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Optimal Exciting Dance for Identifying Inertial
Parameters of an Anthropomorphic Structure

Vincent Bonnet, Philippe Fraisse, André Crosnier, Maxime Gautier, Alejandro González, and Gentiane Venture

Abstract—Knowledge of the mass and inertial parameters
of a humanoid robot or a human being is crucial for the
development of model-based control as well as for monitoring the
rehabilitation process. These parameters are also important for
obtaining realistic simulations in the field of motion planning and
human motor control. For robots they are often provided by CAD
data while averaged anthropometric tables values are often used
for human subjects. The unit/subject specific inertial parameters
can be identified using the external wrench caused the ground
reaction. However, the identification accuracy intrinsically de-
pends on the excitation properties of the recorded motion. In this
paper, a new method for obtaining optimal excitation motions
is proposed. This method is based on the identification model
of legged systems and on optimization processes to generate
excitation motions while handling mechanical constraints. A
pragmatic decomposition of this problem, the use of a new
excitation criterion and a quadratic program to identify inertial
parameters are proposed. The method has been experimentally
validated onto a HOAP-3 humanoid robot and with one human
subject.

Index Terms—dynamics identification, human, humanoid
robot, exciting motion.

I. INTRODUCTION

Both humanoid robots and the human body are highly
nonlinear redundant systems with specific unit/subject body
segment inertial parameters. For humanoids these parameters
are usually obtained using CAD data. However, they do not
take into account cabling, covers, glued components, embed-
ded computers, or the several modifications that come with
the use of a multipurpose robot. Good knowledge of these
parameters is important when using model-based controllers
to guarantee stability since the robustness and accuracy of a
robot controller depends on the ability to predict dynamic
behavior. Even when using balance controllers based on a
simplified linear inverted pendulum, the performance of the
controller depends on the standard inertial parameters (SIP)
used to estimate the position of the total center of mass
(CoM) [1]. The manual and individual measurement of the
SIP (the mass of each segment, the 3D CoM position, and
inertia matrix) appears cumbersome or impossible for such
complex systems. The human SIP are mostly estimated from
anthropometric tables (AT) [2] obtained from cadavers data.
These tables only account for variations within a relatively
small category of subjects. This is problematic when dealing
with individuals presenting an atypical body mass distribution
such as the elderly, infant or obese.

A. State of the art in model based dynamics identification
The last decade has seen the development of dynamic

identification methods for floating base systems [3], [4], [5],

[6] inspired by the work on manipulators of Dubowsky et
al. [7]. When dealing with serial manipulators joint torque
measurements are often available and used. This is not the
case for most anthropomorphic structures for which taking
advantage of the external generalized forces and moments was
been proposed [3], [6]. For humans, SIP identification was
performed by having the subject mimic popular rehabilitation
motions or using a visual biofeedback system capable of
displaying the evolution of the identification process of each
link [3]. Such systems work fine, but the time required for
any given subject may vary depending on her psycholog-
ical/physiological capabilities. It is possible to extract the
most exciting motions for the identification from a set of
random ones using the sub-regressor matrices [8]. This method
requires a large database of different motions and does not
ensure that all inertial parameters are excited. In order to
normalize the identification process and to minimize the
required time, it is preferable to use a set of motions specif-
ically designed to excite the SIP. However, due to the high
complexity of the anthropomorphic structures these optimal
exciting motions are difficult to determine. When designing a
set of identification motions for humanoid robots and humans
the range of feasible motions, the dynamic balance, and
mechanical limitations must taken into consideration. In order
to cope with these constraints the literature regarding serial
manipulators proposes to generate exciting motions using
optimization approaches. Most of these use joint trajectory
represented by Fourier Series [9], [10], [11] or B-splines [12]
that minimize a criterion related to the condition number of the
whole regressor [11], [13]. These methods have been applied
and extended to humans [14]. A humanoid robot is intrinsically
unbalanced, has a large number of SIP to identify, and has a
larger number of degrees-of-freedom (DoF) to control imply-
ing a de-facto use of large-scale optimization processes. These
imply convergence problems, and numerous special cases to
handle (single or double support, etc). Also, the condition
number of the regressor, that is the ratio of the largest singular
value over the smallest one, might be extremely high if the
initial conditions of the optimization process are improperly
set. All of these might explain why, with the exception of two
studies proposing optimal exciting static postures to identify
the CoM parameters, no optimal dynamics motion have been
proposed for humanoids [15], [16]. In these studies, the total
condition number of the regressor of the CoM model has been
used [15]. Baelemans et al. [15] generated a very large number
of feasible exciting static postures for estimating the robots
CoM position. In their approach, the relative position of the
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Fig. 1. Complete overview of the proposed method. Optimal static postures are generated (orange block) to excite the CoM parameters. In-between each
static posture, a feasible exciting motion is generated (blue blocks) to excite inertias. Kinematic and dynamometric data collected during the optimal exciting
motions are used in a constrained QP (grey blocks) to determine each link’ mass, CoM and inertia matrix.

feet was not constrained. This meant that the robot had to be
manually repositioned in a cumbersome and time consuming
maneuver. Mayr et al. [16] proposed a very simple idea to get
rid of the force sensor and balance constraint by supporting the
robot using a mast at waist level. Using the fact that the sum
of the external forces acting on the robot were balanced and
by means of a constrained quadratic program (QP) they could
generate motions for the identification of each segment’s CoM.
This idea is very interesting but cannot be practically applied
to human subjects for which the static hypothesis would not
be valid. For them, Bonnet and Venture have proposed a
visual biofeedback system displaying optimal exciting trajec-
tories designed to identify all inertial parameters in less than
one minute while taking into account the subject’s physical
limitations [14]. This approach, also based on a constrained
QP, has successfully been used to identify all the SIP of a
simplified human planar model. In this context, new methods
to automatically generate optimal exciting motions and to
identify physically consistent SIP would be of a great help
in numerous applications involving anthropomorphic systems.

B. Paper contribution

The method described in this study provides an all-inclusive
framework to identify the standard parameters of legged
systems. In the case of human subjects it provides nor-
malized and repeatable motion information trough a visual
biofeedback system. For humanoids this study provides a
continuous optimal exciting trajectory to identify the standard
inertial parameters without manual intervention. The resultant
continuous trajectory can be seen as a set of optimal sequences

forming an optimal choreography or, as we call it, as an
optimal exciting dance. The main steps of the method are
summarized in Fig. 1 and the paper is organized as follows.
Section II.A presents the human and robot mechanical models.
Section II.B (grey blocks in Fig. 1) describes the identification
model including the first contribution of the paper 1) the
3D extended constrained QP to identify standard inertial
parameters. Section III (orange and blue blocks in Fig. 1)
details the two other contributions of the paper 2) a new
method to generate 3D optimal and feasible exciting static and
dynamic (sections III.D and III.E respectively) postures and 3)
introduces a new optimal criterion to describe the excitation.
Section IV presents the experimental results obtained with a
human subject and the HOAP-3 humanoid robot. Finally, the
paper ends by discussing the advantages and limitations of this
method.

