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for Multi-DOF Robot Control

Saugat Bhattacharyya, Shingo Shimoda, and Mitsuhiro Hayashibe, Senior Member, IEEE

Abstract—This paper proposes a novel brain-machine
interfacing (BMI) paradigm for control of a multijoint redun-
dant robot system. Here, the user would determine the direction
of end-point movement of a 3-degrees of freedom (DOF) robot
arm using motor imagery electroencephalography signal with co-
adaptive decoder (adaptivity between the user and the decoder)
while a synergetic motor learning algorithm manages a periph-
eral redundancy in multi-DOF joints toward energy optimality
through tacit learning. As in human motor control, torque con-
trol paradigm is employed for a robot to be adaptive to the given
physical environment. The dynamic condition of the robot arm is
taken into consideration by the learning algorithm. Thus, the user
needs to only think about the end-point movement of the robot
arm, which allows simultaneous multijoints control by BMI. The
support vector machine-based decoder designed in this paper is
adaptive to the changing mental state of the user. Online experi-
ments reveals that the users successfully reach their targets with
an average decoder accuracy of over 75% in different end-point
load conditions.

Index Terms—Brain-machine interfacing (BMI), co-adaptive
decoder, joint redundancy, multijoint robot, synergetic learning
control, tacit learning.

I. INTRODUCTION

AS OF today, brain–machine interfacing (BMI) [or brain-
computer interfacing (BCI)] is one of the fastest growing

areas of research that provides a unique course of communi-
cation between a human and a machine (or device) without
any neuro-muscular intervention [1]. BMI was initially con-
ceived to provide rehabilitative and assistive solutions [2], [3]
to patients suffering from neuromuscular degenerative dis-
eases, such as amyotropic lateral sclerosis, cervical spinal
injury, paralysis, or amputee [4]. But in recent years, poten-
tial applications in fields of communication [5], [6], military
use [7], virtual reality [8], [9] and gaming [10], [11] has
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widened its materiality across different domain other than
rehabilitation.

A BMI system relies on tools from digital signal pro-
cessing and machine learning to identify and predict the
cognitive state of the user from their corresponding brain
signals [4]. The brain signals are recorded either inva-
sively or noninvasively [12]. Although invasive means of
acquisition provides better performance in terms of accu-
racy and precision, noninvasive means are widely used
by most BMI/BCI researchers for their simplicity in user
interface. The most widely used noninvasive recording tech-
nique is electroencephalography (EEG), where the signals are
recorded by electrodes placed on the scalp, because it is
inexpensive, portable, easily available and has high temporal
resolution [4], [13].

Depending on the nature of the experiment, the acquired
EEG is found to have specific signal characteristics. Signals
acquired during movement related planning, imagination or
execution [motor imagery (MI)] is identified by a decrease
in spatio-spectral power [termed as event-related desynchro-
nization (ERD)] followed by an increase in power [termed as
event-related synchronization (ERS)] [14], [15]. Researchers
have widely used the changing patterns of ERD/ERS pat-
terns for different MI tasks [such as left (or right) hand
MI] to generate commands necessary to drive a peripheral
device such as mobile [16], [17] or humanoid robots [18],
wheelchairs [19] and navigation in virtual reality [8], and
gaming [20] environment.

Even after such advances of EEG-BMI in control appli-
cations, it still has not been used in real world applications
(except simple discrete selection task) because of certain issues
inherent in the signal. EEG signals are nonstationary, non-
linear, non-Gaussian, and highly variable in nature [1], [15],
because the recordings on different days or different times
of the same day exhibit high variability of the signal. This
phenomena usually occurs due to shifts in electrode positions
between sessions or changes in the electrochemical proper-
ties of the electrodes. Another issue that arises from EEG is
the noisy and low resolution signals recorded from the scalp,
which in actuality is the nonlinear superposition of electri-
cal activity of a large population of neurons. This masks the
underlying neural pattern of interest and restricts their detec-
tion. Even the current mental state of the user may affect
the quality of the signal [1], [21]. To address these prob-
lems, a practical BMI system should continuously track the
changing EEG patterns of the user in order to obtain a good
performance.
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Study on the co-adaptivity of the user with the BMI sys-
tem is an active area of research and to date, there is not
much literature available on auto-adaptive and autocalibrated
approaches. In current co-adaptive approaches [1], [21], [22],
the system is initially trained to previous data, which is used
for initial training of the decoder. Then, data collected from
subsequent sessions are directly included into the system,
where the decoder is retrained and updated. The performance
of the user is displayed visually after the task, which allows
the user to train him/herself. DiGiovanna et al. [23] used rein-
forcement learning to develop an intelligent BMI control agent
that works in synergy with the BMI user and both the sys-
tem co-adapts and continuously learns from the environment.
The model was tested on rats and each subject co-adapted
with BMI control system significantly to control a prosthe-
sis. Recently, Bryan et al. [24] have devised a new approach
to BCI, which employs partially observable Markov decision
processes to handle the uncertainty of the EEG and achieve co-
adaptivity. Their approach allowed the system to make online
improvements to its behavior by adjusting itself to the user’s
changing circumstances.

