
HAL Id: lirmm-01346529
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01346529

Submitted on 19 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hardware Trust through Layout Filling: a Hardware
Trojan Prevention Technique

Papa-Sidy Ba, Sophie Dupuis, Manikandan Palanichamy, Marie-Lise Flottes,
Giorgio Di Natale, Bruno Rouzeyre

To cite this version:
Papa-Sidy Ba, Sophie Dupuis, Manikandan Palanichamy, Marie-Lise Flottes, Giorgio Di Natale, et al..
Hardware Trust through Layout Filling: a Hardware Trojan Prevention Technique. ISVLSI: Interna-
tional Symposium on Very Large Scale Integration, Jul 2016, Pittsburgh, United States. pp.254-259,
�10.1109/ISVLSI.2016.22�. �lirmm-01346529�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01346529
https://hal.archives-ouvertes.fr

Hardware'Trust'through'Layout'Filling:'
a'Hardware'Trojan'Prevention'Technique'

Papa-Sidy Ba, Sophie Dupuis, Manikandan Palanichamy, Marie-Lise-Flottes, Giorgio Di Natale, Bruno Rouzeyre
LIRMM (Université de Montpellier / CNRS UMR 5506)

Montpellier, France
firstname.lastname@lirmm.fr

Abstract— The insertion of malicious alterations to a circuit,
referred to as Hardware Trojans, is a threat considered more
and more seriously during the last years. Numerous methods
have been proposed in the literature to detect the presence of
such alterations. More recently, Design-for-Hardware-Trust
(DfHT) methods have been proposed, that enhance the design
of the circuit in order to incorporate features that can either
prevent the insertion of a HT or that can help detection
methods. This paper focuses on a HT prevention technique
that aims at creating a layout without filler cells, which are
assumed to provide a great opportunity for HT insertion, in
order to make the insertion of a HT in a layout as difficult as
possible.

Keywords- Harware-Trojans; Design-for-Hardware-Trust;
Layout; Placement and routing

I. INTRODUCTION
With ever-shrinking transistor technologies, the cost of

new fabrication facilities is becoming prohibitive and
outsourcing the fabrication process to low-cost locations has
become a major trend in the Integrated Circuits (ICs)
industry. This raises the question about untrusted foundries
in which the insertion of malicious circuitry, referred to as
Hardware Trojans (HTs), is a possible threat [1, 2]. A wide
variety of HTs can indeed be implemented for altering the
initial functionality of a design. They differ in their phase of
insertion in the flow, physical characteristics, activation
mechanisms, or functionality [3]. The challenge lies in how
to detect HTs and/or prevent HT insertion knowing the
stealthy nature of that threat. Few hundred transistors are
indeed sufficient to insert a malicious behavior in a billion-
transistor design. There is therefore a need of developing
novel techniques to secure the ICs against this threat [4].

Many studies have been recently dedicated to the HT
threat. Proposed techniques can be classified into two main
categories: detection methods and DfHT. In the former case,
the design flow of the circuit is not modified and the circuit
is tested after its fabrication in order to ensure the
nonexistence of HT. On the contrary, DfHT methods consist
in enhancing the design of the circuit in order to incorporate
features that can either prevent the insertion of a HT or that
can help detection methods [5].

HTs detection methods are divided into two types: side-
channel analysis [6, 7], and logic testing [8-11]. Side
channel analysis methods focus on monitoring physical
parameters of the circuit, such as the power consumption [6]
or path delay [7]. Relying on golden ICs (i.e. circuit that
have been ensured to be HT-free by destructive methods), a
comparison is made with the circuits under test. The
assumption is that the introduction of any additional
malicious logic would increase power consumption or some
path delay. The main weakness of side-channel analysis is
to manage process variations. This makes them hardly
effective on small HTs. Most logic testing based methods
focus on so-called rare values based HTs i.e. HTs that are
dormant until a very rare condition activates/triggers them
[8]. The HT payload is then observed with an error on the
outputs. The main concern is then to be able to activate
potential HTs at test time i.e. find test vectors that can
maximize the chances of activating HTs [9, 10]. More
recently, it is assumed in [11] that an attacker may not have
control on the internal signals of a circuit and that he will
rather attach a HT trigger on the inputs. The goal is then to
produce a reduced set of test vectors using combinatorial
testing. Logic testing methods reach their limits when the
needed set of test vectors increase to an unaffordable size.
They can therefore be hardly effective when considering
large HTs requiring the control of numerous signals.

