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Abstract. Multistore systems have been recently proposed to provide integrated 
access to multiple, heterogeneous data stores through a single query engine. In 
particular, much attention is being paid on the integration of unstructured big 
data typically stored in HDFS with relational data. One main solution is to use a 
relational query engine that allows SQL-like queries to retrieve data from 
HDFS, which requires the system to provide a relational view of the unstruc-
tured data and hence is not always feasible. In this paper, we propose a func-
tional SQL-like query language (based on CloudMdsQL) that can integrate data 
retrieved from different data stores, to take full advantage of the functionality of 
the underlying data processing frameworks by allowing the ad-hoc usage of us-
er defined map/filter/reduce operators in combination with traditional SQL 
statements. Furthermore, our solution allows for optimization by enabling 
subquery rewriting so that bind join can be used and filter conditions can be 
pushed down and applied by the data processing framework as early as possi-
ble. We validate our approach through implementation and experimental valida-
tion with three data stores and representative queries. The experimental results 
demonstrate the usability of the query language and the benefits from query op-
timization. 

1 Introduction 

A major trend in cloud computing and big data is the understanding that there is “no 
one size fits all” solution. Thus, there has been a blooming of different cloud data 
management solutions, such as NoSQL, distributed file systems (e.g. Hadoop HDFS), 
and big data processing frameworks (e.g. Hadoop MapReduce or Apache Spark), 
specialized for different kinds of data and able to perform orders of magnitude better 
than traditional RDBMS. However, this has led to a wide diversification of data store 
interfaces and the loss of a common programming paradigm. This makes it very hard 
for a user to integrate and analyze her data sitting in different data stores, e.g. 
RDBMS, NoSQL and HDFS. To address this problem, multistore systems [1, 8, 9, 11, 
12, 13, 14, 15] have been recently proposed to provide integrated access to multiple, 
heterogeneous data stores through a single query engine. 
     Compared to multidatabase systems [16], multistore systems typically trade source 
autonomy for efficiency, using a tightly-coupled approach. In particular, much atten-
tion is being paid on the integration of unstructured big data (e.g. produced by web 
applications) typically stored in HDFS with relational data, e.g. in a data warehouse. 



One main solution is to use a relational query engine (e.g. Apache Hive) on top of a 
data processing framework (e.g. Hadoop MapReduce), which allows SQL-like que-
ries to retrieve data from HDFS. However, this requires the system to provide a rela-
tional view of the unstructured data, which is not always feasible. In case the data 
store is managed independently from the relational query processing system, complex 
data transformations may need to take place (e.g. by applying specific map-reduce 
jobs) before the data can be processed by means of relational operators. Let us illus-
trate the problem, which will be the focus of this paper, with the following scenario. 

Example scenario. An editorial office needs to find appropriate reporters for a list of 
publications based on given keywords. For the purpose, the editors need an analysis 
of the logs from a scientific forum stored in a Hadoop cluster in the cloud to find ex-
perts in a certain research field, considering the users who have mentioned particular 
keywords most frequently; and these results must be joined to the relational data in an 
RDBMS containing author and publication information. However, the forum applica-
tion keeps log data about its posts in a non-tabular structure (the left side of the exam-
ple below), namely in text files where a single record corresponds to one post and 
contains a fixed number of fields about the post itself (timestamp and username in the 
example) followed by a variable number of fields storing the keywords mentioned in 
the post. 

2014-12-13, alice, storage, cloud 
2014-12-22, bob, cloud, virtual, app 
2014-12-24, alice, cloud → 

KW      expert freq 
cloud   alice  2 
storage alice  1 
virtual bob    1 
app     bob    1 

The unstructured log data needs to be transformed into a tabular dataset containing 
for each keyword the expert who mentioned it most frequently (the right side of the 
example above). Such transformation requires the use of programming techniques like 
chaining map/reduce operations that should take place before the data is involved in 
relational operators. Then the result dataset will be ready to be joined with the publi-
cation data retrieved from the RDBMS in order to suggest an appropriate reviewer for 
each publication. Being able to request such data processing with a single query is the 
scenario that motivates our work. However, the challenge in front of the query pro-
cessor is optimization, i.e. it should be able of analyzing the operator execution flow 
of a query and performing operation reordering to take advantage of well-known op-
timization techniques (e.g. selection pushdowns and use of semi-joins) in order to 
yield efficient query execution. 

Existing solutions to integrate such unstructured and structured data do not directly 
apply to solve our problem, as they rely on having a relational view of the unstruc-
tured data, and hence require complex transformations. SQL engines, such as Hive, 
on top of distributed data processing frameworks are not always capable of querying 
unstructured HDFS data, thereby forcing the user to query the data by defining 
map/reduce functions. 

Our approach is different as we propose a query language that can directly express 
subqueries that can take full advantage of the functionality of the underlying data 
processing frameworks. Furthermore, the language should allow for query optimiza-



tion, so that the query operator execution sequence specified by the user may be reor-
dered by taking into account the properties of map/filter/reduce operators together 
with the properties of relational operators. This is especially useful for applying effi-
cient query optimization by exploiting bind joins [10]; and we pay special attention to 
this throughout our experimental evaluation. Finally, we want to respect the autonomy 
of the data stores, e.g. HDFS and RDBMS, so that they can be accessible and con-
trolled from outside our query engine with their own interface. 

In this paper, we propose a functional SQL-like query language (based on Cloud-
MdsQL) and query engine to retrieve data from two different kinds of data stores – an 
RDBMS and a distributed data processing framework such as Apache Spark or Ha-
doop MapReduce on top of HDFS – and combine them by applying data integration 
operators (mostly joins). We assume that each data store is fully autonomous, i.e. the 
query engine has no control over the structure and organization of data in the data 
stores. For this reason, the architecture of our query engine is based on the traditional 
mediator/wrapper architectural approach [21] that abstracts the query engine from the 
specifics of each of the underlying data stores. However, users need to be aware of 
how data are organized across the data stores, so that they write valid queries. A sin-
gle query of our language can request data to be retrieved from both stores and then a 
join to be performed over the retrieved datasets. The query therefore contains embed-
ded invocations to the underlying data stores, expressed as subqueries. As our query 
language is functional, it introduces a tight coupling between data and functions. A 
subquery, addressing the data processing framework, is represented by a sequence of 
map/filter/reduce operations, expressed in a formal notation. On the other hand, SQL 
is used to express subqueries that address the relational data store as well as the main 
statement that performs the integration of data retrieved by all subqueries. Thus, a 
query benefits from both high expressivity (by allowing the ad-hoc usage of user de-
fined map/filter/reduce operators in combination with traditional SQL statements) and 
optimizability (by enabling subquery rewriting so that bind join and filter conditions 
can be pushed inside and executed at the data store as early as possible). 

This paper is a major extension of [4], with an improved generic architecture of the 
query engine (to support a wider range of underlying data models and to provide a 
tighter coupling with the data processing framework), a real experimental validation 
with three data stores (relational, document, and HDFS) and queries across them, and 
a more detailed comparison with the state of the art. 

The rest of this paper is organized as follows. Section 2 introduces the language 
and its notation to express map/filter/reduce subqueries. Section 3 presents the archi-
tecture of the query engine. Section 4 elaborates more on the query processing and 
presents the properties of map/filter/reduce operators that constitute rewrite rules to 
perform query optimization. Section 5 gives a use case example walkthrough. Section 
6 presents an experimental validation with (semi-)structured data stored in Post-
greSQL and MongoDB, and unstructured data stored in an HDFS cluster and pro-
cessed using Apache Spark. Section 7 discusses related work. Section 8 concludes. 



2 Query Language 

The query language is based on a more general common query language, called 
CloudMdsQL [12], designed in the context of the CoherentPaaS project [7] to solve 
the problem of querying multiple heterogeneous databases (e.g. relational and 
NoSQL) within a single query while preserving the expressivity of their local query 
mechanisms. The common language itself is SQL-based with the extended capabili-
ties for embedding subqueries expressed in terms of each data store’s native query 
interface. The common data model respectively is table-based, with support of rich 
datatypes that can capture a wide range of the underlying data stores’ datatypes, such 
as MongoDB arrays and JSON objects, in order to handle non-flat and nested data, 
with basic operators over such composite datatypes. 