II. IDENTIFICATION MODEL

A. Modelling

1) Mechanical Model: To exemplify our method two an-
thropomorphic structures were considered. First a biomechani-
cal model of a human (height=1.75m; weight=65kg) consisting
of NL=12 rigid segments, articulated by NJ=23 DoF (Fig. 2.b)
was developed. The segment lengths and initial SIP were set
using available AT [2]. Joint angle and torque limitations were
adapted to the proposed model from literature values [17].
A second model representing the mechanical structure of a
Fujitsu HOAP-3 humanoid robot (size: 0.88m; weight: 7.9kg;
NL=12 rigid segments; NJ=21 DoF ; Fujitsu-Siemens) was
also developed (Fig. 2.a).



Fig. 2. The 12-bodied 3D models of (a) a HOAP-3 humanoid robot (21 DoF)
and of (b) the human body (23 DoF)). The four retained feet configurations
and the principle for calculating force distribution under each foot (c).

The dynamic model of a floating base multi-body system,
can be expressed as [20]:[

Hww Hwc

Hcw Hcc

] [
q̈w

q̈

]
+

[
bw

bc

]
=

[
0
Γ

]
+

Nc∑
k=1

[
JT
wk

JT
ck

]
Fk (1)

where the upper part of the equation represents the root-link
dynamics, and the lower part accounts for the other chains
segment dynamics.

• Hww (6× 6) and Hwc (6×NJ ) are the root-link inertia
matrices; Hcw (NJ × 6), Hcc (NJ ×NJ ) are the chains
segments inertia matrices;

• q̈w denotes the (6 × 1) linear and angular acceleration
vector of the root-link in the global system of reference;

• q̈ and Γ are the (NJ × 1) joint acceleration and torque
vectors, respectively;

• bw (6 × 1) and bc (NJ × 1) are the bias force vectors
describing centrifugal, Coriolis, and gravity forces of the
root-link and of the chain segments, respectively;

• Nc is the number of contact points with the environment;
• Jwk

and Jck are the Jacobian matrices expressed at
contact point k that map external wrenches Fk =[
FXk

FYk
FZk

MXk
MYk

MZk

]T
to the root-link and

chains segments, respectively.

2) External wrench distribution and dynamic balance: The
Zero-Moment-Point (ZMP) is the point on the ground at which
the resultant tangential moments of the active forces are null
[21]. The robot is stable when the ZMP is maintained within
the polygon of support. The ZMP can be calculated from the
total external wrench F0 acting on the root-link and expressed
in the global system of reference using the inverse kinematic
model of the supporting leg [22]. In this study, it is assumed
that the feet configuration, and thus the convex hull of the
base of support and its centroid point ZMPMid, are known
for a given motion. Four feet configurations were imposed as
described in Fig. 2.c.

In order to estimate joint torques it is necessary to know the
wrench applied at each contact point. A rough estimate of the
force distribution under each foot during double support can be
obtained by using a linear relationship between the position
of the total ZMP and the centroid point of each foot. This
method was first introduced by Xiang et al. [22] and allows
to estimate the external wrench under right, Fright, and left,
Fleft, feet as a function of F0:(

Fright

Fleft

)
= F0

(
dright

dright+dleft
dleft

dright+dleft

)
(2)

where dleft and dright are the distances between the total
ZMP and the centroid point under left and right feet (Fig. 2.c),
respectively.

B. Inertial parameters identification

Two steps are required for the identification procedure.
First, the base parameters need to be estimated. Secondly,
the regrouping equations of the base parameters are used in
a constrained quadratic programming (QP) to identify Φ the
vector of SIP, containing all the individual links masses, CoMs
and inertias.

1) Linear identification model: The equations of motion are
linear with respect to the dynamics parameters expressed in
the joint frame [23]. Because of this property the ((NJ +6)×
10NL) observation matrix, also called regressor, can be built
and (1) then rewritten as:[

W
C

]
Φ =

[
0
Γ

]
+

Nc∑
k=1

[
JT
wk

JT
ck

]
Fk (3)

where W (6 × 10NL) and C (NJ × 10NL) are the re-
gressors of the root-link and of the chains respectively;
Φ (10NL × 1) is the vector of standard inertial parame-
ters to identify, Φ = [ΦT

1 ...Φ
T
NL

]T . For each segment i,
10 inertial parameters can be expressed in the joint frame
Φi =

[
Mi MSi TIi

]
, where Mi is the mass, MSi =[

MSXi MSYi MSZi

]
is the 3-dimension vector of the

first moment of inertia, and the 6-dimension vector TIi =[
XXi Y Yi ZZi XYi XZi Y Zi

]
gathers the compo-

nents of the 3× 3 tensor of inertia.
2) Base parameters identification: The upper part of (3)

has been shown [3] to be independent of Γ and can be
used to identify Φ, the vector containing the standard inertial
parameters (SIP). However, since W is not a full column
rank matrix, a direct least squares approach is not suitable
for its solution. We find in the robotics system identification
the literature that this equation can be rewritten using the so-
called base parameters (BP) as defined in [18] in such a way
as to have a full column rank regressor. In this way, vector Φb

(NB × 1) is the minimal identifiable set of inertial parameters
required to describe the dynamics of the system. Since the BP
are intrinsically related to the kinematic structure of the system
they can be computed numerically [24]. Their computation
consists in finding the equivalent regressor Wb (6×NB) that is
a full column rank matrix by combining the linearly dependent



columns. This results in the elimination and regrouping of the
SIP into the vector Φb, and the upper part of (3) can be written
as (see [18], [23]):

WΦ = WbΦb =

Nc∑
k=1

JT
wk

Fk (4)

The numerical approach is well-suited when different BP
sets, i.e. static or dynamic ones, need to be selected as
described in section III. For example, when in a static situation,
the inertias are automatically removed by setting the joints
and root-link velocities and accelerations to zero; the obtained
BP are then only a function of the masses and of the CoM.
That is, the columns of the regressor corresponding to the
inertias are automatically removed from the calculation. The
remaining static parameters are then regrouped, depending on
the kinematics of the system, as follows:

Φbi = [Mbi MST
bi TITbi]

T root link

Φbi = [MSXbi MSYbi XXbi − Y Ybi ZZbi

Y Zbi ZXbi XYbi]
T hinge joint

Φbi = [MST
bi TITbi]

T spherical joint

(5)

where Mbi is the BP of link i representing the sum of the
masses of links that are children of link i in the chain:
Mbi−1 = Mi−1 + Mbi; MSbi = [MSXbi MSYbi MSZbi]
the BP of link i representing the sum of the first mo-
ment of inertia, and depending only of inertial parameters
of links that are children of link i in the chain; TIbi =
[XXbi Y Ybi ZZbi Y Zbi ZXbi XYbi] the BP of link i
representing the inertia, and depending only on the inertial
parameters of link i and its children in the chain. Sub-regressor
matrices can be created from the base parameters depending
on their type: static (Mass, CoM) or dynamic (inertias). In this
study we propose to create both the static WS

bi and dynamic
WD

bi BP regressor matrices for each link i. They are created
by selecting the columns of Wb that correspond to Mbi and
MSbi parameters, and to TIbi, respectively.

