. In the following experiments, none of the
motors reaches 50% of its maximum torques (cf. Fig. 23).

1) Pick-and-place task without payload at 30G: In this
scenario, the effect of the Cartesian feedforward gain Kffc

is analyzed. In Fig. 21, it is shown that the gain value which
provides the best overall performance for this case is 0.625,
and that an important loss of tracking performance happens
when using Kffc = 0.825. The obtained peak-to-peak errors
of the x-y axes for Kffc values of 0.625 and 0.825 were
[−1.4, 1.5]mm and [−2.73, 2.9]mm, respectively (cf. Fig. 21).
This means that, by changing the Kffc value from 0.625
to 0.825 in this case, there is an increase of more than
100% of the peak-to-peak errors in the x-y axes. In this
first analysis, only the tracking results of the x-y axes were
taken into account because the tracking in the z axis was
relatively similar for both cases. This can be explained by
the considerably bigger displacements of both x-y axes in
comparison to the displacements of the z axis. The RMSE
is equal to 2.1 mm versus 2.4 mm for Kffc = 0.625 and
Kffc = 0.825, respectively.
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Fig. 21. Tracking errors for 30G without load, with different values of Kffc

2) Pick-and-place task with a payload of 200g: In the
previous scenario, it was shown that the value of Kffc that
provides the best performance is 0.625. With the attachment of
a load of 200g on the platform of the robot (cf. Fig. 2), this is
no longer true. From Fig. 22, it is possible to see that the value
of Kffc that provides the best overall performance is now
0.825 (being the difference between this value and the best
value for the previous case equal to the mass of the payload
(0.2kg)), while using Kffc = 0.625 provides a notably worse
performance. The obtained peak-to-peak errors of the x-y axes
were [−1.64, 2.6]mm and [−0.75, 1.6]mm for Kffc values
of 0.625 and 0.825, respectively (cf. Fig. 22). The RMSE
was equal to 2.14 mm versus 1.7 mm, respectively. These

results confirm that, when manually updating the value of
Kffc accordingly to the operational changes, it is possible to
maintain a good tracking performance of this control scheme.
However, if Kffc is not adequately updated, important losses
of performance can occur. These results are summarized in
Table VII.

In order to resolve this issue, the proposed dual-space
adaptive controller is implemented for real-time execution
on the R4 parallel manipulator. The analysis of its tracking
performance, as well as its robustness towards operational
changes, will be made in the experiments that follow.
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Fig. 22. Tracking errors for 20G with load, with different values of Kffc
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Fig. 23. Evolution of torques vs. time generated by the proposed dual-space
feedforward controller

E. Comparison between the dual-space feedforward controller
and the dual-space adaptive controller

In the following experiments, a detailed comparison be-
tween the dual-space feedforward controller and the dual-
space adaptive controller is presented. As opposite to the
previous analysis, now the effects of the removal of the
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TABLE VII
SUMMARY OF THE PERFORMANCE ANALYSIS OF THE PROPOSED

DUAL-SPACE FEEDFORWARD CONTROLLER FOR DIFFERENT VALUES OF
Kffc

Kffc = 0.625 Kffc = 0.825
Error peaks (x-y, No load, 30G) [−1.4, 1.5]mm [−2.73, 2.9]mm

Error peaks (x-y, With load, 20G) [−1.64, 2.6]mm [−0.75, 1.6]mm
RMSE (No load, 30G) 2.1 mm 2.4 mm

RMSE (With load, 20G) 2.14 mm 1.7 mm

payload will be evaluated. Therefore, the order of the scenarios
will be inverted (firstly, the performance of both controllers is
evaluated and compared for the case with a payload of 200g
at 20G, and then for the case without payload at 30G). In
both scenarios, the robot goes from the rest position to the
desired initial position (−0.1, 0.1,−0.55)m and then executes
two cycles of the proposed 3D pick-and-place trajectory.

1) 3D pick-and-place movements with a payload of 200g
at 20G: In this scenario, the adaptive controller is compared
to the feedforward controller (best configured for the case
with a payload of 200g, that is Kffc = 0.825), at 20G of
maximum acceleration. The objective of this experiment is to
show that even though the feedforward controller may have
a good performance when configured with its best value of
Kffc for a specific scenario, it will still have a worse tracking
performance than the adaptive controller. The obtained results
for this scenario are depicted in Figs. 24-26.
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Fig. 24. 3D pick-and-place trajectory tracking with a payload of 200g for 1
cycle and an acceleration of 20G