In this section, we introduce a formal notation to define Map/Filter/Reduce (MFR) 
subqueries in CloudMdsQL that request data processing in an underlying big data 
processing framework (DPF). Then we give an overview of how MFR statements are 
combined with SQL statements to express integration queries against a relational 
database and a DPF. Notice that the data processing defined in an MFR statement is 
not executed by the query engine, but is meant to be translated to a sequence of invo-
cations to API functions of the DPF. In this paper, we use Apache Spark as an exam-
ple of DPF, but the concept can be generalized to a wider range of frameworks that 
support the MapReduce programming model (such as Hadoop MapReduce, 
CouchDB, etc.). 

2.1 MFR Notation 

An MFR statement represents a sequence of MFR operations on datasets. A dataset is 
considered simply as an abstraction for a set of tuples, where a tuple is a list of values, 
each of which can be a scalar value or another tuple. Although tuples can generally 
have any number of elements, mostly datasets that consist of key-value tuples are 
being processed by MFR operations. In terms of Apache Spark, a dataset corresponds 
to an RDD (Resilient Distributed Dataset – the basic programming unit of Spark). 
Each of the three major MFR operations (MAP, FILTER and REDUCE) takes as 
input a dataset and produces another dataset by performing the corresponding trans-
formation. Therefore, for each operation there should be specified the transformation 
that needs to be applied on tuples from the input dataset to produce the output tuples. 
Normally, a transformation is expressed with an SQL-like expression that involves 
special variables; however, more specific transformations may be defined through the 
use of lambda functions. 

Core operators. The MAP operator produces key-value tuples by performing a speci-
fied transformation on the input tuples. The transformation is defined as an SQL-like 
expression that will be evaluated for each tuple of the input data set and should return 
a pair of values. The special variable TUPLE refers to the input tuple and its elements 
are addressed using a bracket notation. Moreover, the variables KEY and VALUE may 
be used as aliases to TUPLE[0] and TUPLE[1] respectively. The FILTER operator 



selects from the input tuples only those, for which a specified condition is evaluated 
to true. The filter condition is defined as a boolean expression using the same special 
variables TUPLE, KEY, and VALUE. The REDUCE operator performs aggregation on 
values associated with the same key and produces a key-value dataset where each key 
is unique. The reduce transformation may be specified as an aggregate function (SUM, 
AVG, MIN, MAX or COUNT). Similarly to MAP, two other mapping operators are intro-
duced: FLAT_MAP may produce numerous output tuples for a single input tuple; and 
MAP_VALUES defines a transformation that preserves the keys, i.e. applicable only 
to the values. 

Let us consider the following simple example inspired by the popular MapReduce 
tutorial application “word count”. We assume that the input dataset for the MFR 
statement is a list of words. To count the words that contain the string ‘cloud’, we 
write the following composition of MFR operations: 

MAP(KEY, 1).FILTER( KEY LIKE '%cloud%' ).REDUCE( SUM ) 

The first operation transforms each tuple (which has a single word as its only ele-
ment) of the input dataset into a key-value pair where the word is mapped to a value 
of 1. The second operation selects only those key-value pairs for which the key con-
tains the string ‘cloud’. And the third one groups all tuples by key and performs a sum 
aggregate on the values for each key. 

To process this statement, the query engine first looks for opportunities to optimize 
the execution by operator reordering. By applying MFR rewrite rules (explained in 
detail in Section 4.2), it finds out that the FILTER and MAP operations may be 
swapped so that the filtering is applied at an earlier stage. Further, it translates the 
sequence of operations into invocations of the underlying DPF’s API. Notice that 
whenever a REDUCE transformation function has the associative property (like the 
SUM function), an additional combiner function call may be generated that precedes 
the actual reducer, so that as much data as possible will be reduced locally; e.g., this 
would be valid in the case of Hadoop MapReduce as the DPF, because it does not 
automatically perform local reduce. In the case of Apache Spark as the DPF, the que-
ry engine generates the following Python fragment to be included in a script that will 
be executed in Spark’s Python environment: 

dataset.filter( lambda k: 'cloud' in k ) \ 
       .map( lambda k: (k, 1) ) \ 
       .reduceByKey( lambda a, b: a + b ) 

In this example, all the MFR operations are translated to their corresponding Spark 
functions and all transformation expressions are translated to Python anonymous 
functions. In fact, to increase its expressivity, the MFR notation allows direct usage of 
anonymous functions to specify transformation expressions. This allows user-defined 
mapping functions, filter predicates, or aggregates to be used in an MFR statement. 
The user, however, needs to be aware of how the query engine is configured to inter-
face the DPF, in order to know which language to use for the definition of inline 
anonymous functions (e.g. Spark may be used with Python or Scala, CouchDB – with 
JavaScript, etc.). 



Input/output operators are normally used for transformation of data before and after 
the core map/filter/reduce execution chain. The SCAN operator loads data from its 
storage and transforms it to a dataset ready to be consumed by a core MFR operator. 
The PROJECT operator converts a key-value dataset to a tabular dataset ready to be 
involved in relational operations. 

2.2 Combining SQL and MFR 

Queries that integrate data from both a relational data store and a DPF usually consist 
of two subqueries (one expressed in SQL that addresses the relational database and 
another expressed in MFR that addresses the DPF) and an integration SELECT state-
ment. The syntax follows the CloudMdsQL grammar introduced in [12]. A subquery 
is defined as a named table expression, i.e. an expression that returns a table and has a 
name and signature. The signature defines the names and types of the columns of the 
returned relation. Thus, each query, although agnostic to the underlying data stores’ 
schemas, is executed in the context of an ad-hoc schema, formed by all named table 
expressions within the query. A named table expression can be defined by means of 
either an SQL SELECT statement (that the query compiler is able to analyze and 
possibly rewrite) or a native expression (that the query compiler considers as a black 
box and passes to the wrapper as is, thus delegating it the processing of the subquery). 

In this paper, we extend the usability of CloudMdsQL by adding the capability of 
handling MFR subqueries against DPFs and combining them with subqueries against 
other data stores. This is done in full compliance with CloudMdsQL properties, such 
as the ability to express nested subqueries (so that the output of one subquery, e.g. 
against an RDBMS, can be used as input to another subquery, e.g. MFR) which we 
further illustrate by the usage of bind joins. MFR subqueries are expressed as native 
named table expressions; this means that they are passed to their corresponding wrap-
pers to process them (explained in more detail in Section 3). 

In general, a single query can address a number of data stores by containing several 
named table expressions. We will now illustrate with a simple example how SQL and 
MFR statements can be combined, and in Section 5 will focus on a more sophisticated 
example involving 3 data stores. The following sample query contains two 
subqueries, defined by the named table expressions T1 and T2, and addressed respec-
tively against the data stores aliased with identifiers rdb (for the SQL database) and 
hdfs (for the DPF): 
T1(title string, kw string)@rdb = ( SELECT title, kw FROM tbl ) 
T2(word string, count int)@hdfs = {* 
   SCAN(TEXT,'words.txt') 
       .MAP(KEY,1).REDUCE(SUM).PROJECT(KEY,VALUE) 
*} 
SELECT title, kw, count FROM T1 JOIN T2 ON T1.kw = T2.word 
WHERE T1.kw LIKE '%cloud%' 

The purpose of this query is to perform relational algebra operations (expressed in 
the main SELECT statement) on two datasets retrieved from a relational database and 
a DPF. The two subqueries are sent independently for execution against their data 



stores in order the retrieved relations to be joined by the query engine. The SQL table 
expression T1 is defined by an SQL subquery. T2 is an MFR expression that requests 
data retrieval from a text source and data processing by the specified map/reduce 
operations. Both subqueries are subject to rewriting by pushing into it the filter condi-
tion kw LIKE '%cloud%', specified in the main SELECT statement, thus reducing 
the amount of the retrieved data by increasing the subquery selectivity and the overall 
efficiency. The so retrieved datasets are then converted to relations following their 
corresponding signatures, so that the main SELECT statement can be processed with 
semantic correctness. The PROJECT operator in the MFR statement provides a map-
ping between the dataset fields and the named table expression columns. 