Sampling (4) over a given motion, the identification problem
for n time-samples becomes:Wb(1)

...
Wb(n)

Φb =
∑Nc

k=1

JT
wk

(1)Fk(1)
...

JT
wk

(n)Fk(n)


W̄bΦb = F̄

(6)

and can be solved using a weighted Moore-Penrose pseudo-
inverse matrix:

Φ∗b = (W̄T
b PW̄b)

−1PW̄T
b F̄ (7)

where P is a weight matrix. Indeed, the elements of F̄ are
expressed in different units and of different orders of magni-
tude and it is preferable to use a weighted least-square method
based on the calculation of the relative standard deviation of
the identified parameters [25]. The relative standard deviation

σ% of the identified parameters gives an image of the accuracy
of the estimated BP values and it is calculated according to
[25].

C. Standards inertial parameters identification

While the full set of SIP Φ is necessary to compute the
forward dynamics and joint torques (lower part of (1) and (3)),
some of them fall in the null-space of the regressor; there is
no direct way to identify them. Several methods have been
proposed in the literature and each use a priori knowledge
assuming physical consistency [26], [25]. The present study
proposes to extend the method proposed by Bonnet and
Venture [14] for its use in the 3D case. Here, a hybrid cost
function and a constrained QP allow the least-square fitting
of recorded external wrench while minimizing the deviation
between the estimated SIP and their CAD or AT values. We
formulate the QP as:

Find Φ∗ ∈ min
Φ
|| F̄− W̄Φ ||22 + || ΦCAD −Φ ||22

subject to
Mi ≥ 0

CoM−ij ≤ CoMij ≤ CoM+
ij j = x, y, z

vT Iiv > ε

with i = 1, ..., NL

Φ∗b = Ψ(M,MS,TI)
(8)

where ΦCAD (10NL × 1) refers to the SIP values obtained
from CAD or AT, and Φ∗ (10NL × 1) to the estimated ones.

In order to ensure physical consistency a constraint stating
that the all masses must be positive was included (i: Mi ≥ 0).
Additionally, the CoM position of each link was constrained to
be inside of the link’s specific oriented bounding box (defined
in the local link frame):

CoM−ij ≤ CoMij ≤ CoM+
ij j = x, y, z (9)

where CoM−ij and CoM+
ij are the upper and lower bounds of

the oriented bounding box attached to the ith link.
The inertia matrices Ii were constrained to be positive

definite, i.e. for every non-zero vector v ∈ R3, vT Iiv > 0.
This formulation is semi-infinite and was approximated by
using a small positive tolerance value ε such as vT Iiv > ε,
and ε set to 10−3. For each vector vj , uniformly distributed
over the unit sphere, we get a linear inequality in Φ defined
by: 

v2
xj

2vxjvyj
2vxjvzj
v2
yj

2vyjvzj
v2
zj



T 
XX
XY
XZ
Y Y
Y Z
ZZ

 ≥ ε (10)

The last set of constraints is composed of the regrouping
relations (5) between the identified BP and SIP and expressed
as a set of linear constraints [14]:



TABLE I
CORRESPONDENCE BETWEEN THE POSTURE NUMBER p, THE

TYPE OF SUPPORT AND THE ROLE OF EACH LIMB:
EXCITATION OR BALANCE

Posture p ∈ [1 15] ∈ [16 30] ∈ [31 45] ∈ [46 60]

Support Double Double
right forward

Single
right

Single
left

Joints used for
excitation q̄DE

q̄Dtrunk

q̄Darms

q̄Dtrunk

q̄Darms
q̄Dlleg q̄Drleg

Joints used for
balance q̄DB

q̄Dlleg

q̄Drleg

q̄Dlleg

q̄Drleg

q̄Dtrunk

q̄Darms

q̄Drleg

q̄Dtrunk

q̄Darms

q̄Dlleg

Nbr of link NLDE 6 6 3 3
Nbr of joint NJDE 9 9 6 6
Nbr of joint NJDB 12 12 15 15

Φ∗b = Ψ(M,MS,TI) (11)

where Φ∗b is the identified vector of base parameters and Ψ
are the corresponding symbolic equations function of SIP. An
example of symbolic equation is given in section III.C. Any BP
that could not be identified with a standard deviation inferior
to 10% was discarded from the QP.

III. OPTIMAL EXCITING MOTIONS

Moving an anthropomorphic structure requires solving nu-
merous constraints as it is usually composed of more than
twenty DoFs with limited actuation capabilities, is intrinsically
unstable, and is prone to auto-collisions. Also, for any iden-
tification process, hundreds of samples should be considered
per trajectory. The automatic generation of optimal exciting
motions for such a system is not trivial. The large problem size
and the difficulty in choosing initial conditions that satisfy all
the constraints often lead to unfeasible solutions or to a local
minima. This convergence issue was addressed by decoupling
the determination of optimal postures by exciting the static
parameters (masses, CoMs), and the dynamic parameters (in-
ertias), separately. This was achieved with the use of a new
criterion built from the base parameters sub-regressor matrices.
The orange and blue blocks in Fig. 1 present an overview of
the proposed method for optimal exciting motions generation.
Fig. 3.a gives a more detailed representation of this method.
For each of the four feet configurations represented in Fig. 2.c
and described in Table I, we generate a number Np = 1...p

of static optimal postures, P̄∗S = [q̄∗S 0 0]
T , where q̄∗S is of

size (NJ ×Np), that aim at exciting the CoMs (orange block
in Fig. 3.a).

These static postures are joined by optimal motions P̄∗D.
As presented in the blue block of the lower part of Fig. 3.a,
all links move simultaneously, some are used for maintaining
dynamical balance while others optimally excite their inertias.
At the bottom of Fig. 3.a, the joints, q̄∗DB , of the green
links are used to maintain balance while the joints of the red
links, q̄∗DE , are moving in an optimal exciting way. q̄∗DB and
q̄∗DE are both subsets of q̄∗D = [q̄∗ T

DE q̄∗ T
DB ]

T . The feet
configuration determines which links should be excited and
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Fig. 3. Overview of the multi-level optimization process used to determine the
optimal exciting motions while ensuring mechanical limitations and dynamic
balance (a). B-spline parameterization used to represent joint trajectories (b)

which ones should be used for balance (Table I). In Table I,
qDtrunk, qDarms, qDrleg , and qDlleg refer to dynamic motion
of the joints of the trunk, both arms, right leg, and left leg, re-
spectively. NLDE , NJDE are the number of links and joints to
be excited, and NJDB is the number of joints used to maintain
balance. For example, for the postures where the two feet are
on the ground (p ∈ [1 30]), the trunk and the arms are moving
optimally, i.e. exiting their inertias, while the two legs are used
to maintain dynamic balance. Thus, for p ∈ [1 30], q̄∗D =

[q̄∗ T
DE q̄∗ T

DB ]
T

= [[q̄∗ T
Dtrunk q̄∗ T

Darms ] [q̄∗ T
Dlleg q̄∗ T

Drleg ]]
T .

