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Abstract— The insertion of malicious alterations to a circuit, 
referred to as Hardware Trojans, is a threat considered more 
and more seriously during the last years. Numerous methods 
have been proposed in the literature to detect the presence of 
such alterations. More recently, Design-for-Hardware-Trust 
(DfHT) methods have been proposed, that enhance the design 
of the circuit in order to incorporate features that can either 
prevent the insertion of a HT or that can help detection 
methods. This paper focuses on a HT prevention technique 
that aims at creating a layout without filler cells, which are 
assumed to provide a great opportunity for HT insertion, in 
order to make the insertion of a HT in a layout as difficult as 
possible. 

Keywords- Harware-Trojans; Design-for-Hardware-Trust; 
Layout; Placement and routing 

I.  INTRODUCTION 
With ever-shrinking transistor technologies, the cost of 

new fabrication facilities is becoming prohibitive and 
outsourcing the fabrication process to low-cost locations has 
become a major trend in the Integrated Circuits (ICs) 
industry. This raises the question about untrusted foundries 
in which the insertion of malicious circuitry, referred to as 
Hardware Trojans (HTs), is a possible threat [1, 2]. A wide 
variety of HTs can indeed be implemented for altering the 
initial functionality of a design. They differ in their phase of 
insertion in the flow, physical characteristics, activation 
mechanisms, or functionality [3]. The challenge lies in how 
to detect HTs and/or prevent HT insertion knowing the 
stealthy nature of that threat. Few hundred transistors are 
indeed sufficient to insert a malicious behavior in a billion-
transistor design. There is therefore a need of developing 
novel techniques to secure the ICs against this threat [4]. 

Many studies have been recently dedicated to the HT 
threat. Proposed techniques can be classified into two main 
categories: detection methods and DfHT. In the former case, 
the design flow of the circuit is not modified and the circuit 
is tested after its fabrication in order to ensure the 
nonexistence of HT. On the contrary, DfHT methods consist 
in enhancing the design of the circuit in order to incorporate 
features that can either prevent the insertion of a HT or that 
can help detection methods [5]. 

HTs detection methods are divided into two types: side-
channel analysis [6, 7], and logic testing [8-11]. Side 
channel analysis methods focus on monitoring physical 
parameters of the circuit, such as the power consumption [6] 
or path delay [7]. Relying on golden ICs (i.e. circuit that 
have been ensured to be HT-free by destructive methods), a 
comparison is made with the circuits under test. The 
assumption is that the introduction of any additional 
malicious logic would increase power consumption or some 
path delay. The main weakness of side-channel analysis is 
to manage process variations. This makes them hardly 
effective on small HTs. Most logic testing based methods 
focus on so-called rare values based HTs i.e. HTs that are 
dormant until a very rare condition activates/triggers them 
[8]. The HT payload is then observed with an error on the 
outputs. The main concern is then to be able to activate 
potential HTs at test time i.e. find test vectors that can 
maximize the chances of activating HTs [9, 10]. More 
recently, it is assumed in [11] that an attacker may not have 
control on the internal signals of a circuit and that he will 
rather attach a HT trigger on the inputs. The goal is then to 
produce a reduced set of test vectors using combinatorial 
testing. Logic testing methods reach their limits when the 
needed set of test vectors increase to an unaffordable size. 
They can therefore be hardly effective when considering 
large HTs requiring the control of numerous signals. 

Given the limitations of HT detection methods, the idea 
of modifying the design flow has emerged. These DfHT 
methods incorporate into circuits features that can help 
detection methods or/and make more difficult the insertion 
of a HT [12-20]. 