Given the limitations of HT detection methods, the idea
of modifying the design flow has emerged. These DfHT
methods incorporate into circuits features that can help
detection methods or/and make more difficult the insertion
of a HT [12-20].

In this paper, we focus on a DfHT method that aims at
preventing an attacker in an untrusted foundry from
inserting a HT at the layout level. The proposed method
consists in creating a circuit layout as dense as possible. As
shown in [12], a possible threat for easy HT insertion is
indeed provided by the filler cells. Filler cells are inserted in
the empty spaces of the circuit layout after the placement
step and do not have any specific logic function. Their goal
is to improve the density uniformity of the circuit [21]. They
can provide a great opportunity for HT insertion because
they are not tested after production. Therefore they can be

2016 IEEE Computer Society Annual Symposium on VLSI

978-1-4673-9039-2/16 $31.00 © 2016 IEEE

DOI 10.1109/ISVLSI.2016.22

254

easily removed and replaced by a HT. Furthermore,
removing filler cells to replace them with new gates seems
stealthier from a visual inspection point of view [22] than
modifying the original functional cells of the circuit. In this
way, any intentional modification of the placement of the
logic gates becomes extremely hard to be performed by a
possible attacker.

The authors of [12] proposed a technique called Built-In
Self-Authentication (BISA) in which interconnected
combinational cells are used as filler cells in order to create
an additional combinational network. By testing the extra
network (besides the original design), it is possible to
understand if filler cells have been altered. The test of the
additional network is performed through a Built-In Self-Test
architecture, where Linear Feed Back Shift Registers
(LFSRs) and Multiple-Input Shift-Registers (MISRs) are
also implemented in the space dedicated to filler cells.
Based on the same insight, it is proposed in [13] to improve
the method by prioritizing the empty spaces to fill, since
achieving 100% occupation ratio is in most cases impossible
for routability reasons. The proposed idea is to fill in
priority the so called “critical empty spaces” i.e. the ones
that are close to signals which are prone to be selected for
HT triggering. Furthermore, it is also proposed in [13] to
use shift registers in order to test the added combinational
functions, instead of a TPG and a MISR, with the intention
of needing less space left. However, this method still
reaches its limits because of the large size of the FFs.
Firstly, there may be a lack of FFs inserted with regards to
the number of combinational cells inserted. Secondly, when
the original occupancy rate reaches about 85% in medium
size ASICs, no space is large enough to hold a FF.

The contribution of this paper is to enhance the method
proposed in [13], by:

1. Providing an enhanced algorithm that allows deriving
the best number of combinatorial functions given the
possible number of FFs to insert;

2. Describing experiments consisting in inserting only
logical gates when a design is too dense to contain any
FF;

3. Describing resulting circuits in terms of power
consumption and timing.

The rest of the paper is organized as follows: Section II
presents related works on HT prevention. Section III details
the proposed layout level design approach. Experimental
results are presented in Section IV. Finally, Section V
concludes the paper.

II. RELATED WORKS

A. RTL level
Chakraborty et al. propose in [14] to modify Finite-State

Machines (FSMs) in order to create a special mode of
system operation called “transparent mode” that allows to
control low-controllability signals and observe low-
observability signals. A key port is added to the circuits, and

on the application of the right sequence of keys, the FSM
enters the transparent mode.

The method proposed in [15] consists also in adding a
key, but in that case, the goal is to obfuscate the FSM: upon
activation, the circuit is in an “obfuscated mode”, and enters
the normal mode only upon application of the right input
sequence of keys.

B. Gate level
The approach proposed in [16] inserts so-called “dummy

flips-flops” in order to improve the controllability of the
design and thus remove rare triggering condition for HTs.

The method in [17] aims also at removing rare triggering
conditions thanks to the insertion of AND/OR gates
controlled by a key. These gates have the double feature of
changing the controllability of the signals (in order to
remove low controllable signals) and obfuscating the
functionality of the circuit: the circuit behaves correctly
only upon the application of the right key.