3 Generic Query Engine Architecture 

The dominant state-of-the-art architectural model that addresses the problem of data 
integration and query processing across a diverse set of data stores is the media-
tor/wrapper architecture. A mediator is a software module that exploits encoded 
knowledge about certain sets or subsets of data to create information for a higher 
layer of applications [16]. In addition, a wrapper or adapter is a software component 
that encapsulates and hides the underlying complexity of sets or subsets of data by 
means of well-defined interfaces (it establishes communication and a data flow be-
tween mediators and data stores). In this section, we briefly describe the generic ar-
chitecture of our system with an overview of the required steps to process a query. 

The query language presented hereby assumes a query engine that follows the tra-
ditional mediator/wrapper architectural approach. By explicitly naming a data store 
identifier in a named table expression’s signature, the query addresses the specific 
wrapper that is preliminarily configured and responsible for handling subqueries 
against the corresponding data store. Thus, a query can express an integration of data 
across several data stores, and in particular, integration of structured (relational DB), 
semi-structured (document DB), and unstructured (distributed storage, based on 
HDFS) data, which is the case that we focus on throughout our experimental valida-
tion. 

Fig. 1 depicts the corresponding system architecture, containing a CloudMdsQL 
compiler, a common query processor (the mediator), three wrappers, and the three 
data stores – a distributed data processing framework (DPF), an RDBMS, and a doc-
ument data store. The DPF is in charge of performing parallel data processing over a 
distributed data store. In this architecture, each data source has an associated wrapper 
that is responsible for executing subqueries against the data store and converting the 
retrieved datasets to tables matching the requested number and types of columns, so 
that they are ready to be consumed by relational operators at the query processor. The 
query processor consumes the query execution plan generated by the compiler and 
interacts with the wrappers through a common interface to: request handling of 
subqueries, centralize the information provided by the wrappers, and integrate the 
subqueries’ results. The wrappers transform subqueries provided via the common 
interface into queries for the data stores. This generic architecture gives us the possi-



bility to use a specific implementation of the query processor and DPF wrapper, while 
reusing the CloudMdsQL query compiler and wrappers for relational and document 
data stores [12]. Although we can also reuse the CloudMdsQL query engine that has a 
distributed architecture [12], in our experimental work we explore the possibility to 
adapt the parallel SQL engine Spark SQL [2] to serve as the query processor, thus 
providing a tighter coupling between the query processor and the underlying DPF and 
hence taking more advantage of massive parallelism when joining HDFS with rela-
tional and document data. 

 
Fig. 1. Basic architecture of the query engine 

Each of the wrappers is responsible for completing the execution of subqueries and 
retrieving the results. Upon initialization, each wrapper may provide to the query 
compiler the capability of its data store to process pushed down operations [12]. In 
our setup, all the three wrappers can accept pushdowns of filter predicates. Both the 
relational and document data store wrappers accept requests from the query processor 
in the form of query execution sub-plans represented as trees of relational algebra 
operators, resulting from the compilation of the SELECT statements expressed in the 
corresponding SQL named table expressions. The sub-plans may include selection 
operations resulting from pushed down predicates. The wrapper of the relational data-
base has to build a SELECT statement out of a query sub-plan and to run it against its 
data store; then it retrieves the datasets and delivers them to the query processor in the 
corresponding format. The wrapper of the document data store (in our case, Mon-
goDB) has to translate the sequence of relational operators from a query sub-plan to 
the corresponding sequence of MongoDB API calls; then it converts the resulting 
documents to tuples that match the signature of the corresponding named table ex-
pression. [12] 



The wrapper of the distributed data processing framework has a slightly different 
behavior as it processes MFR expressions wrapped in native subqueries. First it parses 
and interprets a subquery written in MFR notation; then uses the MFR planner to find 
optimization opportunities; and finally translates the resulting sequence of MFR oper-
ations to a sequence of DPF’s API methods to be executed. Once a dataset is retrieved 
as a result of the subquery execution, the wrapper provides it to the query processor in 
the format requested by the corresponding named table expression signature. The 
MFR planner decides where to position pushed down operations; e.g. it applies rules 
for MFR operator reordering to find the optimal place of a filter operation in order to 
apply it as early as possible and thus to reduce the query execution cost. To search for 
alternative operation orderings, the planner takes into account MFR rewrite rules, 
introduced in next section. 

4 Query Processing 

The query compiler first decomposes the query into a preliminary query execution 
plan (QEP), which, in its simplest form, is a tree structure representing relational op-
erations. At this step, the compiler also identifies sub-trees within the query plan, each 
of which is associated to a certain data store. Each of these sub-plans is meant to be 
delivered to the corresponding wrapper, which has to translate it to a native query and 
execute it against its data. The rest of the QEP is the common plan that will be han-
dled by the query engine. 

4.1 Query Optimization 

Before its actual execution, a QEP may be rewritten by the query optimizer. To com-
pare alternative rewritings of a query, the optimizer uses a simple catalog, which pro-
vides basic information about data store collections such as cardinalities, attribute 
selectivities and indexes, and a simple cost model. Because of the autonomy of the 
underlying data stores, in order to derive local cost models, various classical black-
box approaches for heterogeneous cost modeling, such as probing [26] and sampling 
[25, 27], have been adopted by the query optimizer. Thus, cost information can be 
collected by the wrappers and exposed to the optimizer in the form of cost functions 
or database statistics. Furthermore, the query language allows for user-defined cost 
and selectivity functions. And in case of lack of any cost information, heuristic rules 
are applied. 

In our concrete example scenario with PostgreSQL, MongoDB, and MFR 
subqueries, we use the following strategy. The query optimizer executes an 
EXPLAIN request to PostgreSQL to directly estimate the cost of a subquery. The 
MongoDB wrapper runs in background probing queries to collect cardinalities of 
document collections, index availabilities, and index value distributions (to compute 
selectivities) and caches them in the query engine’s catalog. As for an MFR subquery, 
if there is no user-provided cost information, the optimizer assumes that it is more 



expensive than SQL subqueries and plans it at the end of the join order, which would 
also potentially benefit from the execution of bind joins. 

The search space explored for optimization is the set of all possible rewritings of 
the initial query, by pushing down select operations, expressing bind joins, and join 
ordering. Unlike in traditional query optimization where many different permutations 
are possible, this search space is not very large, so we use a simple exhaustive search 
strategy. 

Subquery rewriting takes place in order to request early execution of some opera-
tors and thus to increase its overall efficiency. Although several operations are subject 
to pushdowns across subqueries, in this paper we concentrate on the inclusion of only 
filter operations inside an MFR subquery. Generally, this is done in two stages: first, 
the query processor determines which operations can be pushed down for remote 
execution at the data stores; and second, the MFR planner may further determine the 
optimal place for inclusion of pushed down operations within the MFR operator chain 
by applying MFR rewrite rules (explained later in this section). Pushing a selection 
operation inside a subquery, either in SQL query or MFR operation chain, is usually 
considered beneficial, because it delegates the selection directly to the data store, 
which allows for early reducing of the size of data processed and retrieved from the 
data stores. 

4.2 MFR Rewrite Rules 

In this section, we introduce and enumerate some rules for reordering of MFR opera-
tors, based on their algebraic properties. These rules are used by the MFR planner to 
optimize an MFR subquery after a selection pushdown takes place. 