In this paper, we focus on a DfHT method that aims at 
preventing an attacker in an untrusted foundry from 
inserting a HT at the layout level. The proposed method 
consists in creating a circuit layout as dense as possible. As 
shown in [12], a possible threat for easy HT insertion is 
indeed provided by the filler cells. Filler cells are inserted in 
the empty spaces of the circuit layout after the placement 
step and do not have any specific logic function. Their goal 
is to improve the density uniformity of the circuit [21]. They 
can provide a great opportunity for HT insertion because 
they are not tested after production. Therefore they can be 
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easily removed and replaced by a HT. Furthermore, 
removing filler cells to replace them with new gates seems 
stealthier from a visual inspection point of view [22] than 
modifying the original functional cells of the circuit. In this 
way, any intentional modification of the placement of the 
logic gates becomes extremely hard to be performed by a 
possible attacker. 

The authors of [12] proposed a technique called Built-In 
Self-Authentication (BISA) in which interconnected 
combinational cells are used as filler cells in order to create 
an additional combinational network. By testing the extra 
network (besides the original design), it is possible to 
understand if filler cells have been altered. The test of the 
additional network is performed through a Built-In Self-Test 
architecture, where Linear Feed Back Shift Registers 
(LFSRs) and Multiple-Input Shift-Registers (MISRs) are 
also implemented in the space dedicated to filler cells. 
Based on the same insight, it is proposed in [13] to improve 
the method by prioritizing the empty spaces to fill, since 
achieving 100% occupation ratio is in most cases impossible 
for routability reasons. The proposed idea is to fill in 
priority the so called “critical empty spaces” i.e. the ones 
that are close to signals which are prone to be selected for 
HT triggering. Furthermore, it is also proposed in [13] to 
use shift registers in order to test the added combinational 
functions, instead of a TPG and a MISR, with the intention 
of needing less space left. However, this method still 
reaches its limits because of the large size of the FFs. 
Firstly, there may be a lack of FFs inserted with regards to 
the number of combinational cells inserted. Secondly, when 
the original occupancy rate reaches about 85% in medium 
size ASICs, no space is large enough to hold a FF. 

The contribution of this paper is to enhance the method 
proposed in [13], by: 

1. Providing an enhanced algorithm that allows deriving 
the best number of combinatorial functions given the 
possible number of FFs to insert; 

2. Describing experiments consisting in inserting only 
logical gates when a design is too dense to contain any 
FF; 

3. Describing resulting circuits in terms of power 
consumption and timing. 

The rest of the paper is organized as follows: Section II 
presents related works on HT prevention. Section III details 
the proposed layout level design approach. Experimental 
results are presented in Section IV. Finally, Section V 
concludes the paper. 

II. RELATED WORKS 

A. RTL level 
Chakraborty et al. propose in [14] to modify Finite-State 

Machines (FSMs) in order to create a special mode of 
system operation called “transparent mode” that allows to 
control low-controllability signals and observe low-
observability signals. A key port is added to the circuits, and 

on the application of the right sequence of keys, the FSM 
enters the transparent mode. 

The method proposed in [15] consists also in adding a 
key, but in that case, the goal is to obfuscate the FSM: upon 
activation, the circuit is in an “obfuscated mode”, and enters 
the normal mode only upon application of the right input 
sequence of keys. 

B. Gate level 
The approach proposed in [16] inserts so-called “dummy 

flips-flops” in order to improve the controllability of the 
design and thus remove rare triggering condition for HTs. 

The method in [17] aims also at removing rare triggering 
conditions thanks to the insertion of AND/OR gates 
controlled by a key. These gates have the double feature of 
changing the controllability of the signals (in order to 
remove low controllable signals) and obfuscating the 
functionality of the circuit: the circuit behaves correctly 
only upon the application of the right key. 

C. Layout level 
In [18], controllability is improved thanks to an inverted 

voltage scheme. Voltage inversion on a CMOS gate indeed 
changes the gate behavior e.g. a NAND gate behaves like a 
AND gate, a NOR gate behaves like an OR gate. 
Consequently, while the NAND gate output is initially low 
controllable to ‘0’ and easily controllable to ‘1’, the voltage 
inversion on that gate makes its output easily controllable to 
‘0’ (and low controllable to ‘1’). Using both voltage 
configurations allows controlling the gate output to both 
values. This approach affects the place and root process 
since gates with the same combinatorial depth must be 
connected to the same voltage supply network, and gates in 
the alternate levels (combinatorial depths i and i+1) must be 
connected to separate supply voltage network. 

