open science

A short proof that shuffle squares are 7 -avoidable

Guillaume Guégan, Pascal Ochem

To cite this version:

Guillaume Guégan, Pascal Ochem. A short proof that shuffle squares are 7-avoidable. RAIRO - Theoretical Informatics and Applications (RAIRO: ITA), 2016, 50 (1), pp.101-103. 10.1051/ita/2016007. lirmm-01347424

HAL Id: lirmm-01347424

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01347424

Submitted on 19 Sep 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A SHORT PROOF THAT SHUFFLE SQUARES ARE 7-AVOIDABLE

Guillaume Guégan ${ }^{1}$ and Pascal Ochem ${ }^{2}$

Abstract

A shuffle square is a word that can be partitioned into two identical words. We obtain a short proof that there exist exponentially many words over the 7 letter alphabet containing no shuffle square as a factor. The method is a generalization of the so-called power series method using ideas of the entropy compression method as developped by Gonçalves, Montassier, and Pinlou.

1991 Mathematics Subject Classification. 68R15.

Introduction

Entropy compression has been used to avoid squares [5] and patterns 5] in infinite words over a small alphabet. The proofs require many features (an algorithm, a record, an analysis of the size the record,...). Gonçalves, Montassier, and Pinlou [4] have recently obtained a generic way of using the entropy compression method in the context of graph coloring that avoids a lot of these technicalities.

In a recent paper [8], we have used ideas from the entropy compression method to generalize the power series method as used in combinatorics on words by Bell and Goh [1], Rampersad [10], and Blanchet-Sadri and Woodhouse [2]. We describe this method in Section 1 to make the paper self-contained.

A shuffle square is a word that can be partitioned into two identical words. For example, every square is a shuffle square, $\mathbf{a} a b \mathbf{b} \mathbf{c} c$ and $\mathbf{a b} a \mathbf{c} b c$ are shuffle squares of $a b c$, and $\mathbf{c} c b c \mathbf{b} a \mathbf{c a}$ is a shuffle square of $c b c a$.

Recently, Currie [3] has answered a question of Karhumäki by showing that there exist infinite words over a finite (but large) alphabet containing no shuffle square as a factor using the Lovász local lemma. Then Müller has lowered the alphabet size to 10 in his thesis 7] and has also proved that shuffle cubes are

[^0]avoidable over the 6 letter alphabet. We apply the method in Section 1 to obtain the following result in Section 2 .

Theorem 0.1. There exist at least 5.59^{n} words of length n over the 7 letter alphabet containing no shuffle square as a factor.

Grytczuk, Kozik, and Zaleski 6] have an independent proof of the list version of Theorem 0.1 using another flavor of entropy compression and different parameters. Notice that words avoiding shuffle squares avoid in particular the patterns $A A$ and $A B A C B C$. We have checked that words over 3 letters avoiding $A A$ and $A B A C B C$ have finite length, so at least 4 letters are needed to avoid shuffle squares. Thus, the minimum alphabet size for an infinite word avoiding shuffle squares remains an open problem and is between 4 and 7 .

1. Description of the method

Let $\Sigma_{m}=\{0,1, \ldots, m-1\}$ be the m-letter alphabet and let $L \subset \Sigma_{m}^{*}$ be a factorial language defined by a set F of forbidden factors of length at least 2 . We denote the factor complexity of L by $n_{i}=L \cap \Sigma_{m}^{i}$. We define L^{\prime} as the set of words w such that w is not in L and the prefix of length $|w|-1$ of w is in L. For every forbidden factor $f \in F$, we choose a number $1 \leqslant s_{f} \leqslant|f|$. Then, for every $i \geqslant 1$, we define an integer a_{i} such that

$$
\begin{equation*}
a_{i} \geqslant \max _{u \in L}\left|\left\{v \in \Sigma_{m}^{i} \mid u v \in L^{\prime}, u v=b f, f \in F, s_{f}=i\right\}\right| \tag{1}
\end{equation*}
$$

We consider the formal power series $P(x)=1-m x+\sum_{i \geqslant 1} a_{i} x^{i}$. If $P(x)$ has a positive real root x_{0}, then $n_{i} \geqslant x_{0}^{-i}$ for every $i \geqslant 0$.

Let us rewrite that $P\left(x_{0}\right)=1-m x_{0}+\sum_{i \geqslant 1} a_{i} x_{0}^{i}=0$ as

$$
\begin{equation*}
m-\sum_{i \geqslant 1} a_{i} x_{0}^{i-1}=x_{0}^{-1} \tag{2}
\end{equation*}
$$

Since $n_{0}=1$, we will prove by induction that $\frac{n_{i}}{n_{i-1}} \geqslant x_{0}^{-1}$ in order to obtain that $n_{i} \geqslant x_{0}^{-i}$ for every $i \geqslant 0$. By using (2), we obtain the base case: $\frac{n_{1}}{n_{0}}=n_{1}=m \geqslant$ x_{0}^{-1}. Now, for every length $i \geqslant 1$, there are:

- m^{i} words in Σ_{m}^{i},
- n_{i} words in L,
- at most $\sum_{1 \leqslant j \leqslant i} n_{i-j} a_{j}$ words in L^{\prime},
- $m\left(m^{i-1}-n_{i-1}\right)$ words in $\Sigma_{m}^{i} \backslash\left\{L \cup L^{\prime}\right\}$.