Rule #1 (name substitution): upon pushdown, the filter is included just before the 
PROJECT operator and the filter predicate expression is rewritten by substituting col-
umn names with references to dataset fields as per the mapping defined by the 
PROJECT expressions. After this initial inclusion, other rules apply to determine 
whether it can be moved even farther. Example: 
T1(a int, b int)@db1 ={* … .PROJECT(KEY, VALUE[0]) *} 
SELECT a, b FROM T1 WHERE a > b 

is rewritten to: 
T1(a int, b int)@db1 ={* … .FILTER(KEY>VALUE[0]).PROJECT(KEY,VALUE[0])*} 
SELECT a, b FROM T1 

Rule #2:  REDUCE(<transformation>).FILTER(<predicate>) is equivalent to 
FILTER(<predicate>).REDUCE(<transformation>), if predicate condition 
is a function only of the KEY, because thus, applying the FILTER before the REDUCE 
will preserve the values associated to those keys that satisfy the filter condition as 
they would be if the FILTER was applied after the REDUCE. Analogously, under the 
same conditions, MAP_VALUES(<transformation>).FILTER(<predicate>) is 
equivalent to FILTER(<predicate>).MAP_VALUES(<transformation>). 



Rule #3:  MAP(<expr_list>).FILTER(<predicate1>) is equivalent to 
FILTER(<predicate2>).MAP(<expr_list>), where predicate1 is rewritten to 
predicate2 by substituting KEY and VALUE as per the mapping defined in 
expr_list. Example: 

MAP(VALUE[0], KEY).FILTER(KEY > VALUE) à  

FILTER(VALUE[0] > KEY).MAP(VALUE[0], KEY) 

Since planning a filter as early as possible always increases the efficiency, the 
planner always takes advantage of moving a filter by applying rules #2 and #3 when-
ever they are applicable. 

4.3 Bind Join 

Bind join [10] is an efficient method for implementing semi-joins across heterogene-
ous data stores that uses subquery rewriting to push the join conditions. In this paper, 
we adapt the bind join approach for MFR subqueries and we focus on it in our exper-
imental evaluation, as it brings a significant performance gain in certain occasions. 

Using bind join between relational data (expressed in an SQL named table expres-
sion) and big data (expressed in an MFR named table expression) allows for reducing 
the computation cost at the DPF and the communication cost between the DPF and 
the query engine. This approach implicates that the list of distinct values of the join 
attribute(s) from the relation, preliminarily retrieved from the relational data store, is 
passed as a filter to the MFR subquery. To illustrate the approach, let us consider the 
following SELECT statement performing a join between an SQL named table R and 
an MFR named table H: 

SELECT H.x, R.y FROM R JOIN H ON R.id = H.id WHERE R.z='abc' 

To process this query using the bind join method, first, the table R is retrieved from 
the relational data store; then, assuming that the distinct values of R.id are r1 … rn, 
the condition id IN (r1,…,rn) is passed as a FILTER to the MFR subquery that 
retrieves the dataset H from HDFS data store. Thus, only the tuples from H that match 
the join criteria are retrieved. Moreover, if the filter condition can be pushed even 
further in the MFR chain (according to the MFR rewrite rules) and thus to overcome 
at least one REDUCE operation, this may lead to a significant performance boost, as 
data will be filtered before at least one shuffle phase. 

To estimate the expected performance gain of a bind join, the query optimizer 
takes into account the overhead a bind join may produce. First, when using bind join, 
the query engine must wait for the SQL named table to be fully retrieved before initi-
ating the execution of the MFR subquery. Second, if the number of distinct values of 
the join attribute is large, using a bind join may slower the performance as it requires 
data to be pushed into the MFR subquery. In the example above, the query engine 
first asks the RDBMS (e.g. by running an EXPLAIN statement) for an estimation of 
the cardinality of data retrieved from R, after rewriting the SQL subquery by includ-
ing the selection condition R.z='abc'. If the estimated cardinality does not exceed a 



certain threshold, the optimizer plans for performing a bind join that can significantly 
increase the MFR subquery selectivity and affect the volume of transferred data. 

5 Use Case Example 

In this section, we reveal the steps the query engine takes to process a query using 
selection pushdown and especially bind join as optimization techniques. We also 
focus on the way the query engine dynamically rewrites the MFR subquery to per-
form a bind join. We consider three distinct data stores: PostgreSQL as the relational 
database (referred to as rdb), MongoDB as the document database (referred to as 
mongo) which will be subqueried by SQL expressions that are mapped by the wrapper 
to MongoDB calls, and an HDFS cluster (referred to as hdfs) processed using the 
Apache Spark framework. 
Datasets. For the use case walkthrough we consider small sample datasets in the con-
text of the multistore query example described in Section 1. 

The rdb database stores structured data about scientists and their affiliations in the 
following table: 

Scientists: 
Name Affiliation Country 
Ricardo UPM Spain  
Martin CWI Netherlands 
Patrick INRIA France 
Boyan INRIA France 
Larri UPC Spain 
Rui INESC Portugal 

The mongo database contains a document collection about publications including their 
keywords as follows: 
Publications( 
{ title:'Snapshot Isolation in Cloud DBs',     author:'Ricardo', 
               keywords: ['transaction', 'cloud'] }, 
{ title:'Principles of Distributed Cloud DBs', author:'Patrick', 
               keywords: ['cloud', 'storage'] }, 
{ title:'Graph Databases', author:'Larri', keywords: ['graph', 'NoSQL']} 
) 

HDFS stores unstructured log data from a scientific forum in text files where a sin-
gle record corresponds to one post and contains a timestamp and username followed 
by a variable number of fields storing the keywords mentioned in the post: 
Posts (date, author, kw1, kw2, …, kwn) 
2014-11-10, alice, storage, cloud 
2014-11-10, bob, cloud, virtual, app 
2014-11-10, alice, cloud 

Query 1. This query aims at finding appropriate reviewers for publications of authors 
with a certain affiliation. It considers each publication’s keywords and the experts 



who have mentioned them most frequently on the scientific forum. The query com-
bines data from the three data stores and can be expressed as follows. 
scientists( name string, affiliation string )@rdb = ( 
  SELECT name, affiliation 
  FROM scientists 
) 
 
publications(autor string, title string, keywords array)@mongo = ( 
  SELECT author, title, keywords 
  FROM publications 
) 
 
experts(kw string, expert string)@hdfs = {* 
  SCAN(TEXT, 'posts.txt', ',')                                     (op1) 
    .FLAT_MAP( lambda data: product(data[2:], [data[1]]) )         (op2) 
    .MAP( TUPLE, 1 )                                               (op3) 
    .REDUCE( SUM )                                                 (op4) 
    .MAP( KEY[0], (KEY[1], VALUE) )                                (op5) 
    .REDUCE( lambda a, b: b if b[1] > a[1] else a )                (op6) 
    .PROJECT(KEY, VALUE[0])                                        (op7) 
 *} 
 
SELECT p.author, p.title, e.kw, e.expert 
FROM scientists s, publications p, experts e 
WHERE s.affiliation = 'INRIA' 
  AND p.author = s.name 
  AND e.kw IN p.keywords 
 

Query 1 contains three subqueries. The first two subqueries is a typical SQL state-
ment to get data about respectively scientists (from PostgreSQL) and scientific publi-
cations (from MongoDB). The third subquery is an MFR operation chain that trans-
forms the unstructured log data from the forum posts and represents the result of text 
analytics as a relation that maps each keyword to the person who has most frequently 
mentioned it. To achieve the result dataset, the MFR operations request transfor-
mations over the stored data, each of which is expressed either in a declarative way or 
with anonymous (lambda) Python functions. 

The SCAN operation op1 reads data from the specified text source and splits each 
line to an array of values. Let us recall that the produced array contains the author of 
the post in its second element and the mentioned keywords in the subarray starting 
from the third element. The following FLAT_MAP operation op2 consumes each emit-
ted array as a tuple and transforms each tuple using the defined Python lambda func-
tion, which performs a Cartesian product between the keywords subarray and the 
author, thus emitting a number of keyword-author pairs. Each of these pairs is passed 
to the MAP operation op3, which produces a new dataset, where each keyword-author 
pair is mapped to a value of 1. Then the REDUCE operation op4 aggregates the number 
of occurrences for each keyword-author pair. The next MAP operation op5 transforms 
the dataset by mapping each keyword to a pair of author-occurrences. The REDUCE 
op6 finds for each keyword the author with the maximum number of occurrences, 
thus finding the expert who has mostly used the keyword. Finally, the PROJECT de-
fines the mapping between the dataset fields and the columns of the returned relation. 