C. Layout level
In [18], controllability is improved thanks to an inverted

voltage scheme. Voltage inversion on a CMOS gate indeed
changes the gate behavior e.g. a NAND gate behaves like a
AND gate, a NOR gate behaves like an OR gate.
Consequently, while the NAND gate output is initially low
controllable to ‘0’ and easily controllable to ‘1’, the voltage
inversion on that gate makes its output easily controllable to
‘0’ (and low controllable to ‘1’). Using both voltage
configurations allows controlling the gate output to both
values. This approach affects the place and root process
since gates with the same combinatorial depth must be
connected to the same voltage supply network, and gates in
the alternate levels (combinatorial depths i and i+1) must be
connected to separate supply voltage network.

D. Transistor level
Methods in [19, 20] propose to change the standard-cell

library used.
It is proposed in [19] to implement circuits with

differential cascade voltage switch logic (DCVSL), which
produces complementary logic values in all signals. The
assumption is that the insertion of a HT will necessarily lead
to non-complementary inputs in a DCVSL gate and
consequently abnormal short-circuit power peaks. Note that
any HT implementation leading to produce errors
simultaneously on complementary values will not be
detected.

The idea of creating new types of CMOS gates that
include not only the wanted functionality but also a so-called
dual functionality is introduced in [20]. The aim of this dual
functionality is that a slight change caused by a HT in the
primary functionality should cause a large difference in the
dual functionality. A potential HT should therefore be easily
detected by logic testing methods. This hypothesis,
interesting in theory, has unfortunately not been
implemented.

255

E. Synthesis
As mentioned before, Design-for-Trust methods are

useful, either to help detection methods or to make HT
insertion more difficult. Methods at RTL or gate levels
provide effective protection, but need to incorporate new
functionality into the circuits and therefore entail silicon
area overhead. Method proposed in [19, 20] require creating
the ICs with uncommon logic cells, which can be very
costly and lead to a non-negligible area/power consumption
overhead.

The only methods that do not generate larger circuits are
the ones based on “layout filling”, as proposed in [12, 13].
Filling unused spaces with functional cells instead of filler
cells has indeed no impact on the silicon area. Furthermore,
these methods are not costly or time consuming since they
are based on a standard library as well as standard place and
route tools. Although promising in theory, this idea may
nevertheless be limited by the place/route tools capabilities.
Placement and routing are indeed critical steps in the VLSI
design flow. Limited routing resources (in terms of number
of available wire tracks) are indeed the initial cause of the
need to enlarge the layout during placement to provide
enough wire tracks to resolve routing congestion, hence the
creation of the “empty spaces” between the standard cells.
Filling these empty spaces with functional cells and
connecting these additional cells together may generate new
routing constraints, which may lead to unroutable layouts.
That is why the idea of prioritizing the empty spaces to fill
was introduced in [13]. However, the method proposed in
[13] reached its limits because of the size of the shift
registers to add. We address this issue in this paper by
proposing an enhanced procedure in which an iterative
analysis to derive the best way to connect the combinatorial
cells together given the possible number of FFs to insert.

III. PROPOSED LAYOUT-LEVEL HT PREVENTION APPROACH
Fig. 1 shows the block diagram of the proposed layout

level design approach. The principle of this method is to fill
the “empty spaces” needed to perform routing with extra
combinatorial functions. Thus an attacker has no room in the
design to add extra functions such as HTs.

Figure 1. Block diagram of an IC with HT prevention

Extra standard-cells are inserted and connected together
to form several combinatorial functions that are independent
from the original design. A significant constraint is to create
testable functions. The goal of the method is indeed to test
these functions on the fabricated ICs to ensure that no
function has been modified by an attacker introducing a HT.
Although it is difficult for an attacker to identify additional
functions from the original circuit, the pessimistic scenario in
which the attacker succeeds is therefore handled. In order to
test these functions, shift-registers are used at both input and
output sides in order to apply input patterns and receive
output responses. These shift-registers are also implemented
within unused empty spaces.

The next sub-sections detail the global flow, as well as
the several steps of the method: the identification of the so-
called “critical empty spaces” in the layout, the filling with
standard cells and shift registers and the building of the
extra functions.