D. Transistor level 
Methods in [19, 20] propose to change the standard-cell 

library used. 
It is proposed in [19] to implement circuits with 

differential cascade voltage switch logic (DCVSL), which 
produces complementary logic values in all signals. The 
assumption is that the insertion of a HT will necessarily lead 
to non-complementary inputs in a DCVSL gate and 
consequently abnormal short-circuit power peaks. Note that 
any HT implementation leading to produce errors 
simultaneously on complementary values will not be 
detected. 

The idea of creating new types of CMOS gates that 
include not only the wanted functionality but also a so-called 
dual functionality is introduced in [20]. The aim of this dual 
functionality is that a slight change caused by a HT in the 
primary functionality should cause a large difference in the 
dual functionality. A potential HT should therefore be easily 
detected by logic testing methods. This hypothesis, 
interesting in theory, has unfortunately not been 
implemented. 
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E. Synthesis 
As mentioned before, Design-for-Trust methods are 

useful, either to help detection methods or to make HT 
insertion more difficult. Methods at RTL or gate levels 
provide effective protection, but need to incorporate new 
functionality into the circuits and therefore entail silicon 
area overhead. Method proposed in [19, 20] require creating 
the ICs with uncommon logic cells, which can be very 
costly and lead to a non-negligible area/power consumption 
overhead. 

The only methods that do not generate larger circuits are 
the ones based on “layout filling”, as proposed in [12, 13]. 
Filling unused spaces with functional cells instead of filler 
cells has indeed no impact on the silicon area. Furthermore, 
these methods are not costly or time consuming since they 
are based on a standard library as well as standard place and 
route tools. Although promising in theory, this idea may 
nevertheless be limited by the place/route tools capabilities. 
Placement and routing are indeed critical steps in the VLSI 
design flow. Limited routing resources (in terms of number 
of available wire tracks) are indeed the initial cause of the 
need to enlarge the layout during placement to provide 
enough wire tracks to resolve routing congestion, hence the 
creation of the “empty spaces” between the standard cells. 
Filling these empty spaces with functional cells and 
connecting these additional cells together may generate new 
routing constraints, which may lead to unroutable layouts. 
That is why the idea of prioritizing the empty spaces to fill 
was introduced in [13]. However, the method proposed in 
[13] reached its limits because of the size of the shift 
registers to add. We address this issue in this paper by 
proposing an enhanced procedure in which an iterative 
analysis to derive the best way to connect the combinatorial 
cells together given the possible number of FFs to insert. 

III. PROPOSED LAYOUT-LEVEL HT PREVENTION APPROACH 
Fig. 1 shows the block diagram of the proposed layout 

level design approach. The principle of this method is to fill 
the “empty spaces” needed to perform routing with extra 
combinatorial functions. Thus an attacker has no room in the 
design to add extra functions such as HTs. 

 

 
Figure 1.  Block diagram of an IC with HT prevention 

Extra standard-cells are inserted and connected together 
to form several combinatorial functions that are independent 
from the original design. A significant constraint is to create 
testable functions. The goal of the method is indeed to test 
these functions on the fabricated ICs to ensure that no 
function has been modified by an attacker introducing a HT. 
Although it is difficult for an attacker to identify additional 
functions from the original circuit, the pessimistic scenario in 
which the attacker succeeds is therefore handled. In order to 
test these functions, shift-registers are used at both input and 
output sides in order to apply input patterns and receive 
output responses. These shift-registers are also implemented 
within unused empty spaces. 

The next sub-sections detail the global flow, as well as 
the several steps of the method: the identification of the so-
called “critical empty spaces” in the layout, the filling with 
standard cells and shift registers and the building of the 
extra functions. 