Query Processing. First, Query 1 is compiled into the preliminary execution plan, 
depicted in Fig. 2. Then, the query optimizer finds the opportunity for pushing down 
the condition affiliation = 'INRIA' into the relational data store. Thus, the 
selection condition is included in the WHERE clause of the subquery for rdb. Doing 
this, the compiler determines that the column s.affiliation is no longer refer-
enced in the common execution plan, so it is simply removed from the corresponding 
projection on scientists from rdb. This pushdown implies increasing the selec-
tivity of the subquery, which is identified by the optimizer as an opportunity for per-
forming a bind join. To further verify this opportunity, the query optimizer asks rdb 
to estimate the cardinality for the rewritten SQL subquery and, considering also the 
availability of an index on the field author in the MongoDB collection publica-
tions, the optimizer plans for bind join by pushing into the sub-plan for MongoDB 
the selection condition author IN <authors>, where <authors> refers to the list 
of distinct values of the s.name column, which will be determined at runtime. 

 

 
Fig. 2. Preliminary query plan for Query 1 

Analogously, by using the catalog information provided by the MongoDB wrapper 
to estimate the cardinality of the join between scientists and publications, the optimiz-
er plans to also involve the MFR subquery into a bind join and thus pushes the bind 
join condition kw IN (<keywords>). Here, <keywords> is a placeholder for the 
list of distinct keywords retrieved from the column p.keywords. Recall that each 
value in p.keywords is an array, so the query processor will have to first flatten the 
intermediate relation by transforming the array-type column p.keywords to a scalar-



type column named __keywords. Since p.keywords participates in the join condi-
tion kw IN keywords, its flattening leads to transforming the join to an equi-join 
which allows for the query engine to utilize efficient methods for equi-joins. 

Furthermore, the MFR planner seeks for opportunities to move the bind join filter 
condition kw IN (<keywords>) earlier in the MFR operation chain by applying 
the MFR rewrite rules, explained below. At this stage, although <keywords> is not 
known, the planner has all the information needed to apply the rules. After these 
transformations, the optimized query plan (Fig. 3) is executed by the query processor. 
In this notation, we use the symbol F to denote the flattening operator. 

 
Fig. 3. Optimized query plan for Query 1 

To execute the query plan, the query engine takes the following steps: 
1. The query processor delivers to the wrapper of rdb the following SQL statement, 
rewritten by taking into account the pushed selection condition, for execution against 
the PostgreSQL data store, and waits for the corresponding result set to be retrieved in 
order to compose the bind join condition for the next step. 

SELECT name 
FROM scientists  
WHERE affiliation = 'INRIA' 

Name 
Patrick 
Boyan 

 

 
2. The MongoDB wrapper prepares a native query to send to the MongoDB database 
to retrieve those tuples from publications that match the bind join criteria. It takes 



into account the bind join condition derived from the already retrieved data from rdb 
and generates a MongoDB query whose SQL equivalent would be the following: 
SELECT title, author, keywords FROM publications 
WHERE author IN ('Patrick', 'Boyan')  

However, the wrapper does not generate an SQL statement; instead it generates di-
rectly the corresponding MongoDB native query: 
db.publications.find( 
  { author: {$in:['Patrick', 'Boyan']} }, 
  { title: 1, author: 1, keywords: 1, _id: 0 } 
) 

Upon receiving the result dataset (a MongoDB document collection), the wrapper 
converts it to a table, according to the signature of the named table expression pub-
lications, ready to be joined with the already retrieved result set from step 1. The 
result of the bind join is the contents of the following intermediate relation: 
author title keywords 
Patrick  Principles of DDBS ['cloud', 'storage'] 

3. The flattening operator transforms the intermediate relation from step 2 to the fol-
lowing one: 

author title __keywords 
Patrick  Principles of DDBS cloud 
Patrick  Principles of DDBS storage 

4. The query processor identifies a list of the distinct values of the join attribute 
__keywords and derives from it the bind join condition kw IN ('cloud', 
'storage') to push inside the subquery against hdfs. 
5. The MFR planner for the wrapper of hdfs decides at which stage of the MFR se-
quence to insert the filter, by applying a number of rewrite rules. According to rule 
#1, the planner initially inserts the filter just before the PROJECT op7 by rewriting 
the condition expression as follows: 

.FILTER( KEY IN ('cloud', 'storage') ) 
Next, by applying consecutively rules #2 and #3, the planner moves the FILTER 

before the MAP op5 by rewriting its condition expression according to rule #3: 
.FILTER( KEY[0] IN ('cloud', 'storage') ) 
Analogously, rules #2 and #3 are applied again, moving the FILTER before op3, 

rewriting the expression once again, and thus settling it to its final position. After all 
transformations the MFR subquery is converted to the final MFR expression below. 
 SCAN( TEXT, 'posts.txt', ',' ) 
.FLAT_MAP( lambda data: product(data[2:], [data[1]]) ) 
.FILTER( TUPLE[0] IN ('cloud', 'storage') ) 
.MAP( TUPLE, 1 ) 
.REDUCE( SUM ) 
.MAP( KEY[0], (KEY[1], VALUE) ) 
.REDUCE( lambda a, b: b if b[1] > a[1] else a ) 



6. The wrapper interprets the reordered MFR sequence, translates it to the Python 
script below as per the Python API methods of Spark, and executes it within the Spark 
framework.  
 sc.textFile('posts.txt').map( lambda line: line.split(',') ) \ 
.flatMap( lambda data: product(data[2:], [data[1]]) ) \ 
.filter( lambda tup: tup[0] in ['cloud','storage'] ) \ 
.map( lambda tup: (tup, 1) ) \ 
.reduceByKey( lambda a, b: a + b ) \ 
.map( lambda tup: (tup[0][0], (tup[0][1], tup[1])) ) \ 
.reduceByKey( lambda a, b: b if b[1] > a[1] else a ) 

The result of MFR query reordering and interpreting on Spark is another interme-
diate relation: 

kw expert 
cloud alice 
storage alice 

7. The intermediate relations from steps 3 and 6 are joined to produce the final result 
that lists the suggested experts for each publication regarding the given keywords: 
author title kw expert 
Patrick  Principles of DDBS cloud alice 
Patrick  Principles of DDBS storage alice 

6 Experimental Validation 

The goal of our experimental validation is to evaluate the impact of query rewriting 
and optimization on execution time. More specifically, we explore the performance 
benefit of using bind join under different conditions. To achieve this, we have imple-
mented a prototype of our query engine, aiming at implementing the proposed optimi-
zation techniques. In this section, we first describe the current implementation of the 
query engine prototype. Then, we introduce the datasets, based on the use case exam-
ple in Section 5. Finally, we present our experimental results. 

6.1 Prototype 

For the purpose of our experiments, we have developed a prototype that invokes the 
Spark SQL [2] engine to perform data integration. The query compiler/optimizer is 
implemented in C++; it compiles a CloudMdsQL query into an optimized query exe-
cution plan. Then, a flow of invocations of Spark SQL’s Python API methods is gen-
erated out of the execution plan. Thus, each MFR subquery, after being translated to a 
Python piece of code, is natively executed in the Spark context, while for performing 
relational operations on MFR and SQL named tables our prototype takes advantage of 
Spark SQL’s DataFrame API. Wrappers are implemented as Python classes, whose 
execute() method accepts a native query or a query sub-plan, executes the corre-
sponding query against its data store, and returns a DataFrame object ready to be con-



sumed by relational operators at Spark SQL. In our evaluation scenario, we use three 
data stores (rdb, mongo, and hdfs) whose wrappers are implemented as follows: 

• The PostgreSQL wrapper loads a PostgreSQL data source by invoking 
sqlContext.read().format("jdbc"). Thus, the wrapper is able to execute 
SQL statements against the relational database using its JDBC driver. The wrapper 
exports an explain() function that the query optimizer invokes to get an estima-
tion of the cost of a subquery. It can also be queried about the existence of certain 
indexes on table columns and their types.  