A. Global flow
From a placed circuit (and a chosen initial occupation

ratio), the global flow of the experimental procedure is as
follows:

1. Computation of the empty spaces and critical empty
spaces,

2. Placement of the maximum number of FFs that can
fit into these empty spaces (possibly none) to create
the shift registers,

3. Placement of the logic cells in the remaining empty
spaces (giving priority to critical empty spaces),

4. Interconnections of cell in order to create the
appropriate number of logical functions depending
on the number of FFs (only 1 function in case of no
FF inserted).

Then the whole circuit is routed (original circuit and
added functions).

The aim of this procedure is to find the maximum
occupation ratio possible that allows routing. The procedure
described is then used iteratively, with a goal ratio of 100%,
which is decremented until no routing violation occurs.

Once the ICs are fabricated, a test phase is required
before they are deployed in the field. In addition to the
conventional tests ensuring the proper operation of each IC,
it is necessary to test the additional functions, to ensure that
a HT was not inserted. To do so, input patterns are shifted in
thanks to the input shift register, and the responses of all
combinatorial functions are shifted out.

One has to notice that the shift-registers are using a
separate clock than the original circuit. Firstly, it allows to
switch of the additional functions once in the field in order
to prevent unnecessary power consumption. Secondly, it
allows relaxing the timing constraints of the additional
functions, which will also help relaxing the constraints for
routing these functions.

256

B. Identification of critical empty spaces
As mentioned before, even with a filling method as the

one we propose, being able to always achieve 100%
occupation ratio is not possible given routing limited
resources. We therefore propose to fill in priority so called
“critical empty spaces” as follows.

“Critical empty spaces” are the empty spaces that are
close to signals with a large slack (i.e. time margin). The
reason is that an attacker is likely to insert a HT in that kind
of empty spaces in order take advantage of the large slack of
these signals to insert a HT’s trigger. These signals are
indeed insensitive to HT insertions from a delay point of
view i.e. the insertion of a HT will not result in any
degradation in the timing performance of the original design
and will be insensitive to HT detection techniques based on
delay measurements [10]. Therefore, these critical empty
spaces will be considered as a priority during filling.

C. Filling
First of all, flips-flops that will be used to create shift-in

and shift-out registers are inserted. The flip-flop being a very
large cell, it is introduced first in order to use all the "big
empty spaces". As will be seen in the experimental results
section, due to the large size of flip-flops, the number of flip-
flops introduced is often not sufficient with respect to the
number of combinatorial gates. Thus in this step, we insert as
many flip-flops as possible.

Then, left critical empty spaces are filled with
combinatorial cells, from larger to smaller ones. Last, left
empty spaces are filled the same way. The choice of the
combinatorial cells to use is done according to each cell’s a)
width, b) number of inputs, and c) decoupling capacitance
value. For an empty space of a given size, the choice is
firstly restricted to the larger cells fitting into this empty
space (in order to limit the number of introduced cells).
Then, cells with a large number of inputs have priority
(because it helps reduce the size of the functions as
described afterwards). Last, cells with larger decoupling
capacitance values have priority because they help to
compensate the absence of filler or decoupling capacitance
(DECAP) cells [26]. For instance if we consider different
cells with different parameters from Table I, the OR4 gate is
the most suitable one for an empty space of 5um. Note that,
cells with large fan-outs are presented in Table I. One can
choose not to use such cells in order to prevent possible
resizing attacks, or to use them (under the assumption that
an attacker will not be able to perform such an attack).

Besides, if an empty space can contain only an inverter,
we choose to let it empty: this kind of empty space will not
usable by an attacker. Furthermore, if we made the choice to
insert an inverter and use it in the creation of the
combinatorial functions, it would generate additional
unnecessary contraints on the routing.

D. Construction of the extra functions
Once added in the layout, the cells are connected in a tree

structure to build up the functions, as shown in Fig. 2. The
process iterates, from inputs down to outputs until a function
with 1 output is created. In order to prevent routing
congestion, the first cell of each function is chosen as close
as possible to one flip-flop and other cells used to build the
function under construction are selected from the first one’s
closer cells.

In order to prevent an attacker from replacing a function
with a HT, a constraint is to consider: not create two
identical functions. This would give an attacker the
opportunity to replace one of the two functions (and connect
together the two outputs) without this being visible during
the test phase.