A. Global flow 
From a placed circuit (and a chosen initial occupation 

ratio), the global flow of the experimental procedure is as 
follows: 

1. Computation of the empty spaces and critical empty 
spaces, 

2. Placement of the maximum number of FFs that can 
fit into these empty spaces (possibly none) to create 
the shift registers, 

3.  Placement of the logic cells in the remaining empty 
spaces (giving priority to critical empty spaces), 

4. Interconnections of cell in order to create the 
appropriate number of logical functions depending 
on the number of FFs (only 1 function in case of no 
FF inserted). 

Then the whole circuit is routed (original circuit and 
added functions). 

The aim of this procedure is to find the maximum 
occupation ratio possible that allows routing. The procedure 
described is then used iteratively, with a goal ratio of 100%, 
which is decremented until no routing violation occurs. 

Once the ICs are fabricated, a test phase is required 
before they are deployed in the field. In addition to the 
conventional tests ensuring the proper operation of each IC, 
it is necessary to test the additional functions, to ensure that 
a HT was not inserted. To do so, input patterns are shifted in 
thanks to the input shift register, and the responses of all 
combinatorial functions are shifted out. 

One has to notice that the shift-registers are using a 
separate clock than the original circuit. Firstly, it allows to 
switch of the additional functions once in the field in order 
to prevent unnecessary power consumption. Secondly, it 
allows relaxing the timing constraints of the additional 
functions, which will also help relaxing the constraints for 
routing these functions. 
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B. Identification of critical empty spaces 
As mentioned before, even with a filling method as the 

one we propose, being able to always achieve 100% 
occupation ratio is not possible given routing limited 
resources. We therefore propose to fill in priority so called 
“critical empty spaces” as follows. 

“Critical empty spaces” are the empty spaces that are 
close to signals with a large slack (i.e. time margin). The 
reason is that an attacker is likely to insert a HT in that kind 
of empty spaces in order take advantage of the large slack of 
these signals to insert a HT’s trigger. These signals are 
indeed insensitive to HT insertions from a delay point of 
view i.e. the insertion of a HT will not result in any 
degradation in the timing performance of the original design 
and will be insensitive to HT detection techniques based on 
delay measurements [10]. Therefore, these critical empty 
spaces will be considered as a priority during filling. 

C. Filling 
First of all, flips-flops that will be used to create shift-in 

and shift-out registers are inserted. The flip-flop being a very 
large cell, it is introduced first in order to use all the "big 
empty spaces". As will be seen in the experimental results 
section, due to the large size of flip-flops, the number of flip-
flops introduced is often not sufficient with respect to the 
number of combinatorial gates. Thus in this step, we insert as 
many flip-flops as possible. 

Then, left critical empty spaces are filled with 
combinatorial cells, from larger to smaller ones. Last, left 
empty spaces are filled the same way. The choice of the 
combinatorial cells to use is done according to each cell’s a) 
width, b) number of inputs, and c) decoupling capacitance 
value. For an empty space of a given size, the choice is 
firstly restricted to the larger cells fitting into this empty 
space (in order to limit the number of introduced cells). 
Then, cells with a large number of inputs have priority 
(because it helps reduce the size of the functions as 
described afterwards). Last, cells with larger decoupling 
capacitance values have priority because they help to 
compensate the absence of filler or decoupling capacitance 
(DECAP) cells [26]. For instance if we consider different 
cells with different parameters from Table I, the OR4 gate is 
the most suitable one for an empty space of 5um. Note that, 
cells with large fan-outs are presented in Table I. One can 
choose not to use such cells in order to prevent possible 
resizing attacks, or to use them (under the assumption that 
an attacker will not be able to perform such an attack). 

Besides, if an empty space can contain only an inverter, 
we choose to let it empty: this kind of empty space will not 
usable by an attacker. Furthermore, if we made the choice to 
insert an inverter and use it in the creation of the 
combinatorial functions, it would generate additional 
unnecessary contraints on the routing. 

 

D. Construction of the extra functions 
Once added in the layout, the cells are connected in a tree 

structure to build up the functions, as shown in Fig. 2. The 
process iterates, from inputs down to outputs until a function 
with 1 output is created. In order to prevent routing 
congestion, the first cell of each function is chosen as close 
as possible to one flip-flop and other cells used to build the 
function under construction are selected from the first one’s 
closer cells. 