By analyzing Fig. 25, it is possible to notice that the
adaptive controller is able to provide a better overall tracking
performance than the feedforward controller even with its best
configuration value of Kffc for this case. For the x-y axes, the
adaptive controller is able to keep the tracking errors within
the interval [−1, 1]mm, while the feedforward controller keeps
them within [−0.75, 1.6]mm, as shown in Table VIII. For
the z-axis, the difference between the controllers is bigger
and easily visible. While the adaptive controller keeps the
tracking errors within [−1.77, 2]mm, the feedforward keeps
them within [−2.6, 2.7]mm. The superior performance of the
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Fig. 25. 3D pick-and-place tracking errors with a payload of 200g for an
acceleration of 20G
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Fig. 26. Torques applied by the 4 motors with a payload of 200g for an
acceleration of 20G
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Fig. 27. 3D pick-and-place trajectory tracking without payload for 1 cycle
and an acceleration of 30G
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Fig. 28. 3D pick-and-place tracking errors without payload for an acceleration
of 30G
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Fig. 29. Torques applied by the 4 motors without payload for an acceleration
of 30G

adaptive controller in this case is further confirmed by the Root
Mean Square Errors (RMSE), which are equal to 1.33 mm
versus 1.7 mm for the feedforward controller. The RMSE
takes into consideration the errors in all axes equally. These
results are summarized in Table VIII.

The control inputs (torques) generated by each controller are
shown in Fig. 26. It is worth to emphasize that all the control
inputs remain within the admissible limit of the actuators (a
maximum torque of 127 N.m).

In the next scenario, it will be shown that the adaptive
controller maintains its good performance without any need
of manual readjustments of its parameters, while the dual-
space feedforward controller loses much performance when
not updated accordingly.

2) 3D pick-and-place movements without payload at 30G:
In this scenario, the robustness of the dual-space adaptive con-
troller and the lack of robustness of the dual-space feedforward
controller towards load changes are demonstrated. From Fig.
28, it is possible to notice that the feedforward controller,

TABLE VIII
TRACKING PERFORMANCE OBTAINED WITH THE PROPOSED DUAL-SPACE

CONTROLLERS FOR A 20G PICK-AND-PLACE TRAJECTORY WITH A
PAYLOAD OF 200g

Performance Adaptive FF (Kffc = 0.825)
Error peaks (x-y) [−1, 1]mm [−0.75, 1.6]mm
Error peaks (z) [−1.77, 2]mm [−2.6, 2.7]mm

RMSE 1.33 mm 1.7 mm
Control Signals Smooth/far from limits

Adaptive controller: Slightly bigger amplitude

when not manually reconfigured to the new scenario, has an
important loss of performance (both with respect to the previ-
ous scenario and also with respect to the adaptive controller).
For the x-y axes, the adaptive controller keeps them within
[−1.51, 1.6]mm, while the feedforward controller keeps them
within [−2.73, 2.9]mm (peak-to-peak difference of more than
80%). The robustness of the adaptive controller and the lack of
robustness of the feedforward controller are further confirmed
by the RMSE results. While the adaptive controller is able to
maintain almost the same RMSE as in the previous scenario
(1.33 mm versus 1.4 mm), the feedforward controller had a
loss of almost 40% (1.7 mm versus 2.4 mm), respectively.
Fig. 29 confirms that the adaptive controller generates a control
signal with a slightly bigger amplitude than the feedforward
controller. These results are summarized in Table VIII.

TABLE IX
TRACKING PERFORMANCE OBTAINED WITH THE PROPOSED DUAL-SPACE

CONTROLLERS FOR A 30G PICK-AND-PLACE TRAJECTORY WITHOUT
PAYLOAD

Performance Adaptive FF (Kffc = 0.825)
Error peaks (x-y) [−1.51, 1.6]mm [−2.73, 2.9]mm
Error peaks (z) [−1.72, 1.84]mm [−2.26, 2.77]mm

RMSE 1.4 mm 2.4 mm
Control Signals Smooth/far from limits

Adaptive controller: Slightly bigger amplitude

F. Variation of the estimated parameters

As already mentioned in Section III, the parameters Mtot

and Itot were estimated in real-time by the dual-space adaptive
controller to maintain its good performance independently of
the scenario. It was shown in this section that the adaptive
controller outperforms the fixed feedforward controller even
with its best settings for each scenario. The evolution of both
estimations will be detailed as follows.

For the first scenario, the value of Kffc (which will be
considered as an offline estimation of Mtot) that provides
the best performance of the feedforward controller is equal
to 0.825 (dashed curves in both Figs. 30-31). The first point
to be mentioned is that the convergence of the estimation of
M̂tot from a given initial value to a region around 0.825 is
fast enough to be accomplished before the first stop point
is reached (which is the expected performance in a pick-
and-place task, where the robot will perform a movement
with payload followed by a movement without payload). This
confirms the fact that the tracking performance of the adaptive
controller will barely be affected by an initial value different
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from the best value for the specific case, and also justifies the
good performance of the feedforward controller when keeping
this value constant during this experiment.
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Fig. 30. Evolution of the estimated parameter M̂tot (solid line) and the gain
Kffc (dashed line) for different accelerations (with a payload of 200g)
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Fig. 31. Evolution of the estimated parameter M̂tot (solid line) and the gain
Kffc (dashed line) for different accelerations (without payload)

For the second scenario, the important loss of performance
of the feedforward controller is justified. In Fig. 31, it is shown
that when not manually updating the feedforward gain Kffc

after the removal of the payload of 200g, this estimation will
now remain constant with an inadequate value. The estimation
of the adaptive controller converges to a region around M̂tot =
0.625, which is the best value of Kffc for this case.