To ensure continuity between sets of postures with different
feet configurations, an intermediate posture (between 15 and
16, 30 and 31, and 45 and 46) was inserted, forcing the model
to come back to a double support. The dynamic balance can
be decoupled from the identification of the SIP due to the fact
that it is not directly linked to the position of the center of
pressure [15].

A. B-spline trajectory parameterization for dynamics posture

For the dynamic case, it is preferable to interpolate joint
trajectories [12] in order to calculate the excitation criterion
(see III-B) and to accurately estimate joint velocity and accel-
eration. Thus, to reduce the size of the optimization problem,
B-splines were used to interpolate the trajectory of each joint
[12]. The posture transition time TF required to move from



one posture P∗S(p) to the next P∗S(p+1) was arbitrarily set to
comply with maximal joint velocity, and was set to TF = 2s
and TF = 5s for the human subject and the humanoid robot
respectively. The number of via points was set to NK = 2
for both models. During the optimization, between P∗S(p) and
P∗S(p+1), joint angles (BSj(kTS , qDj

), k = 1, .., (n−1)), ve-
locities ( ˙BSj(kTS , qDj)), and accelerations ( ¨BSj(kTS , qDj))
were interpolated at 50Hz (TS = 0.02s and n = TF /TS)
by passing through the via points as shown in Fig. 3.b.
Trajectories were also constrained to have a null initial and
final velocity and acceleration. Finally, all joints motions were
set to start and finish synchronously. Sixth order B-splines
were used to ensure continuous acceleration and kinematic
constraints.

B. Excitation criterion

As previously stated, several cost functions have been
proposed to determine the optimal exciting motions for serial
manipulators [12]. Since the sensitivity of a linear least square
problem for estimating parameters can be measured using the
regressor’s condition number, it has been extensively used
for this purpose. This was done here with the condition
number of the regressor linking the inertial parameters to
the measured joint torques (the matrix C in the lower part
of (3)). However, this metric should only be used when
the regressor is relatively well equilibrated [13]. Presse and
Gautier [13] proposed an intuitive weighting method, using
prior knowledge on the SIP obtained from CAD data, to scale
and normalize all parameters. Otherwise, small link parame-
ters being more difficult to identify, as they have a smaller
influence on the measured dynamics quantities, will lead to
a ill-conditioned regressor [13]. This was demonstrated with
serial industrial robots [13] that commonly use joint torques as
a dynamic measured quantity. Joint torque, provides at least
one measurement at each link level and is, by definition, a
richer signal than the resultant vector of the external wrench.
Consequently, even a small parameter will produce a readable,
although noisy, change in the signal. For the human case joint
torques cannot be measured and most humanoid robots do
not have joint torque sensors, this led us to work with the
external wrench expressed at the root-link instead of using
joint torques. Additionally, in a case of an anthropomorphic
structure the weight ratio between the smaller links (feet,
hands) and the larger one (trunk) is very important, as is
their influence on the resultant external wrench. Also, initial
conditions of the optimization problem must be chosen wisely
in order to avoid local minimum and numerical instabilities.
These conditions are not trivially set for an anthropomorphic
structure since it also must be dynamically stable, avoid auto-
collision, and respect several mechanical constraints (the max-
imal joint torques of a humanoid robot are much lower than
the ones of a serial manipulator). Consequently, the problem
of an ill conditioned regressor is emphasized for such systems.
To overcome this problem we propose to adapt a numerical
method initially proposed to select exciting motions from an
existing human motion database [8]. The idea is to divide

the total BP regressor Wb into sub-regressors containing only
information corresponding to certain links or groups of links
(head, arms, right leg) or type of parameters (CoM, inertias).
This can be done by choosing the corresponding columns
of Wb (see section II.B for regressor and base parameters
definition). Using the BP regrouping relations given by (5), it
is possible to calculate the sub-regressor W̄bi for each link
i. The condition number of each sub-regressor can then be
computed to evaluate the excitation of each motion separately.
In this way, even a relatively poorly excited link will give a
relatively small condition number and avoid numerical issues.
Additionally, similarly to Gautier et al. [13], we propose to
multiply each condition number by the mass of the correspond-
ing segment which gives more importance to larger links. With
this criterion it is also very easy to generate exciting motions
for individual links or parameters (static, i.e. CoM, or dynamic,
i.e. inertia). In this context, we propose a new criterion that
is the mass weighted sum of the condition numbers of the
sub-regressors:

Jexc =

NL∑
i=1

Micond(W̄bi) (12)

where cond refers to the condition number calculated using a
SVD decomposition.

C. Numerical analysis of the excitability criterion
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Fig. 4. 3 DoF planar mechanical model used for the numerical analysis of the
excitation criterion (12)(a). Simulation results showing that the proposed cri-
terion converges faster and provides a better excitation than when minimizing
the condition number of the total BP regressor (b).



The purpose of this sub-section is to highlight the benefit
of the proposed excitability criterion (12) for a simplified
NJ = 3 DoF planar model, described in Fig. 4.a. This model
mimics a system composed of the head-trunk, arm, and hand
in the frontal plane and its corresponding anthropomorphic
measurements [2] as indicated in Fig. 4.a. Each link was
provided with a mass, 2-D COM position and one inertia for a
total of 12 SIP. The base parameters Φb of this simple model
were calculated using the previously mentioned numerical
method [24]. The 10 BP of this model are the following:

link1


Φb(1) = M1R = M1 +M2 +M3

Φb(2) = MX1R = MX1 + 0.8M2 + 0.8M3

Φb(3) = MY1

Φb(4) = ZZ1R = ZZ1 + 0.64M2 + 0.64M3

link2

 Φb(5) = MX2R = MX2 + 0.2M3

Φb(6) = MY2

Φb(7) = ZZ2R = ZZ2 + 0.04M3

link3

 Φb(8) = MX3

Φb(9) = MY3

Φb(10) = ZZ3

(13)
where the index R stands for regrouped. The first four BP
are related to the first link. BP 5, 6, and 7 are related to
the second link, and the last three terms of Φb correspond
to the SIP of the last link, excluding the mass, that can
be identified separately. From these observations, three sub-
regressor matrices, one for each link, can be built by using
columns of Wb.

Definition 1: Let us define Wc
b as a matrix composed of

l column vectors of Wb matrix corresponding to the column
numbers defined by the l-tuple c = {nc1, nc2, .., ncl}.