Besides, as mentioned before, this method can face a
lack of FFs inserted relative to the number of logical
functions created. Given that the number of functions inputs
is directly related to the number of FFs in the shift in
register, and the number of functions to the number of FFs
in the shift out register, the idea is to find the optimal
function size (i.e. inputs number) i.e. the size that produces
an optimal number between the number of inputs and
outputs, resulting in the smallest number of FF possible.
In practice, we iteratively run the global flow for several
input numbers, observe the resulting number of functions
and then choose the optimal one.

I. EXPERIMENTAL RESULTS
We evaluated our method on several benchmarks.

Experiments were conducted with a 65nm library and
Synopsys tools for synthesis, placement and routing.

TABLE I. CELL SELECTION

Function Width (um) Input Count DECAP
NAN3X38 4.6 3 0.67
AND4X25 4.6 4 0.44
AOI12X5 5 3 0.61
AOI21X35 5 3 0.61
OAI12X37 5 3 0.65
OAI21X37 5 3 0.65
OR4XX29 5 4 0.51

FF1

...

FF2

FFn

FF3

...

Level 1

FF1

...

FF2

FFn

FF3Level 2 Level y

FFn-1

n inputs and single output function

1

m

m=1

...

Figure 2. Function formation

257

TABLE II. LAYOUT FILLING (1)

Benchmark Initial
OR

Initial
leakage

power (nW)

Initial
DAT
(ns)

Final
OR

Final leakage
power (nW)

Final DAT
(ns)

FFs/cells Inputs/
Functions

Left-
over
cells

NAND
possible

AES 75 173.59 5.18 91 191.56 (+10%) 5.22(+0.8%) 61/1036 30/31 27 280
 80 173.95 5.11 90 185.13 (%6%) 5.25 (+2.8%) 27/609 12/14 31 237
 85 173.59 5.12 88 175.6 (+1%) 5.12 (-0.2%) 6/172 5/1 51 202

S13207 75 14.31 0.89 95 23.51 (+64%) 0.6 (-32%) 29/125 19/10 0 0
 80 13.42 0.91 90 18.41 (+37) 0.58 (-36%) 13/80 5/8 9 55
 85 13.42 0.92 90 14.99 (+12) 0.92 (+0%) 7/39 2/5 6 51

S35932 75 118.14 1.19 95 175.24 (+48%) 0.77 (-35%) 277/977 62/26 0 139
 80 117.91 1.17 91 160.8 (+36%) 0.71 (-39%) 131/504 11/70 0 383
 85 117.15 1.13 90 145.69 (+24%) 0.73 (-45%) 112/217 10/34 0 552

RSA 75 35.99 9.8 93 45.35 (+26) 9.84 (+0.3%) 62/328 17/23 0 45
 80 35.92 9.82 93 43.26 (+20%) 9.63 (-2%) 53/209 46/7 0 39
 85 35.86 9.72 92 38.86 (+8%) 9.9 (+1.8%) 16/114 10/6 1 89

RS232 75 18.28 1.9 91 22.63 (+24%) 1.84 (-4%) 32/157 27/5 0 25
 80 18.29 1.9 91 20.95 (+15%) 1.83 (-4.7%) 19/102 15/4 0 28
 85 18.26 2.1 87 18.72 (+2) 1.92 (-8.7%) 4/17 3/1 12 60

ARM4U 75 41.49 9.71 93 50.26 (+21%) 10.79 (+11%) 70/328 63/6 0 42
 80 41.48 9.86 91 46.98 (+13%) 10.77 (+9.3%) 36/191 16/20 0 79
 85 41.45 9.8 91 43.6 (+5%) 10.52 (+7.4%) 22/97 13/8 0 81

Table II presents the results of layout filling in terms
of: (1) initial occupation ratio (OR) and final OR reached
(i.e. the densest OR without routing violation), (2) initial
and final leakage power (note that since the extra testable
functions are connected to a separate clock, they are off
during normal operation and therefore do not increase
dynamic power) and (3) initial and final data time arrival.
To comprehend the filling of the circuits, the number of
FFs and logical cells inserted is presented as well as the
number of functions created (along with the number of
inputs for each function) and the number of combinatorial
cells that remain unconnected due to a lack of FFs. Last,
to better evaluate the difficulty for an attacker after
applying our method, the number of NAND gates that
could be inserted after filling is presented.