In order to prevent an attacker from replacing a function 
with a HT, a constraint is to consider: not create two 
identical functions. This would give an attacker the 
opportunity to replace one of the two functions (and connect 
together the two outputs) without this being visible during 
the test phase. 

Besides, as mentioned before, this method can face a 
lack of FFs inserted relative to the number of logical 
functions created. Given that the number of functions inputs 
is directly related to the number of FFs in the shift in 
register, and the number of functions to the number of FFs 
in the shift out register, the idea is to find the optimal 
function size (i.e. inputs number) i.e. the size that produces 
an optimal number between the number of inputs and 
outputs, resulting in the smallest number of FF possible. 
In practice, we iteratively run the global flow for several 
input numbers, observe the resulting number of functions 
and then choose the optimal one. 

I. EXPERIMENTAL RESULTS 
We evaluated our method on several benchmarks. 

Experiments were conducted with a 65nm library and 
Synopsys tools for synthesis, placement and routing. 

TABLE I.  CELL SELECTION 

Function Width (um) Input Count DECAP 
NAN3X38 4.6 3 0.67 
AND4X25 4.6 4 0.44 
AOI12X5 5 3 0.61 
AOI21X35 5 3 0.61 
OAI12X37 5 3 0.65 
OAI21X37 5 3 0.65 
OR4XX29 5 4 0.51 

 

FF1

...

FF2

FFn

FF3

...

Level 1

FF1

...

FF2

FFn

FF3Level 2 Level y
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n inputs and single output function

1

m

m=1

...

 
Figure 2.  Function formation
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TABLE II.  LAYOUT FILLING (1) 

Benchmark Initial 
OR 

Initial 
leakage 

power (nW) 

Initial 
DAT 
(ns) 

Final 
OR 

Final leakage 
power (nW) 

Final DAT 
(ns) 

FFs/cells Inputs/ 
Functions 

Left-
over 
cells 

NAND 
possible 

AES 75 173.59 5.18 91 191.56 (+10%) 5.22(+0.8%) 61/1036 30/31 27 280 
 80 173.95 5.11 90 185.13 (%6%) 5.25 (+2.8%) 27/609 12/14 31 237 
 85 173.59 5.12 88 175.6 (+1%) 5.12 (-0.2%) 6/172 5/1 51 202 

S13207 75 14.31 0.89 95 23.51 (+64%) 0.6 (-32%) 29/125 19/10 0 0 
 80 13.42 0.91 90 18.41 (+37) 0.58 (-36%) 13/80 5/8 9 55 
 85 13.42 0.92 90 14.99 (+12) 0.92 (+0%) 7/39 2/5 6 51 

S35932 75 118.14 1.19 95 175.24 (+48%) 0.77 (-35%) 277/977 62/26 0 139 
 80 117.91 1.17 91 160.8 (+36%) 0.71 (-39%) 131/504 11/70 0 383 
 85 117.15 1.13 90 145.69 (+24%) 0.73 (-45%) 112/217 10/34 0 552 

RSA 75 35.99 9.8 93 45.35 (+26) 9.84 (+0.3%) 62/328 17/23 0 45 
 80 35.92 9.82 93 43.26 (+20%) 9.63 (-2%) 53/209 46/7 0 39 
 85 35.86 9.72 92 38.86 (+8%) 9.9 (+1.8%) 16/114 10/6 1 89 

RS232 75 18.28 1.9 91 22.63 (+24%) 1.84 (-4%) 32/157 27/5 0 25 
 80 18.29 1.9 91 20.95 (+15%) 1.83 (-4.7%) 19/102 15/4 0 28 
 85 18.26 2.1 87 18.72 (+2) 1.92 (-8.7%) 4/17 3/1 12 60 