Based on the Definition 1, we extract Wc1
b1

, Wc2
b2

and Wc3
b3

from Wb respectively with c1 = {1, 2, 3, 4}, c2 = {5, 6, 7}
and c3 = {8, 9, 10}. Note that the static (mass and CoM),
WS

b , and dynamic (inertias), WD
b , sub-regressor matrices

are also extracted from Wb by using Definition 1 such as
WS

b = WcS
b and WD

b = WcD
b with cS = {1, 2, 3, 5, 6, 8, 9}

and cD = {4, 7, 10}. The benefit of the proposed cost function,
Jexc, was highlighted by comparing the produced exciting
motions with those obtained from the minimization of the
condition number of the total BP regressor Jcond = cond(W̄b)
which is commonly used in industrial robotics [11]. The two
optimization processes were to find the joint angle values
at NK = 4 via points, equally distributed over the whole
trajectory of TF = 2s, that minimize the above mentioned
criteria under the constraint that the B-spline interpolated joint
trajectories respect the joint limitations q−j ≤ BSj(kTs, qj) ≤
q+
j , k = 1, ..., (n − 1). B-splines were used to interpolate

the joint trajectories at 50 Hz. The optimization problem was
to determine NJNK = 12 variables. The optimizations were
run iteratively six times (iter = 1, ..., 6) by period of 2s for
a total of 12s. The number of rows of the regressor was
augmented at each iteration with the regressors built from
the previous optimizations. In this simulation, the external
wrench was composed of 2 forces (FX , FY ) and one resultant

moment (MZ). Consequently, at each iteration iter the BP
regressor W̄b was of size ((3 × iter × (2 × 50)) × 10).
After each optimization, and iteration, the condition number
of the total BP regressor W̄b was calculated. As previously
mentioned, the initial conditions of this problem are difficult
to be set for anthropomorphic systems. A first approach is to
have them vary linearly for each jth joint from their lower
(q−j ) to upper (q+

j ) limits. This produces joint trajectories that
are not very exciting since joint accelerations are constants.
This results in an initial BP regressor that is ill-conditioned
with a condition number of 5.1016. Once optimized, the total
condition number for the first iteration (from 0 to TF = 2s)
drops to Jcond = 105 as represented in red in Fig. 4.b.
Interestingly, when the proposed criteria Jexc is minimized,
the condition number of the total BP regressor is even smaller
and becomes Jcond = 62. From this, it is clear that the
proposed criterion produced a more exciting trajectory than
the minimization of the condition number of the total BP
regressor. Indeed, the ill-conditioned BP regressor leads to
convergence problems in the optimization algorithm that were
observed systematically when starting with poorly exciting
initial conditions. However, these differences tend to decrease
when the size of W̄b increases. One can see in Fig. 4b that
the proposed criteria converges to a global minimum faster
than the minimization of the total BP regressor; however, they
will both reach a minimum eventually. From this numerical
analysis it can be concluded that the proposed criterion is a
good candidate for reducing the problem of an ill-conditioned
total BP regressor as it tends to a similar minimum while
avoiding numerical instability and with a faster convergence.

D. Static postures

The floating base identification process uses three forces and
three moments expressed at the root-link level. This means
that six measurements are available to identify three CoM
coordinates for each of the twelve links. As a rule of thumb,
ten measurements should be recorded per parameter [13].
Thus, Np = 60 static postures P̄∗S are to be generated. An
optimization process aiming to automatically determine these
60 optimal joint configurations q̄∗S (NJ × 60) was developed
for this purpose.

Find q̄∗s ∈ min
q̄S∈RNJ×60

NL∑
i=1

Micond(W̄S
bi)

s.t. q−j ≤ q̄Sj ≤ q+
j

¯̇qSj = ¯̈qSj = 0

|Γ̄j |≤ Γ+
j

with j = 1, .., NJ

ZMP−x,y ≤ ¯ZMP x,y ≤ ZMP+
x,y

0 ≤ d̄vertex

P̄RF1:3x,y
= P̄LF1:3x,y

+ ∆̄PF

(14)

where W̄S
bi is built from the columns of the BP regressor

corresponding to the CoM parameters only (cf. definition 1).



During the optimization process all static postures must satisfy
the the joint angles and gravity induced torque limits allowed
for either the human subject [17] or the robot:

q−Sj ≤ q̄Sj ≤ q+
Sj

|Γ̄j |≤ Γ+
j

(15)

where q−j , q+
j , Γ+

j are lower and upper joint angle and
maximal torque limitations, respectively.
Additionally, the anthropomorphic structure’s balance must be
guaranteed. This means that the ZMP should lie within the
support polygon defined by the convex hull of the feet:

ZMP−x,y ≤ ¯ZMP x,y ≤ ZMP+
x,y (16)

where ZMP−x,y and ZMP+
x,y are the lower and upper bound-

aries of the base of support that are dependent on the feet
configuration as represented in Fig. 2.c. Since we first consider
the static case, the ZMPx,y is taken to be equivalent to the
projection of the total CoM. Similarly to Baleaman et al. [15],
the size of the base of support is reduced by 40 % in all
directions so as to account for inaccuracies in the robot control
and other errors in the geometric parameters. Auto-collisions
are avoided by defining a convex rectangular bounding box,
represented on the upper part of Fig. 3.a, around each link and
imposing the Euclidean distance, dvertex, between the vertices
of two boxes to always be positive dvertex > 0. The following
collisions were checked: lower feet to the opposite upper and
lower leg, lower arms to the trunk and upper leg and to the
opposite lower arm. The feet relative position and orientation
was kept constant for the postures that require double support
(postures p = 1...30). This is achieved by setting the relative
position of three points on each foot:

P̄RF1:3x,y = P̄LF1:3x,y + ∆̄PF (17)

This constraint becomes inactive for single support postures
(postures p = 31...60). P̄RF , P̄LF are the absolute 3D
position of the right and left foot respectively and are of size
3×30. ∆̄PF (3×30) sets the relative feet position depending
on the posture. It is used to place the right foot in front of the
left one during the static postures p = 16...30; 0.1m in case of
the HOAP-3 or 0.2m in case of the human subject. The sixty
static postures thus generated were divided into four groups
of fifteen postures. Each group having a different relative feet
configuration, as represented on Fig. 2.c.

The initial feasible static postures q̄S were calculated using
a custom inverse kinematic process to constrain the relative
position of the feet and ensure static balance. The initial
motions were reminiscent of a low amplitude squat while
keeping a straight trunk. Initial postures of the arms were
based on sinusoidal motions covering the whole joint space. A
multi-start search [27] was run 20 times around the previously
described initial static postures in order to avoid local minima.
The average time of calculation to solve this problem was
270s.