Another point to be mentioned is the increased oscillations
in parameters’ estimation with the increase of acceleration (cf.
Figs. 30-33). Between the most reasonable causes, one can
mention the increase of unmodeled dynamics effects (such as
the frictions, counter-electromotice forces, etc.), which become
more important with higher accelerations, thus becoming a
relevant disturbance source. However, the robustness of the
adaptive controller enables it to maintain both smoothness
and good performance of the closed-loop system, in terms of

tracking (cf. Figs. 24,27), as well as in terms of evolution of
the control inputs (the same general form for both controllers,
without addition of oscillations by the adaptive controller, cf.
Figs. 26,29), despite oscillations in the parameters’ estimation.
It is worth mentioning, however, that the utilization of a
more complete model may contribute to the decrease of
these oscillations in the estimated parameters, as well as to
the improvement of the overall performance of the proposed
adaptive controller. This shall be investigated in the future.

For instance, the evolution of Îtot is displayed in Figs. 32-
33 for different accelerations. From these figures, it is possible
to notice that the load changes had no significant effect on the
behavior of this parameter.
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Fig. 32. Evolution of the estimated parameter Îtot for different accelerations
(with a payload of 200g)
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Fig. 33. Evolution of the estimated parameter Îtot for different accelerations
(without payload)

VI. CONCLUSIONS AND FUTURE WORK
In this paper, three control schemes have been proposed

and experimentally compared on the R4 redundantly actuated
parallel manipulator for tasks with very high accelerations.
A Cartesian PID controller was initially proposed such that
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the redundancy in actuation would be taken into consideration
in its design. Because of its limitation in terms of tracking
performance even with a relatively simple trajectory, a dual-
space feedforward controller based on the dynamics of the
system was proposed. The results showed that this last one can
improve the tracking performance considerably (even allowing
the execution of a 100G trajectory tracking experiment),
but it has important losses of performance if there are any
operational changes (such as load changes). To overcome such
lack of robustness, a dual-space adaptive controller was then
proposed. By analyzing the obtained experimental results for
different cases with and without payload, it was clear that
this control scheme not only is able to maintain its good
performance in both scenarios without any need of manual
readjustment of its parameters, but it also provides a better
performance than the dual-space feedforward controller even
when this last one is best configured for each specific case.
As future work, the utilization of a more complete dynamic
model of R4 shall be analyzed, such that an evaluation of
the possible performance improvements with the proposed
adaptive control scheme can be made. Experiments with more
complex trajectories for other applications such as laser cutting
shall also be studied.
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Montpellier II, Montpellier, France, 2007.

[23] L. Sciavicco and B. Siciliano, Modeling and control of robot manipu-
lators. New York: McGraw Hill, 1996.

[24] M. Spong and M. Vidyasagar, Robot dynamics and control. New York:
John Wiley & Sons, 1989.

[25] W. Khalil and E. Dombre, Modeling, identification and control of robots.
Butterworth-Heinemann, 2004.

[26] ETEL Motion Technology, Motor thermal protection.
http://www.etel.ch/torque-motors/motor-thermal-protection/, Visited
on 06/2013.

Guilherme Sartori Natal received his B.Sc. de-
gree in Electrical Engineering in 2005 and his
M.Sc. in Control, Automation and Robotics in 2008
from the Federal University of Rio de Janeiro,
Brazil. He received his Ph.D. degree in Robotics at
LIRMM, France. He became a post-doctoral fellow
in Robotics at KU Leuven in 2012. He is currently a
Control Engineer at Universal Robots, Denmark. His
research interests include nonlinear/adaptive control,
robotics and automated systems.

Ahmed Chemori received his M.Sc. and Ph.D.
degrees, respectively in 2001 and 2005, both in
automatic control from the Grenoble Institute of
Technology. He has been a post-doctoral fellow
with the automatic control laboratory of Grenoble in
2006. He is currently a tenured research scientist in
Automation and Robotics at the Montpellier Labora-
tory of Computer Science, Robotics, and Microelec-
tronics. His research interests include adaptive and
predictive control and their applications in robotics.

Dr. François Pierrot is a senior researcher in
robotics for CNRS. His research interests include
the creation of innovative robots and he considers
both mechanical design and control strategies.