ARM4U 75 41.49 9.71 93 50.26 (+21%) 10.79 (+11%) 70/328 63/6 0 42 
 80 41.48 9.86 91 46.98 (+13%) 10.77 (+9.3%) 36/191 16/20 0 79 
 85 41.45 9.8 91 43.6 (+5%) 10.52 (+7.4%) 22/97 13/8 0 81 

 

Table II presents the results of layout filling in terms 
of: (1) initial occupation ratio (OR) and final OR reached 
(i.e. the densest OR without routing violation), (2) initial 
and final leakage power (note that since the extra testable 
functions are connected to a separate clock, they are off 
during normal operation and therefore do not increase 
dynamic power) and (3) initial and final data time arrival. 
To comprehend the filling of the circuits, the number of 
FFs and logical cells inserted is presented as well as the 
number of functions created (along with the number of 
inputs for each function) and the number of combinatorial 
cells that remain unconnected due to a lack of FFs. Last, 
to better evaluate the difficulty for an attacker after 
applying our method, the number of NAND gates that 
could be inserted after filling is presented. 

High occupancy rates (above 90%) can be achieved by 
our method. Besides, the final OR achieved is generally 
the largest from the minimum initial OR and the bigger 
the initial OR, the greater the risk of a lack of FFs. 
Leakage power is degraded as expected, in proportion to 
the number of added cells: the bigger the initial 
occupation ratio, the less the deterioration. Data arrival 
time is degraded or enhanced. It totally depends on the 
routing algorithm; no prediction can be made. The 
number of exploitable spaces remaining after filling may 
seem too large in some cases, however, this number is in 
most cases far smaller than the number of cells inserted. 
This shows that the method has removed a majority of 
opportunities an attacker 

A layout of the benchmark s35932 cipher is presented 
in Fig. 3 in which the circuit is placed with an OR of 
75%. The cells in yellow/bold are the cells added by our 
method with a goal OR of 100%. 

Table III presents results in case of an initial OR too 
large to insert any FF. To test the limits of the method, the 
initial OR chosen is the maximum OR possible without 
routing violation. Our method can cope with such 
constraints, since it manages to insert logical cells and to 
create a logical function in all cases, even achieving 100% 
in 2 cases. 

Fig. 4 shows the interest of seeking for the best 
combination between the number of combinatorial 
functions and the number of inputs for each function i.e. 
the number of inputs that leads the least amount of non-
connected logical cells, depending on the possible number 
of FFs. In this figure, the number of remaining 
unconnected cells is presented, according to the number 
of inputs chosen for the combinatorial functions. These 
data correspond to the filling of the ARM4U benchmark, 
from 80% to 91%. 36 FFs can be inserted. All numbers of 
functions inputs have been tested from 4 to 35, and only 
one solution allows to have no cells remaining not 
connected: 16 inputs. Thanks to this method, our method 
can be applied on circuits with an initial rate up to 85% 
(only 80% were reached in [15]). 

 
Figure 3.  Layout occupation (added cells in yellow/bold) 
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TABLE III.  LAYOUT FILLING (2) 

Benchmark Initial OR Final OR Number of Inputs 
AES 93% 94% 19 

S13207 99% 100% 8 
S35932 99% 100% 30 

RSA 94% 95% 9 
RS232 95% 96% 9 

ARM4U 96% 97% 10 

 
Figure 4.  Iterative analysis of the functions size 

II. CONCLUSION 
In this paper, we have presented a DfHT method that 

aims at creating a layout as dense as possible in order to 
prevent possible HT insertion at layout level by an attacker 
in an untrusted foundry. The method consists in filling 
empty spaces in a layout by functional cells instead of 
filler cells. These additional functions are testable in order 
to prevent an attacker from replacing them with a HT. 
Such a method can generate large constraints for the 
routing; we explained how to minimize these additional 
constraints. Experimental results show that very high 
occupancy rates can be achieved, which demonstrates the 
feasibility of the method. To avoid potential degradation of 
the critical path due to routing, a future work could be to 
develop an ad-hoc routing algorithm, in order to route the 
additional functions after the routing of the initial circuit, 
i.e. without modifying the initial routing. 
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