E. Dynamic postures transition

Each motion between two successive static postures was
calculated separately so as to reduce the dimension of the opti-
mization problem. This means that the set of dynamic postures
P̄∗D was computed for every two consecutive static postures p
and p+1. However, the results of the previous motions were in-
cluded in the optimization process by augmenting (increasing
the number of rows) the dynamic BP regressor. At posture p,
it is composed as follows: W̄D

b[p p+1]
= [W̄D T

b[1 p]
W̄D T

b[p p+1]
]
T .

In this way, the regressor contains the history of the previous
motions. The computation of the exciting trajectories of the
upper and lower links were performed separately depending
on each posture’s foot placement (see section III and in Table
I). In this way, the optimization problem was decomposed
into two easier to solve sub-problems of lower dimension.
The blue blocks in Fig. 1 show these processes. The first
one, defined by (18), aims to determine the optimal exciting
motions q̄DE (NJDE ×NK) by finding the NK = 2 optimal
via points indicated in Fig. 3.b with black crosses. From these
via points, the B-spline interpolated trajectories at each joint
j are obtained up to their second derivative at each iteration
of the optimization algorithm (see section III.B). The sub-
regressors W̄D

bi used in the cost function of (18) are calculated
for all n samples by using the outputs of the B-spline function.
Similarly, the constraints are satisfied for every sample n
of the trajectory. The second optimization process aims to
ensure dynamic balance by modifying q̄DB (NJDB × NK)
as in the first optimization process. As mentioned previously,
the total joint trajectory is composed of the two subsets of
q̄∗D = [q̄∗ T

DE q̄∗ T
DB ]

T . The problem of finding the exciting
motion between two consecutive postures p and p+ 1 can be
formulated as follows:

Find q̄∗DE ∈ min
q̄DE∈RNJDE×NK

NLDE∑
i=1

Micond(W̄D
bi)

s.t. BSj(0, qDEj) = q∗Sj(p)

BSj(nTs, qDEj) = q∗Sj(p+ 1)

ḂSj(0, qDEj) = ḂSj(nTs, qDEj) = 0

B̈Sj(0, qDEj) = B̈Sj(nTs, qDEj) = 0

q−j ≤ BSj(kTs, qDEj) ≤ q+
j

|ḂSj(kTs, qDEj)|≤ q̇+
j

|Γ̄j |≤ Γ+
j

µF̄X,Y ≤ F̄Z

0 ≤ d̄vertex

with j = 1, .., NJDE and k = 1, .., (n− 1)
(18)

The first two optimization problems focused only on the
head-arm-trunk segments, and considered 9 joints for the
HOAP-3 and 12 joints for the human model. With NK = 2
via points per joint, it led to optimization problems of 18 and
24 variables each, respectively. The problem regarding the leg
was of size for 12 both human and robot models. The specific



constraints in (18) to be satisfied were relative to the maximal
angular velocity, where q̇+

j is the maximal joint velocity and
set to 1 and 4 rad.s−1 for the HOAP-3 and human model
respectively and guaranteed that the friction forces act inside
of the friction cone. For simplification, the Coulomb friction
cone can be reduced to a squared base pyramid whose vertices
are aligned with the axis of the frame associated with the
contact surface [17]. Considering that the normal force has a
constant sign and that foot contacts are always coplanar with
the ground, it leads to simplified relationships between the
normal (FZ) and tangential forces (FX , FY ) under each foot:

µF̄X,Y ≤ F̄Z with µ = 0.5 (19)

Once the exciting motions have been determined, a final
optimization process uses the joints q̄DB∗ of the links that did
not participate to the exciting motion to ensure balance. The
exciting motions of the upper limbs might endanger dynamics
balance, as shown in Fig. 6 in red.

By modifying the motion of the lower limbs it is possible
to obtain a stable ZMP trajectory, as shown in green on Fig.
6. To do so, the deviation JZMP =|| ¯ZMP− ¯ZMPMid ||22 of
the ¯ZMP with respect to ¯ZMPMid, the center of the base of
support, is minimized by solving the following optimization
problem between two consecutive postures p and p+ 1:

Find q̄∗DB ∈ min
q̄DB ∈ RNJDB×NK

JZMP

s.t. BSj(0, qDBj) = q∗Sj(p)

BSj(nTs, qDBj) = q∗Sj(p+ 1)

ḂSj(0, qDBj) = ḂSj(nTs, qDBj) = 0

B̈Sj(0, qDBj) = B̈Sj(nTs, qDBj) = 0

q−j ≤ BSj(kTs, qDBj) ≤ q+
j

|ḂSj(kTs, qDBj)|≤ q̇+
j

µF̄X,Y ≤ F̄Z

|Γ̄j |≤ Γ+
j

ZMP−x,y ≤ ¯ZMP x,y ≤ ZMP+
x,y

0 ≤ d̄vertex

P̄RF1:3x,y
= P̄LF1:3x,y

+ ∆̄PF

with j = 1, .., NJDB and k = 1, .., (n− 1)
(20)

Obviously the modification of the root-link’s kinematic
by the lower limbs movemement affects the excitation of
the head-arm-trunk system. Fig. 5 shows the evolution of
the criterion Jexc for the different postures for the HOAP-3
model. The two upper graphs (JexcHAT ) show the good global
convergence of the criterion used to excite the head-arms-trunk
system. As highlighted in this figure a few of these motions are
poorly exciting, resulting in a slight increase in the criterion
value. However, this sub-optimality is acceptable due to the
large number of considered motions as successive optimization
processes use the previous whole body trajectories to augment
the regressor. For example, the criterion converges from 1702
to 13 over 28 posture transitions. A technical issue related
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Fig. 5. Evolution of the excitation criterion (18) in function of the number
of dynamic posture transition. Technical issues refers to a specific problem
of our robot described in section IV.C.2.

to the ankle motors, detailed in section IV.C.2, forced us to
constrain the minimization of the criterion Jexc for the leg
motions. The tolerance on the criterion was set to 5% of
the previous value to obtain feasible postures for the real
robot. This lead to trajectories that were less exciting than was
initially expected. The bottom plots of Fig. 5 show the optimal
evolution of criterion Jexc (in black) and its constrained
version (in grey) used for the rest of the experimental val-
idation. These non-linear constrained optimization processes
were solved with the sequential quadratic programming (SQP)
method using Matlab. The average time required to obtain each
of the dynamic posture transition was of 8±4s.

Fig. 6. Top view of the HOAP-3’s simulated ZMP trajectories using only
exciting motions, q̄∗

DE , of the upper limbs (red) and using lower limbs joints,
q̄∗
DB , to maximize balance during posture transition (green).