• The wrapper for MongoDB is implemented as a wrapper to an SQL compatible 
data store, i.e. it performs native MongoDB query invocations according to their 
SQL equivalent. It uses the pymongo library to query the database and then trans-
forms a result set into a Spark DataFrame. The wrapper maintains the catalog in-
formation by running probing queries such as db.collection.stats() to keep 
actual database statistics. Similarly to the PostgreSQL wrapper, it also provides in-
formation about available indexes on document attributes. 

• The MFR wrapper implements an MFR planner to optimize MFR expressions in 
accordance with any pushed down selections. The wrapper uses Spark’s Python 
API, and thus translates each transformation to Python lambda functions. Besides, 
it also accepts raw Python lambda functions as transformation definitions. The 
wrapper executes the dynamically built Python code using the reflection capabili-
ties of Python by means of the eval() function. Then, it transforms the resulting 
RDD into a Spark DataFrame. 

Normally, if the QEP involves no bind joins, after all data frames that correspond 
to all named tables within a query are loaded into the Spark SQL context, the query 
engine simply invokes sqlContext.sql() to execute the integration SELECT state-
ment as is. In case of a bind join, the query engine takes a couple of more steps. First, 
it performs a SELECT DISTINCT query on an intermediate table and then uses the 
retrieved distinct values to build the bind join condition that will be pushed inside the 
subquery for the other named table that participates in the join. If there is a flatten 
operator, the query engine uses the LATERAL VIEW clause available in Spark SQL. In 
our use case example, the publications named table is flattened into a temporary table 
using the command: 

SELECT author, title, __keywords 
FROM publications 
LATERAL VIEW explode(keywords) _k AS __keywords 

Then, to do the bind join, SELECT DISTINCT __keywords is performed on that 
temporary table. 

6.2 Datasets 

We performed our experimental evaluation in the context of the use case example, 
presented in Section 5. For this purpose, we generated data to populate the Post-
greSQL table scientists, the MongoDB document collection publications, and 



text files with unstructured log data stored in HDFS. All data is uniformly distributed 
and consistent. The datasets have the following characteristics: 

• Table scientists contains 10K rows, distributed over 1000 distinct affiliations, 
making 10 authors per affiliation. 

• Collection publications contains 10M documents, with uniform distribution of 
values of the author attribute, making 1K publications per scientist. Each publica-
tion is randomly assigned a set of 6 to 10 keywords out of 10K distinct keyword 
values. Also, there is an association between authors and keywords, so that all the 
publications of a single author reference only 1% of all the keywords. This means 
that a join involving the publications of a single author will have a selectivity fac-
tor of 1%; hence 100 distinct values for the bind join condition. The total size of 
the collection is 10GB. 

• HDFS contains 16K files distributed between the nodes, with 100K tuples per file 
making 1.6 billion tuples, corresponding to posts from 10K forum users with 10K 
distinct keywords mentioned by them. The first field of each tuple is a timestamp 
and does not have an impact on the experimental results. The second field contains 
the author of the post as a string value. The remainder of the tuple line contains 1 
to 10 keyword string values, randomly chosen out of the same set of 10K distinct 
keywords.  The total size of the data is 124GB. 

6.3 Experimental Results 

To evaluate the impact of optimization on query execution, we use a cluster of the 
GRID5000 platform (www.grid5000.fr), with one node for PostgreSQL and Mon-
goDB and 4 to 16 nodes for the HDFS cluster. The Spark cluster, used as both the 
DPF and the query processor, is collocated with the HDFS cluster. Each node in the 
cluster runs on 16 CPU cores at 2.4GHz, 64 GB main memory, and the network 
bandwidth is 10Gbps. 

To demonstrate in detail the optimization techniques and their impact on the query 
execution, we prepared 3 different queries. We execute each of them in three different 
HDFS cluster setups – with 4, 8, and 16 nodes. Then we compare the execution times 
without and with bind join to the MFR subquery, which are illustrated in each query’s 
corresponding graphical chart. We do not focus on evaluating the bind join between 
PostgreSQL and MongoDB, as its benefit is less significant when compared to the 
benefit of doing bind join to the MFR subquery, because of the big difference in data 
sizes. 

All the queries use the following common named table expressions, which we cre-
ated as stored expressions: 
CREATE NAMED EXPRESSION 
scientists( name string, affiliation string )@rdb = ( 
  SELECT name, affiliation 
  FROM scientists 
); 
 
CREATE NAMED EXPRESSION 
publications(autor string, title string, keywords array)@mongo = ( 



  SELECT author, title, keywords 
  FROM publications 
); 
 
CREATE NAMED EXPRESSION 
experts(kw string, expert string)@hdfs = {* 
  SCAN(TEXT, 'posts.txt', ',') 
    .FLAT_MAP( lambda data: product(data[2:], [data[1]]) ) 
    .MAP( TUPLE, 1 ) 
    .REDUCE( SUM ) 
    .MAP( KEY[0], (KEY[1], VALUE) ) 
    .REDUCE( lambda a, b: b if b[1] > a[1] else a ) 
    .PROJECT(KEY, VALUE[0]) 
 *}; 
 
CREATE NAMED EXPRESSION 
experts_alt(kw string, expert string)@hdfs = {* 
  SCAN(TEXT, 'posts.txt', ',') 
    .FLAT_MAP( lambda data: product(data[2:], [data[1]]) ) 
    .MAP_VALUES(lambda v: Counter([v])) 
    .REDUCE(lambda C1, C2: C1 + C2) 
    .MAP_VALUES( lambda C: \ 
         reduce(lambda a,b: b if b[1] > a[1] else a, C.items()) ) 
    .PROJECT(KEY, VALUE[0]) 
 *}; 
 

Thus, each of the queries is expressed as a single SELECT statement that uses the 
above named table expressions. The named tables scientists, publications, and 
experts have exactly the same definition as in the use case example from Section 5. 

The named table experts_alt does the same as experts, but its MFR sequence 
contains only one REDUCE (respectively, it does only one shuffle) and more complex 
map functions. It uses Python’s Counter dictionary collection, with the additive prop-
erty to sum up numeric values grouped by the key. The first MAP_VALUES maps a 
keyword to a Counter object, initialized with a single author key. Then the REDUCE 
sums all Counter objects associated to a single keyword, so that the result from it is an 
aggregated Counter dictionary, where an author is mapped to a number of occurrences 
of the keyword. The final MAP_VALUES uses Python’s reduce() function (note that 
this is not Spark’s reduce operator) to choose from all items in a Counter the author 
with the highest number of occurrences for a keyword. 

Query 0 involves only the MongoDB database and the DPF to find experts for the 
publications of only one author. Thus, the selectivity factor of the bind join is 1%, as 
the number of keywords used by a single author is 1% of the total number of key-
words. As we experimented with different number of nodes, we observe that the que-
ry execution efficiency and the benefit of the bind join scale well when the number of 
nodes increases. This is also observed in the rest of the queries. 
 
-- Query 0 
SELECT p.author, p.title, e.kw, e.expert 
FROM publications p, experts e 
WHERE p.author = 'author1' 
  AND e.kw IN p.keywords 
 



 

 

Query 1, as already introduced in Section 5, involves all the data stores and aims 
at finding experts for publications of authors with a certain affiliation. This makes a 
selectivity factor of 10% for the bind join, as there are 10 authors per affiliation. In 
addition, we explore another variant of the query, filtered to three affiliations, or 30% 
selectivity factor of the bind join. We enumerate the two variants as Query1.1 and 
Query 1.2. 

 
-- Query 1.1: selectivity factor 10% 
SELECT p.author, p.title, e.kw, e.expert 
FROM scientists s, publications p, experts e 
WHERE s.affiliation = 'affiliation1' 
  AND p.author = s.name AND e.kw IN p.keywords 
 
 
-- Query 1.2: selectivity factor 30% 
SELECT p.author, p.title, e.kw, e.expert 
FROM scientists s, publications p, experts e 
WHERE s.affiliation IN ('affiliation1', 'affiliation2', 'affiliation3') 
  AND p.author = s.name AND e.kw IN p.keywords 

 

 



 

Query 2 does the same as Query 1, but uses the MFR subquery experts_alt, 
which uses more sophisticated map functions, but makes only one shuffle, where the 
key is a keyword. For comparison, the MFR expression experts makes two shuffles, 
of which the first one uses a bigger key, composed of a keyword-author pair. There-
fore, the corresponding Spark computation of Query 2 involves much smaller size of 
data to be shuffled compared to Query 1, which explains its better overall efficiency 
and higher relative benefit of using bind join. Like with Query 1, we explore two 
variants with different selectivity factors of the bind join condition. 