This gives $n_{i}+\sum_{1 \leqslant j \leqslant i} n_{j} a_{i-j}+m\left(m^{i-1}-n_{i-1}\right) \geqslant m^{i}$, that is, $n_{i} \geqslant m n_{i-1}-$ $\sum_{1 \leqslant j \leqslant i} n_{i-j} a_{j}$.

$$
\begin{array}{rlrl}
\frac{n_{i}}{n_{i-1}} & \geqslant m-\sum_{1 \leqslant j \leqslant i} a_{j} \frac{n_{i-j}}{n_{i-1}} & & \\
& \geqslant m-\sum_{1 \leqslant j \leqslant i} a_{j} x_{0}^{j-1} & & \text { By induction } \\
& \geqslant m-\sum_{j \geqslant 1} a_{j} x_{0}^{j-1} & & \\
& =x_{0}^{-1} & \text { By (2) }
\end{array}
$$

2. Avoiding Shuffle SQuares

We apply the method of the previous section to the avoidance of shuffle squares. The q-prefix (resp. q-suffix) of a word is its prefix (resp. suffix) of length q. A shuffle square is minimal if it does not contain a smaller shuffle square as a factor. A shuffle square is small if its length is two and is large otherwise. The set F of forbidden factors contains every minimal shuffle square. We set $s_{f}=1$ if $f \in F$ is small and $s_{f}=|f|-2$ otherwise.

We set $a_{1}=1$ because $s_{f}=1$ only for small shuffle squares and there is only one way to extend a prefix by one letter to obtain a suffix $x x$ with $x \in \Sigma_{m}$. To obtain reasonable upper bounds a_{t} for $t \geqslant 2$, we need to bound the number of large minimal shuffle squares. To every shuffle square f of a word w of length i, we associate the height function $h:[0, \ldots, 2 i] \rightarrow \mathbb{Z}$ defined as follows:

- $h(0)=0$.
- For $0<j \leqslant 2 i, h(j)=h(j-1)+1$ if the j-th letter of f belongs to the subword w containing the first letter of f, and $h(j)=h(j-1)-1$ otherwise.
Since f is a shuffle square, we have $h(2 i)=0$. Moreover, if $h(j)=0$ for some $0<j<2 i$, then the prefix of length j of f is a shuffle square. So, if h is the height function of a minimal shuffle square, then $h(j)>0$ for every $0<j<2 i$. Thus, every height function of a minimal shuffle square is associated to a unique Dyck word of length $2 i-2$. The number of height functions is thus at most $\frac{(2 i-2)!}{i!(i-1)!}$. According to (1), we need to bound the number of solutions to $u v=b f$ such that u is fixed and $|v|=s_{f}=|f|-2=2 i-2$. The 2-prefix of f is fixed since it corresponds to the 2 -suffix of u. Notice that the 2 -prefix of a large minimal shuffle square of a word w is equal to the 2-prefix of w, so the 2 -prefix of w is also fixed. Thus, there are at most m^{i-2} possibilities for w. Since f is determined by w and its height function, there are at most $m^{i-2} \frac{(2 i-2)!}{i!(i-1)!}$ possibilities for f. So we set $a_{2 i-2}=m^{i-2} \frac{(2 i-2)!}{i!(i-1)!}$ and consider the polynomial

$$
\begin{aligned}
P(x) & =1-m x+x+\sum_{i \geqslant 2} m^{i-2} \frac{(2 i-2)!}{i!(i-1)!} x^{2 i-2} \\
& =1-(m-1) x+\left(\frac{2 x}{1+\sqrt{1-4 m x^{2}}}\right)^{2}
\end{aligned}
$$

For $m=6, P(x)$ has no positive root. For $m=7$, we have $P\left(x_{0}\right)=0$ with $x_{0}=0.1788487593 \ldots$. So there exists at least α^{n} words of length n over Σ_{7} that avoid shuffle squares, where $\alpha=x_{0}^{-1}=5.5913163944 \ldots$

References

[1] J. Bell, T. L. Goh. Exponential lower bounds for the number of words of uniform length avoiding a pattern. Inform. and Comput. 205 (2007), 1295-1306.
[2] F. Blanchet-Sadri, B. Woodhouse. Strict bounds for pattern avoidance. Theor. Comput. Sci. 506 (2013), 17-27.
[3] J. Currie. Shuffle squares are avoidable. Manuscript.
[4] D. Gonçalves, M. Montassier, and A. Pinlou. Entropy compression method applied to graph colorings. arXiv:1406.4380
[5] J. Grytczuk, J. Kozik, and P. Micek. A new approach to nonrepetitive sequences, Random Structures \mathcal{E} Algorithms 42(2) (2013), 214-225.
[6] J. Grytczuk, J. Kozik, and B. Zaleski. Avoiding tight twins in sequences by entropy compression. http://ssdnm.mimuw.edu.pl/pliki/prace-studentow/st/pliki/ bartosz-zaleski-3.pdf
[7] M. Müller. Avoiding and enforcing repetitive structures in words. Ph.D. thesis
[8] P. Ochem. Doubled patterns are 3-avoidable. arXiv:1510.01753
[9] P. Ochem and A. Pinlou. Application of entropy compression in pattern avoidance. Electron. J. Combinatorics. 21(2) (2014), \#RP2.7.
[10] N. Rampersad. Further applications of a power series method for pattern avoidance. Electron. J. Combinatorics. 18(1) (2011), \#P134.

[^0]: Keywords and phrases: Combinatorics on words, Shuffle square, Entropy compression
 ${ }^{1}$ Univ. Montpellier 2, LIRMM, guegan@lirmm.fr
 ${ }^{2}$ CNRS, LIRMM, ochem@lirmm.fr

