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Informatique Théorique et Applications

A SHORT PROOF THAT SHUFFLE SQUARES ARE

7-AVOIDABLE

Guillaume Guégan1 and Pascal Ochem2

Abstract. A shuffle square is a word that can be partitioned into two
identical words. We obtain a short proof that there exist exponentially
many words over the 7 letter alphabet containing no shuffle square as
a factor. The method is a generalization of the so-called power series
method using ideas of the entropy compression method as developped
by Gonçalves, Montassier, and Pinlou.
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Introduction

Entropy compression has been used to avoid squares [5] and patterns [9] in
infinite words over a small alphabet. The proofs require many features (an algo-
rithm, a record, an analysis of the size the record,. . . ). Gonçalves, Montassier, and
Pinlou [4] have recently obtained a generic way of using the entropy compression
method in the context of graph coloring that avoids a lot of these technicalities.

In a recent paper [8], we have used ideas from the entropy compression method
to generalize the power series method as used in combinatorics on words by Bell
and Goh [1], Rampersad [10], and Blanchet-Sadri and Woodhouse [2]. We describe
this method in Section 1 to make the paper self-contained.

A shuffle square is a word that can be partitioned into two identical words. For
example, every square is a shuffle square, aabbcc and abacbc are shuffle squares
of abc, and ccbcbaca is a shuffle square of cbca.

Recently, Currie [3] has answered a question of Karhumäki by showing that
there exist infinite words over a finite (but large) alphabet containing no shuffle
square as a factor using the Lovász local lemma. Then Müller has lowered the
alphabet size to 10 in his thesis [7] and has also proved that shuffle cubes are
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avoidable over the 6 letter alphabet. We apply the method in Section 1 to obtain
the following result in Section 2.

Theorem 0.1. There exist at least 5.59n words of length n over the 7 letter
alphabet containing no shuffle square as a factor.

Grytczuk, Kozik, and Zaleski [6] have an independent proof of the list version of
Theorem 0.1 using another flavor of entropy compression and different parameters.
Notice that words avoiding shuffle squares avoid in particular the patterns AA and
ABACBC. We have checked that words over 3 letters avoiding AA and ABACBC
have finite length, so at least 4 letters are needed to avoid shuffle squares. Thus,
the minimum alphabet size for an infinite word avoiding shuffle squares remains
an open problem and is between 4 and 7.

1. Description of the method

Let Σm = {0, 1, . . . ,m− 1} be the m-letter alphabet and let L ⊂ Σ∗m be a
factorial language defined by a set F of forbidden factors of length at least 2. We
denote the factor complexity of L by ni = L ∩ Σi

m. We define L′ as the set of
words w such that w is not in L and the prefix of length |w| − 1 of w is in L. For
every forbidden factor f ∈ F , we choose a number 1 6 sf 6 |f |. Then, for every
i > 1, we define an integer ai such that

ai > max
u∈L

∣∣{v ∈ Σi
m | uv ∈ L′, uv = bf, f ∈ F, sf = i

}∣∣ . (1)

We consider the formal power series P (x) = 1 −mx +
∑

i>1 aix
i. If P (x) has

a positive real root x0, then ni > x−i0 for every i > 0.
Let us rewrite that P (x0) = 1−mx0 +

∑
i>1 aix

i
0 = 0 as

m−
∑
i>1

aix
i−1
0 = x−10 (2)

Since n0 = 1, we will prove by induction that ni

ni−1
> x−10 in order to obtain that

ni > x−i0 for every i > 0. By using (2), we obtain the base case: n1

n0
= n1 = m >

x−10 . Now, for every length i > 1, there are:

• mi words in Σi
m,

• ni words in L,
• at most

∑
16j6i ni−jaj words in L′,

• m(mi−1 − ni−1) words in Σi
m \ {L ∪ L′}.

This gives ni +
∑

16j6i njai−j + m(mi−1 − ni−1) > mi, that is, ni > mni−1 −∑
16j6i ni−jaj .
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ni

ni−1
> m−

∑
16j6i aj

ni−j

ni−1

> m−
∑

16j6i ajx
j−1
0 By induction

> m−
∑

j>1 ajx
j−1
0

= x−10 By (2)

2. Avoiding shuffle squares

We apply the method of the previous section to the avoidance of shuffle squares.
The q-prefix (resp. q-suffix ) of a word is its prefix (resp. suffix) of length q. A
shuffle square is minimal if it does not contain a smaller shuffle square as a factor.
A shuffle square is small if its length is two and is large otherwise. The set F of
forbidden factors contains every minimal shuffle square. We set sf = 1 if f ∈ F is
small and sf = |f | − 2 otherwise.

We set a1 = 1 because sf = 1 only for small shuffle squares and there is only
one way to extend a prefix by one letter to obtain a suffix xx with x ∈ Σm. To
obtain reasonable upper bounds at for t > 2, we need to bound the number of
large minimal shuffle squares. To every shuffle square f of a word w of length i,
we associate the height function h : [0, . . . , 2i]→ Z defined as follows:

• h(0) = 0.
• For 0 < j 6 2i, h(j) = h(j − 1) + 1 if the j-th letter of f belongs to

the subword w containing the first letter of f , and h(j) = h(j − 1) − 1
otherwise.

Since f is a shuffle square, we have h(2i) = 0. Moreover, if h(j) = 0 for some
0 < j < 2i, then the prefix of length j of f is a shuffle square. So, if h is the height
function of a minimal shuffle square, then h(j) > 0 for every 0 < j < 2i. Thus,
every height function of a minimal shuffle square is associated to a unique Dyck

word of length 2i − 2. The number of height functions is thus at most (2i−2)!
i! (i−1)! .

According to (1), we need to bound the number of solutions to uv = bf such that
u is fixed and |v| = sf = |f | − 2 = 2i − 2. The 2-prefix of f is fixed since it
corresponds to the 2-suffix of u. Notice that the 2-prefix of a large minimal shuffle
square of a word w is equal to the 2-prefix of w, so the 2-prefix of w is also fixed.
Thus, there are at most mi−2 possibilities for w. Since f is determined by w and

its height function, there are at most mi−2 (2i−2)!
i! (i−1)! possibilities for f . So we set

a2i−2 = mi−2 (2i−2)!
i! (i−1)! and consider the polynomial

P (x) = 1−mx+ x+
∑

i>2m
i−2 (2i−2)!

i! (i−1)!x
2i−2

= 1− (m− 1)x+
(

2x
1+
√
1−4mx2

)2
.

For m = 6, P (x) has no positive root. For m = 7, we have P (x0) = 0 with
x0 = 0.1788487593 . . . . So there exists at least αn words of length n over Σ7 that
avoid shuffle squares, where α = x−10 = 5.5913163944 . . .
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