 
-- Query 2.1: selectivity factor 10% 
SELECT p.author, p.title, e.kw, e.expert 
FROM scientists s, publications p, experts_alt e 
WHERE s.affiliation = 'affiliation1' 
  AND p.author = s.name AND e.kw IN p.keywords 
 
 
-- Query 2.2: selectivity factor 30% 
SELECT p.author, p.title, e.kw, e.expert 
FROM scientists s, publications p, experts_alt e 
WHERE s.affiliation IN ('affiliation1', 'affiliation2', 'affiliation3') 
  AND p.author = s.name AND e.kw IN p.keywords 

 

 
 

This experimental evaluation illustrates the query engine’s ability to perform opti-
mization and choose the most efficient execution plan. The results show the signifi-
cant benefit of performing bind join in our experimental scenario, despite the over-
head it produces (see Section 4.3). 



7 Related Work 

The problem of accessing heterogeneous data sources has long been studied in the 
context of multidatabase and data integration systems [16]. The typical solution is to 
provide a common data model and query language to transparently access data 
sources through a mediator, thus hiding data source heterogeneity and distribution.  

The main requirements for a common query language (and data model) are support 
for nested queries, schema independence, and data-metadata transformation [22]. 
Nested queries allow queries to be arbitrarily chained together in sequences, so the 
result of one query (for one data store) may be used as the input of another (for anoth-
er data store). Schema independence allows the user to formulate queries that are 
robust in front of schema evolution. Data-metadata transformation is important to deal 
with heterogeneous data models. To satisfy these requirements, several functional 
SQL-like languages have been introduced, with Functional SQL [20] being the first of 
them. More recently, FunSQL [3] has been proposed for the cloud, to allow shipping 
the code of an application to its data. 

With respect to combining SQL and map/reduce operators, a number of SQL-like 
query languages have been recently introduced. HiveQL is the query language of the 
data warehousing solution Hive, built on top of Hadoop MapReduce [18]. Hive gives 
a relational view of HDFS stored unstructured data. HiveQL queries are decomposed 
to relational operators, which are then compiled to MapReduce jobs to be executed on 
Hadoop. In addition, HiveQL allows custom scripts, defining MapReduce jobs, to be 
referred in queries and used in combination with relational operators. SCOPE [6] is a 
declarative language from Microsoft designed to specify the processing of large se-
quential files stored in Cosmos, a distributed computing platform. SCOPE provides 
selection, join and aggregation operators and allows the users to implement their own 
operators and user-defined functions. SCOPE expressions and predicates are translat-
ed into C#. In addition, it allows implementing custom extractors, processors and 
reducers and combining operators for manipulating rowsets. SCOPE has been extend-
ed to combine SQL and MapReduce operators in a single language [24]. These sys-
tems are used over a single distributed storage system and therefore do not address the 
problem of integrating a number of diverse data stores. 

To access heterogeneous databases, the mediator/wrapper architecture has several 
advantages. First, the specialized components of the architecture allow the various 
concerns of different kinds of users to be handled separately. Second, mediators typi-
cally specialize in a related set of data sources with “similar” data, and thus export 
schemas and semantics related to a particular domain. The specialization of the com-
ponents leads to a flexible and extensible distributed system. In particular, it allows 
seamless integration of different data stored in very different data sources, ranging 
from full-fledged relational databases to simple files. DISCO [19] is a data integration 
system for accessing Web data sources, using an operator-based approach. It com-
bines a generic cost model with specific cost information provided by the data source 
wrappers, thus allowing flexible cost estimation. 

More recently, with the advent of cloud databases and big data processing frame-
works, multidatabase solutions have evolved towards multistore systems that provide 



integrated access to a number of RDBMS, NoSQL and HDFS data stores through a 
common query engine. We can divide multistore systems between loosely-coupled, 
tightly-coupled and hybrid. 

Loosely-coupled multistore systems are reminiscent of multidatabase systems in 
that they can deal with autonomous data stores, which can then be accessed through 
the multistore system common interface as well as separately through their local API. 
Most loosely-coupled systems support only read-only queries. Loosely-coupled multi-
store systems follow the mediator/wrapper architecture with several data stores (e.g. 
NoSQL and RDBMS). BigIntegrator [14] integrates data from cloud-based NoSQL 
big data stores, such as Google’s Bigtable, and relational databases. The system relies 
on mapping a limited set of relational operators to native queries expressed in GQL 
(Google Bigtable query language). With GQL, the task is achievable because it repre-
sents a subset of SQL. However, it only works for Bigtable-like systems and cannot 
integrate data from HDFS. QoX [17] integrates data from RDBMS and HDFS data 
stores through an XML common data model. It produces SQL statements for relation-
al data stores, and Pig/Hive code for interfacing Hadoop to access HDFS data. The 
QoX optimizer uses a dataflow approach for optimizing queries over data stores, with 
a black box approach for cost modeling. SQL++ [15] mediates SQL and NoSQL data 
sources through a semi-structured common data model. The data model supports rela-
tional operators and to handle efficiently nested data, it also provides a flatten opera-
tor. The common query engine translates subqueries to native queries to be executed 
against data stores with or without schema. All these approaches mediate heterogene-
ous data stores through a single common data model. The polystore BigDAWG [9] 
goes one step further by defining “islands of information”, where each island corre-
sponds to a specific data model and its language and provides transparent access to a 
subset of the underlying data stores through the island’s data model. The system ena-
bles cross-island queries (across different data models) by moving intermediate da-
tasets between islands in an optimized way. 

Tightly-coupled multistore systems have been introduced with the goal of integrat-
ing Hadoop or Spark for big data analysis with traditional (parallel) RDBMSs. Tight-
ly-coupled multistore systems trade autonomy for performance, typically in a shared-
nothing cluster, taking advantage of massive parallelism. Odyssey [11] enables stor-
ing and querying data within HDFS and RDBMS, using opportunistic materialized 
views. MISO [13] is a method for tuning the physical design of a multistore system 
(Hive/HDFS and RDBMS), i.e. deciding in which data store the data should reside, in 
order to improve the performance of big data query processing. The intermediate 
results of query execution are treated as opportunistic materialized views, which can 
then be placed in the underlying stores to optimize the evaluation of subsequent que-
ries. JEN [23] allows joining data from two data stores, HDFS and RDBMS, with 
parallel join algorithms, in particular, an efficient zigzag join algorithm, and tech-
niques to minimize data movement. As the data size grows, executing the join on the 
HDFS side appears to be more efficient. Polybase [8] is a feature of Microsoft SQL 
Server Parallel Data Warehouse to access HDFS data using SQL. It allows HDFS 
data to be referenced through external PDW tables and joined with native PDW tables 
using SQL queries. HadoopDB [1] provides Hadoop MapReduce/HDFS access to 



multiple single-node RDBMS servers (e.g. PostgreSQL or MySQL) deployed across a 
cluster, as in a shared-nothing parallel DBMS. It interfaces MapReduce with RDBMS 
through database connectors that execute SQL queries to return key-value pairs. 
Estocada [5] is a self-tuning multistore platform for providing access to datasets in 
native format while automatically placing fragments of the datasets across heteroge-
neous stores. For query optimization, Estocada combines both cost-based and rule-
based approaches. 

Hybrid systems support data source autonomy as in loosely-coupled systems, and 
exploit the local data source interface as in tightly-coupled systems, and typically 
HDFS through a parallel data processing framework like MapReduce or Spark. Spark 
SQL [2] is a parallel SQL engine built on top of Apache Spark and designed to pro-
vide tight integration between relational and procedural processing through a declara-
tive API that integrates relational operators with procedural Spark code, taking ad-
vantage of massive parallelism. Spark SQL provides a DataFrame API that can map 
to relations arbitrary object collections and thus enables relational operations across 
Spark’s RDDs and external data sources. In addition, it includes a flexible and exten-
sible optimizer that supports operator pushdowns to data sources, according to their 
capabilities. 