IV. EXPERIMENTAL VALIDATION

A. Human experimental setup

One healthy and athletic female volunteer (age=33 years,
weight=65kg, height=1.75m) participated in the study after
signing an informed consent form. To familiarize the volunteer
with the task, she was first asked to watch a slow motion video
of all the generated optimal motions. Subsequently, the optimal
trajectories of each body segment were superimposed onto a
webcam’s RGB video stream, as represented on Fig. 7.b, for
visual biofeedback. Since the optimal motions P̄∗D involve
several segments at the same time, they might be difficult
to replicate. To facilitate the identification procedure, during
each optimal static posture PS

∗, when the subject was not
moving, the next motion P̄∗D ∈ [p p+ 1] was shown. Finally,
a visual instruction was given to the subject on when to move.
The volunteer was asked to reproduce the projected optimal
exciting motions, as closely as possible, while keeping her
back straight. This identification phase lasted approximately
((2(Np − 1) + 5(Np − 1))/60 = 7min). Kinematic quan-
tities were recorded using a stereophotogrammetric system
(8 cameras, MX VICON). Fig. 7 presents the experimental
setup used for the human validation experiment. Joint angles
of the model displayed in Fig. 2 were calculated from a
whole body set of 37 retro-reflective markers and a custom
implementation of the classical multi-body optimization [30].
The markers were located at the anatomical landmarks spec-
ified by the plug-in-gait template (VICON). A force platform
(AMTI BP-400600) was used to record the ground reaction
forces and moments. Dynamometric and photogrammetric data
were recorded at 100 Hz with respect to the same global
frame in a synchronized fashion. The volunteer was asked
to perform the identification process twice, the second time
while wearing an additional load of 2.4kg fixed to her left
arm segment. This was done to assess the accuracy of the
SIP identification process. The total mass of the subject was
increased by 2.4kg in the AT model when the subject was
carrying the additional load. Once the SIP were estimated, the
accuracy of the proposed method was also assessed over ten
squats. The squats performed were very dynamic, with a large
amplitude and high velocity, requiring the use of the arms to
maintain balance.

B. Human identification results

Fig. 8 presents the comparison of the SIP obtained from AT
and from the identification procedure with and without the
additional mass placed at the left arm. Physical consistency
constraints were respected and the least-square fitting of ex-
ternal wrench over the entire excitation dance was lower in the
case of the identified model (7.8±2.1N and 4.3±1.9N.m) than
the AT parameters were used (12±1.7N and 9.67±3.65N.m).
As expected, most of the parameters were different between
AT and the identified model. Some of the parameters, such
as the masses and the COMs of the legs, display large
differences. This result is almost impossible to validate but
could be explained by the high athletic condition of the subject.

(a) (b) 

Markers 

6 axis forceplate 

Visual  
biofeedback  

Fig. 7. Experimental setup used for the human validation (a). Views of
the visual biofeedback used to display to the subject the optimal excitation
trajectories (b).

However, one possible validation method was to compare
the results of the identification performed with and without
the additional mass. Most of the identified masses display a
very similar value in both cases, the average mass difference
between the two identified model was 0.25 ± 0.17kg, with
the largest difference observed at the trunk level (0.42kg).
However, the mass difference at the arm level was 1.9kg. The
accuracy of the detection and of the estimation of the segment
mass of our method was then 2.4-1.9=0.5kg. This result is
consistent with previous literature studies. Ayusawa et al. [26]
also estimated additional masses and reported an accuracy of
0.3kg. Our group, using a planar model, reported an accuracy
of 0.5kg [14].

1) Human cross validation results: Fig. 9 presents a cross-
validation result obtained during the squat exercise. The cor-
responding RMS and correlation coefficient values, calculated
between the measured external wrench and their estimates
using AT and identified models are given in Table II. The
average RMS differences are much lower in the case of
the identified model (12.5N and 3.2N.m) than when using
AT (22.6N and 7.9N.m). The vertical force, subject to large
accelerations, displays a much larger difference with an RMS
error of 2.2 times larger for the AT model than for the
identified one. Note that, from Fig. 9, this error is mainly
displayed at the acceleration peaks and is not due to an offset
on the subject weight. The same observation can be realized
for the moment around the X-axis. This will have a large
influence if one would like to estimate the joint torque at the
knee, for example, using only kinematic data [14]. The average
correlation coefficient with the measured external wrench is
also better with the identified model, CC=0.73, than with the
AT model, CC=0.64.

C. Robot experimental setup

1) Robot motion validation: Prior to playing the actual
motions onto the robot, a validation was performed using
the Open Dynamics Engine in V-REP Simulator [29] and a
custom CAD-valued model of HOAP-3. V-REP is useful since
it embeds an efficient collision detection plugin that can be
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Fig. 8. Comparison of the AT and identified SIP.

used for the complex robot shapes. Fig. 10.a shows some of
the 60 static postures in V-REP simulator.

2) Robot specific technical issue: The humanoid robot
used in our experimentation was a HOAP-3 humanoid robot
extensively used in various tasks the past seven years. During
the experimental validation, several technical issues occurred.
First of all, we used an external force platform that provides a
better accuracy than the in-sole FSR sensor of the humanoid
robot. Second, the pitch ankle motors, corresponding to a
rotation in the sagittal plane, were gripped, limiting their
range of motion. Finally, the flexibility on the actuation of
the pitch ankle and the low friction values between the feet
and the ground caused respectively overshoots and unbalanced
movements. This made the identification of the inertia matrices
of the legs links challenging. In order to cope with these
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Fig. 9. Cross validation of the external forces and moments of force estimation
realized during a squat exercise performed by a human subject.

TABLE II
COMPARISON OF THE MEASURED AND ESTIMATED

EXTERNAL WRENCH AS ESTIMATED FROM AT/CAD DATA AND
FROM IDENTIFICATION

Human HOAP-3
RMS CC RMS CC

FX [N] Id 5.8 0.54 Id 1.1 0.998
AT 9.5 0.37 CAD 1.9 0.998

FY [N] Id 13.0 0.64 Id 0.5 0.997
AT 16.4 0.60 CAD 0.6 0.997

FZ [N] Id 18.9 0.98 Id 0.9 0.944
AT 41.9 0.96 CAD 3.5 0.93

MX [N.m] Id 4.9 0.99 Id 0.2 0.997
AT 14.0 0.99 CAD 0.7 0.993

MY [N.m] Id 3.4 0.81 Id 0.7 0.998
AT 6.6 0.79 CAD 0.8 0.994

MZ [N.m] Id 1.5 0.43 Id 0.4 0.27
AT 3.1 0.17 CAD 0.4 0.23

specific issues, the ankle pitch joints were constrained in the
optimization procedure to a very limited range of motion
around their zero position.