High occupancy rates (above 90%) can be achieved by
our method. Besides, the final OR achieved is generally
the largest from the minimum initial OR and the bigger
the initial OR, the greater the risk of a lack of FFs.
Leakage power is degraded as expected, in proportion to
the number of added cells: the bigger the initial
occupation ratio, the less the deterioration. Data arrival
time is degraded or enhanced. It totally depends on the
routing algorithm; no prediction can be made. The
number of exploitable spaces remaining after filling may
seem too large in some cases, however, this number is in
most cases far smaller than the number of cells inserted.
This shows that the method has removed a majority of
opportunities an attacker

A layout of the benchmark s35932 cipher is presented
in Fig. 3 in which the circuit is placed with an OR of
75%. The cells in yellow/bold are the cells added by our
method with a goal OR of 100%.

Table III presents results in case of an initial OR too
large to insert any FF. To test the limits of the method, the
initial OR chosen is the maximum OR possible without
routing violation. Our method can cope with such
constraints, since it manages to insert logical cells and to
create a logical function in all cases, even achieving 100%
in 2 cases.

Fig. 4 shows the interest of seeking for the best
combination between the number of combinatorial
functions and the number of inputs for each function i.e.
the number of inputs that leads the least amount of non-
connected logical cells, depending on the possible number
of FFs. In this figure, the number of remaining
unconnected cells is presented, according to the number
of inputs chosen for the combinatorial functions. These
data correspond to the filling of the ARM4U benchmark,
from 80% to 91%. 36 FFs can be inserted. All numbers of
functions inputs have been tested from 4 to 35, and only
one solution allows to have no cells remaining not
connected: 16 inputs. Thanks to this method, our method
can be applied on circuits with an initial rate up to 85%
(only 80% were reached in [15]).

Figure 3. Layout occupation (added cells in yellow/bold)

258

TABLE III. LAYOUT FILLING (2)

Benchmark Initial OR Final OR Number of Inputs
AES 93% 94% 19

S13207 99% 100% 8
S35932 99% 100% 30

RSA 94% 95% 9
RS232 95% 96% 9

ARM4U 96% 97% 10

Figure 4. Iterative analysis of the functions size

II. CONCLUSION
In this paper, we have presented a DfHT method that

aims at creating a layout as dense as possible in order to
prevent possible HT insertion at layout level by an attacker
in an untrusted foundry. The method consists in filling
empty spaces in a layout by functional cells instead of
filler cells. These additional functions are testable in order
to prevent an attacker from replacing them with a HT.
Such a method can generate large constraints for the
routing; we explained how to minimize these additional
constraints. Experimental results show that very high
occupancy rates can be achieved, which demonstrates the
feasibility of the method. To avoid potential degradation of
the critical path due to routing, a future work could be to
develop an ad-hoc routing algorithm, in order to route the
additional functions after the routing of the initial circuit,
i.e. without modifying the initial routing.

ACKNOWLEDGMENT
This project has been funded by the French

Government (BPI-OSEO) under grant FUI#14 HOMERE
(Hardware trOjans : Menaces et robustEsse des ciRcuits
intEgrés).

REFERENCES
[1] X. Wang, M. Tehranipoor and J. Plusquellic, “Detecting malicious

inclusions in secure hardware: challenges and solutions”, In IEEE
International Workshop on Hardware-Oriented Security and Trust
(HOST’08), pp. 15–19, 2008.

[2] U. Guin, K. Huang, D. DiMase, J. M. Carulli, M. Tehranipoor and
Y. Makris, “Counterfeit integrated circuits: a rising threat in the
global semicondictor supply chain”, In Proceedings of the IEEE,
Special Issue on Trustworthy Hardware, 102(8):1207–1228, 2014.

[3] M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan
taxonomy and detection”, IEEE Design & Test of Computer,
27:10– 25, 2010.

[4] S. Bhunia, M. S. Hsiao, M. Banga, S. Narasimhan, “Hardware
trojan attacks: threat analysis and countermeasures”, In
Proceedings of the IEEE, Special Issue on Trustworthy Hardware,
102(8):1229–1247, 2014.

[5] J. Rajendran, O. Sinanoglu and R. Karri, “Regaining trust in VLSI
design: design-for-trust techniques“, In Proceedings of the IEEE,
Special Issue on Trustworthy Hardware, 102(8):1266–1282, 2014.