Our work fits in the hybrid system category as, similarly to Spark SQL, it uses 
Spark API to access the DPF data store, while querying the other stores through an 
SQL wrapper. However, it adds value by allowing the ad-hoc usage of user-defined 
map/reduce operators directly in MFR subqueries, yet allowing for optimization 
through the use of bind join and operator reordering. Furthermore, it does not give up 
the underlying data store’s autonomy. 

8 Conclusion 

In this paper, we proposed a functional SQL-like query language and query engine to 
integrate data from relational, NoSQL, and big data stores (such as HDFS). Our query 
language can directly express subqueries that can take full advantage of the function-
ality of the underlying data stores and processing frameworks. Furthermore, it allows 
for query optimization, so that the query operator execution sequence specified by the 
user may be reordered by taking into account the properties of map/filter/reduce oper-
ators together with the properties of relational operators. Finally, compared with the 
related work on multistore systems, our work fits in the hybrid system category. 
However, it does not give up data store’s autonomy, thus making our approach more 
general. 

Our validation demonstrates that the proposed query language achieves the follow-
ing requirements. First, it provides high expressivity by allowing the ad-hoc usage of 
specific map/filter/reduce operators through the MFR notation, as it was demonstrated 
with the hdfs subqueries. Second, it is optimizable as was demonstrated through 
performing bind join by rewriting the MFR subquery after retrieving the dataset from 
the MongoDB database. Finally, it allows for reducing the amount of processed data 
during the execution of the MFR sequence by reordering MFR operators according to 



the determined rules. Our performance evaluation illustrates the query engine’s ability 
to optimize a query and choose the most efficient execution strategy. 

Acknowledgements 

This research has been partially funded by the European Commission under project 
CoherentPaaS (FP7-611068). 

References 

1. A. Abouzeid, K. Badja-Pawlikowski, D. Abadi, A. Silberschatz, A. Rasin. HadoopDB: An 
Architectural Hybrid of MapReduce and DBMS Technologies for Analytical Workloads.  
PVLDB, vol. 2, 922-933, 2009. 

2. M. Armbrust, R. Xin, C. Lian, Y. Huai, D. Liu, J. Bradley, X. Meng, T. Kaftan, M. Frank-
lin, A. Ghodsi, M. Zaharia. Spark SQL: Relational Data Processing in Spark. ACM 
SIGMOD Int. Conf. on Management of Data, 1383-1394, 2015. 

3. C. Binnig, R. Rehrmann, F. Faerber, R. Riewe. FunSQL: It is time to make SQL function-
al. EDBT/ICDT Conf., 41-46, 2012. 

4. C. Bondiombouy, B. Kolev, O. Levchenko, P. Valduriez.: Integrating Big Data and Rela-
tional Data with a Functional SQL-like Query Language. Int. Conf. on Databases and Ex-
pert Systems Applications (DEXA), 170-185, 2015. 

5. F. Bugiotti, D. Bursztyn, A. Deutsch, I. Ileana, I. Manolescu. Invisible Glue: Scalable Self-
Tuning Multi-Stores. CIDR conf., 2015. 

6. R. Chaiken, B. Jenkins, P. Larson, B. Ramsey, D. Shakib, S. Weaver, J. Zhou. SCOPE: 
Easy and Efficient Parallel Processing of Massive Data Sets. PVLDB, 1, 1265-1276, 2008. 

7. CoherentPaaS project, http://coherentpaas.eu. 
8. D. DeWitt, A. Halverson, R. Nehme, S. Shankar, J. Aguilar-Saborit, A. Avanes, M. Flasza, 

J. Gramling. Split Query Processing in Polybase. ACM SIGMOD Conf., 1255-1266, 2013.  
9. J. Duggan, A.J. Elmore, M. Stonebraker, M. Balazinska, B. Howe, J. Kepner, S. Madden, 

D. Maier, T. Mattson, S. Zdonik. The BigDAWG Polystore System. ACM SIGMOD Rec. 
44, 2 (August 2015), 11-16, 2015. 

10. L. Haas, D. Kossmann, E. Wimmers, J. Yang. Optimizing Queries across Diverse Data 
Sources. Int. Conf. on Very Large Databases (VLDB), 276-285, 1997. 

11. H. Hacigümüs, J. Sankaranarayanan, J. Tatemura, J. LeFevre, N. Polyzotis. Odyssey: A 
Multi-Store System for Evolutionary Analytics. PVLDB, vol. 6, 1180-1181, 2013.  

12. B. Kolev, P. Valduriez, C. Bondiombouy, R. Jiménez-Peris, R. Pau, J. Pereira. CloudMd-
sQL: Querying Heterogeneous Cloud Data Stores with a Common Language. Distributed 
and Parallel Databases, pp 1-41, http://hal-lirmm.ccsd.cnrs.fr/lirmm-01184016, 2015. 

13. J. LeFevre, J. Sankaranarayanan, H. Hacigümüs, J. Tatemura, N. Polyzotis, M. Carey. 
MISO: souping up big data query processing with a multistore system. ACM SIGMOD 
Conf., 1591-1602, 2014.  

14. Z. Minpeng, R. Tore. Querying Combined Cloud-based and Relational Databases. Int. 
Conf. on Cloud and Service Computing (CSC), 330-335, 2011. 

15. K. W. Ong, Y. Papakonstantinou, and R. Vernoux. The SQL++ Semi-structured Data 
Model and Query Language: A Capabilities Survey of SQL-on-Hadoop, NoSQL and 
NewSQL Databases. CoRR, abs/1405.3631, 2014. 

16. T. Özsu, P. Valduriez. Principles of Distributed Database Systems. Springer, 2011. 



17. A. Simitsis, K. Wilkinson, M. Castellanos, U. Dayal. Optimizing Analytic Data Flows for 
Multiple Execution Engines. ACM SIGMOD Conf., 829-840, 2012. 

18. A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wyckoff, R. 
Murthy. Hive - A Warehousing Solution Over a Map-Reduce Framework. PVLDB, vol. 2, 
1626-1629, 2009. 

19. A. Tomasic, L. Raschid, P. Valduriez. Scaling Access to Heterogeneous Data Sources with 
DISCO. IEEE Trans. On Knowledge and Data Engineering, vol. 10, 808-823, 1998. 

20. P. Valduriez, S. Danforth. Functional SQL, an SQL Upward Compatible Database Pro-
gramming Language. Information Sciences, vol. 62, 183-203, 1992. 

21. G. Wiederhold. Mediators in the Architecture of Future Information Systems. Computer, 
vol. 25, 38-49, 1992. 

22. C. M. Wyss, E.L. Robertson. Relational Languages for Metadata Integration. ACM Trans. 
On Database Systems, vol. 30(2), 624-660, 2005. 

23. T. Yuanyuan, T. Zou, F. Özcan, R. Gonscalves, H. Pirahesh. Joins for Hybrid Warehouses: 
Exploiting Massive Parallelism in Hadoop and Enterprise Data Warehouses. EDBT/ICDT 
Conf., 373-384, 2015. 

24. J. Zhou, N. Bruno, M. Wu, P. Larson, R. Chaiken, D. Shakib. SCOPE: Parallel Databases 
Meet MapReduce. PVLDB, vol. 21, 611-636, 2012. 

25. Q. Zhu, P.-A. Larson. A Query Sampling Method for Estimating Local Cost Parameters in 
a Multidatabase System. Int. Conf. on Data Engineering (ICDE), pp. 144-153, 1994. 

26. Q. Zhu, P.-A. Larson. Global Query Processing and Optimization in the CORDS Multi-
database System. Int. Conf. on Parallel and Distributed Computing Systems, 640-647, 
1996. 

27. Q. Zhu, Y. Sun, S. Motheramgari. Developing Cost Models with Qualitative Variables for 
Dynamic Multidatabase Environments. Int. Conf. on Data Engineering (ICDE), 413-424, 
2000. 