3) Robot data acquisition: As described in Fig. 10.b, the
HOAP-3 robot was located on top of a force platform used to
record the external wrench (1000 Hz, Accugait, AMTI). Seven
retro-reflective markers were located on the trunk and feet
links of HOAP-3. A stereophotogrammetric system (100 Hz,
VICON Bonita) was used to collect marker trajectories and to
estimate the waist position and orientation of the robot relative
to the force platform system of reference in a synchronous
fashion. Subsequently, the external ground reaction forces and
moments were expressed in the root-link frame. The root-



Fig. 10. View of the V-REP Simulator during double (postures 1 to 30) and
single (postures 31 to 60) support postures (a). Experimental setup used for
the identification of the HOAP-3 robot (b).

link identification can also be performed using the robot
embedded force sensors and the robot geometrical model.
The joint positions were recorded from robot encoders at 500
Hz. Optimal joint trajectories were tracked and reproduced
onto the robot using the manufacturer PID controller at each
joint. All collected data were processed using a 10 Hz cut-off
frequency 5th order low-pass, zero-phase filter.

Fig. 11. Typical automatic repositioning from initial position (from 0 to 3s)
and optimal exciting trajectory (the last 5s).

D. Robot identification results

The vector of BP was fully identified. However, from the
identified parameters, only the ones with a relative standard
deviation lower than 10% are deemed accurate enough for SIP
identification. Indeed, a small humanoid robot implies small
inertia parameter values. As such they are expected to have a
much larger relative standard deviation and thus more difficult
to identify [6]. From the prescribed optimal trajectories, 42
BP can be reliably identified. These parameters are almost
all of the CoM BP and some of the main regrouped inertia
components for the links corresponding to the head-arms-trunk
system. As expected, the inertias of the lower legs and feet
are hardly identifiable using the optimal trajectories for the
legs as they were over-constrained due to the technical issues.

However, the method was able to successfully identify the
CoM BP without needing to manual re-position of the robot,
an improvement over previous studies [15]. Fig. 12 shows the
comparison between CAD and identified links’ masses, CoMs,
and diagonal terms of the inertia matrices for the HOAP-3
robot. Physical consistency constraints were respected and the
least-square fitting of the external wrench had a low RMS
(less than 2N and 1N.m). As expected, the masses and several
of the first moment of inertia were different from the CAD
data. Most of the inertias did not play an important role in the
robot dynamics and they were found to be very similar to the
CAD data ones. This can be explained by the minimization of
|| ΦCAD−Φ ||22 in (8). This shows that our method guarantees
physical consistency, even when some parameters are poorly
excited.
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Fig. 12. Comparison of the CAD and identified SIP.

1) Robot cross validation results: A cross validation was
performed with a motion that was not used during the identifi-
cation process. A transition motion from the initial half sitting
position to the first initial optimal pose, where the robot is
in single support on the right foot, was retained. As it can
be seen in Fig. 13, the identification process allowed for a



better estimate of the external wrench than the CAD data.
The corresponding RMS errors and correlation coefficients
are summarized in Table II. A large difference is observable
along the vertical force FZ . This is due to the fact that the
total mass of the robot was different than the one predicted
by CAD. This difference in mass can be partially explained
by the change or the removal of some of the robot’s covers
at the trunk and leg level, as well as the removal of cables
used to connect the battery. The horizontal force and moment
(FX , MX ) also displayed an improvement, where the RMS
between measured and estimated quantities was reduced by a
factor two. Neither the CAD nor the identified models were
able to correctly predict the moment MZ around the vertical
axis, but the amplitude of this signal is very low and below
the accuracy of the force platform.
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Fig. 13. Cross validation of the external forces and moments of force
estimation during a HOAP-3 motion.

V. CONCLUSION

In this paper, a new method capable of generating con-
tinuous exciting motions for the identification of SIP of
whole body 3D anthropomorphic structure has been proposed.
It uses solely joint angles and contact force measurements
expressed at the root-link level over a number of static and
dynamic postures to identify the mass, CoM, and inertia matrix
of each link. Optimal exciting motions were obtained by
solving several constrained nonlinear optimization problems.
The optimal static postures (14) required to identify CoMs
were found first, then dynamic motions (18) used to identify
inertias were determined. During these motions, the dynamic
balance was handled by DoFs attached to links that were

not directly used to generate the excitation. The models and
the experimentations were based on both a human and a
HOAP-3 humanoid robot. Cross-validations of the identified
model using the estimate of the external wrench showed better
accuracy improvements than when using an AT or CAD based
model. For the human subject, the RMS errors was on average
two times smaller than when using AT. Such differences will
have a large influence on the estimate of the knee joint torque,
which is a variable of interest in rehabilitation. The robot
RMS errors were very small with magnitudes similar to the
literature [26], [6]. However, in these previous studies only
base parameters were identified. Uniquely, for a 3D whole
body anthropomorphic structure, the proposed approach was
able to detect and estimate an additional mass located on the
subject arm with an accuracy of 0.5kg. To the best of our
knowledge, this study is the first to propose a complete method
to identify all SIP of an anthropometric structure using optimal
exciting motions and taking into account the physiological
and/or mechanical constraints. In some biomechanics appli-
cations, the identification of local joint dynamics and muscle
parameters is of interest; however, these joint parameters will
not have influence on the generalized external wrench that is
used as input of the identification process. To identify these
influences, different input data, such as electromyographic
signal, and non-linear muscle models should be added in the
identification process [31]. The execution time and accuracy
of the whole optimization procedure was very reasonable
(less than 15 minutes) and the optimization always converged
when proper initial conditions were chosen. This means the
framework can easily be generalized to other robots. The
optimal motion can be generated for whole-body identification
(i.e. for a new robot) or emphasis can be given to specific
parts of the body (i.e. for a robot that has been repaired or
modified, or a patient that is following a segment specific
rehabilitation process) by tuning the weight of the regressor
columns (12). The continuous aspect of the identification
process is interesting for the humanoid robotics community
who would benefit from having more realistic dynamical
models of their robots. The current approach plays the optimal
exciting motions in open-loop and thus requires a good first
approximation of the robot parameters. However, it might
be possible to develop a pseudo-online identification process
handling dynamical balance and mechanical constraints in
real-time. At least, the robot dynamical balance could be
handled by a classical real-time ZMP controller [1] using the
embedded force sensors. This will allow to extend the size of
the base of support used in the optimization process allowing
more dynamic motions. The criterion and the fast quadratic
program presented in this study could be use to identify
SIP and eventually regenerate optimal motions, depending on
robot or human motion capture system specific sensor noise
and measurement artifacts. This could be part of a routine
calibration process by asking the robot or the human subject
to perform a sort of calibration dance during a short clinical
examination.

Technical issues described in section IV.C.2 forced us to



adapt our method to obtain better dynamic stability of the
robot. However, this did not allow for the proper excitation
of the robot leg inertias. In any case, the robot, in its current
state, would not be able to generate motions influenced by leg
inertias. This is very similar to the situation where pathological
subjects suffer from muscular loss and/or reduced joint range
of motion. The proposed approach could take into account
specific subject limitations while generating the exciting mo-
tion. However, question of the ergonomy of the visual interface
used to project the 3D complex motion to the subject will have
to be addressed further. A visual bio-feedback similar to the
ones used in dance video games with a Kinect sensor would
pave the way for the development of a future tool in diagnostic
decision-making [14].
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