[6] D.Agrawal, S.Baktir, D.Karakoyunlu, P.Rohatgi, and B.Sunar,
“Trojan detection using IC fingerprinting“, In IEEE Symposium on
Security and Privacy (SP’07), pp. 296–310, 2007.

[7] Y. Jin and Y. Makris, “Hardware trojan detection using path delay
fingerprint“, In IEEE International Workshop on Hardware-
Oriented Security and Trust (HOST’08), pp. 51–57, 2008.

[8] F. Wolf, C. Papachristou, S. Bhunia and R. S. Chakraborty,
“Towards trojan-free trusted ICs: problem analysis and detection
scheme“, In Design, Automation and Test in Europe (DATE’08),
pp. 1362–1365, 2008.

[9] R. S. Chakraborty, F. Wolff, S. Paul, C. Papachristou, and S.
Bhunia, “MERO: a statistical approach for hardware trojan
detection“, In International Conference on Cryptographic
Hardware and Embedded Systems (CHES’09), pp. 396–410, 2009.

[10] S. Dupuis, P.-S. Ba, M.-L. Flottes, G. Di Natale and B. Rouzeyre,
“New testing procedure for finding insertion sites of stealthy
hardware trojans”, In Design Automation & Test in Europe
(DATE’15), pp. 776–781, 2015.

[11] P. Kitsos, D. E. Simos, J. Torres-Jimenez and A. G. Voyiatzis,
“Exciting FPGA cryptographic trojans using combinatorial
testing”, In IEEE International Symposiul on Software Reliability
Engineering (ISSRE’15), 2015.

[12] K. Xiao and M. Tehranipoor, “BISA: built-in self-authentication
for preventing hardware trojan insertion”, In International
symposium on Hardware-oriented security and trust (HOST’13),
pp. 45–50, 2013.

[13] P.-S. Ba, P. Manikandan, S. Dupuis, M.-L. Flottes, G. Di Natale
and B. Rouzeyre, “Hardware trojan prevention using layout-level
design approach”, In IEEE European Conference on Circuit
Theory and Design (ECCTD’15), 2015.

[14] R. S. Chakraborty, S. Paul, S. Bhunia, “On-demand transparency
for improving hardware trojan detectability“, In IEEE International
Workshop on Hardware-Oriented Secutity and Trust (HOST’08),
pp. 48–50, 2008.

[15] R. S. Chakraborty and S. Bhunia, “Security against hardware
trojan attacks using key-based design obfuscation“, In Journal of
Electronic Testing, 27(6):767–785, 2011.

[16] H. Salmani, M. Tehranipoor, and J. Plusquellic, “A novel
technique for improving hardware trojan detection and reducing
trojan activation time“, In IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 20(1):112–125, 2012.

[17] S. Dupuis, P.-S. Ba, G. Di Natale, , M.-L. Flottes, and B.
Rouzeyre, “A novel hardware logic encryption technique for
thwarting illegal overproduction and hardware trojans“, In IEEE
International On-Line Testing Symposium (IOLTS’14), 2014.

[18] M. Banga and M. S. Hsiao, “VITAMIN: voltage inversion
technique to ascertain malicious insertions in ICs”, In IEEE
International Workshop on Hardware-Oriented Security and Trust
(HOST’09), pp. 104–107, 2009.

[19] W. Danesh, J. Dofe and Q. Yu, “Efficient hardware trojan
detection with differential cascade voltage switch logic”, In VLSI
Desing, Special Issue on Advanced VLSI Architecture Design for
Emerging Digital Systems, 2014.

[20] Y. Alkabani, “Trojan immune circuits using duality”, In
Euromocro Conference on Digital System Design (DSD’12), pp.
177–184, 2012.

[21] J. Ichimiya, “Layout design method of semiconductor integrated
circuit, and semiconductor integrated circuit, with high integration
level of multiple level metalization”, US Patent 7,076,756, 2006.

[22] S. Bhasin, J.-L. Danger, X. T. Ngo and S. Guilley, “Hardware
trojan horses in cryptographic IP cores”, In Fault Diagnostic and
Tolerance in Cryptography (FDTC’13), pp. 15–29, 2013.

259