Till now, a discussion on co-adaptation learning based on
both user and BMI system has been provided. Based on these
approaches, it is possible to control a robot (or prosthetic) limb
using MI BMI commands (like, left hand, and right hand).
But, control of multijoint robot involves redundancy manage-
ment issues in simultaneous multijoint control which is an
open problem in this area. To control multijoint robot using
the current control paradigms of BMI, one may need to con-
trol each individual joints separately in step-by-step manner to
complete a task [15], [19], [25]. Such movement of the robot
arm is not similar to human motor control, and is tedious
to the user. As a result, such control techniques do not pro-
vide a practical solution and are far from natural human limb
coordination since it is ideal to employ a control framework
which allows users to drive BMI-driven robot as a third arm
by his feeling. By following a human-like synergetic motor
control framework, one may obtain optimal BMI control solu-
tions in multidegrees of freedom (DOF) arm which is similar
to the case in actual human motor control [26]. For instance,
when we try to get a glass of water, we imagine mainly about
an end-point task itself in reaching motion than imagining
about individual joint angle trajectory. It is more natural to
imagine such end-point intentions and it can be obtained even
through noninvasive BMI using superficial cortical level sig-
nals. Redundant peripheral joint control should be managed at
different level as it is normally managed in cerebellum level
in human motor control.

In this paper, we propose a novel BMI paradigm, which is a
combination of a co-adaptive EEG decoder, which adapts the
decoder to the current mental state of the user while he/she
observes a feedback (FB) [22] (in this paper, the motion of
the robot), and synergetic motor learning scheme [26], to con-
trol the movements of a multijoint redundant robot driven by
torque control. The synergetic learning controller takes on a
role of functionality of cerebellum to optimize the periph-
eral motor coordination taking into account the given dynamic
environment. Torque control scheme is preferred in humanoid

robotics as it provides environmental compliance for human-
robot interaction [27]. Regarding motor intention in cortical
level, the decoder distinguishes between left and right MI EEG
to move a 3-DOF robot up and down toward a given target. As
a result, by blending the cortical signal level learning paradigm
of the BMI-user system and the peripheral motor learning
paradigm, we have attempted to simplify the BMI control of a
multijoint robot in a fashion similar to the situation where we
control a human limb naturally. As it is first trial and report of
this new BMI paradigm on redundant robot, a relatively simple
task focusing on the joint level handling is employed in this
paper. However, this paper first deals with tridirectional adap-
tation in BMI. In addition to the so-called bilateral adaptation
between human physiological signal changes and its adaptive
decoding, the third adaptation in peripheral motor control is
integrated to deal with redundant arm coordination.

The rest of this paper is organized as follows: Section II
describes the synergetic BMI control paradigm proposed in
this paper. This section also provides information on the exper-
imental setup. The results of the experiments are presented
and discussed in Section III. Section IV presents a compara-
tive discussion of this paper followed by concluding remarks
on Section V.

II. PRINCIPLES AND METHODOLOGY

A. Synergetic BMI Control Scheme

It is known that human beings do not perform the joint
actions of compound movements consciously. Movements are
generally controlled by a subconscious mental subroutine and
thus, can be considered as automatic in nature [28]. While
learning a new movement the mental activity shifts from the
foreground mental routine to the background subconscious
one. Thach [28] and Wolpert et al. [29] suggested that training
of skilled movements in the human brain starts as a conscious
act in the cerebral cortex. But on gradual and repetitive trials of
the same movement, the cerebellum begins to take control of
the task by recognizing the relation to each segment of con-
sciously initiated movement. Finally, the cerebullum attains
control over the entire process and by a mere trigger from
the cerebrum, it can execute the entire movement without any
conscious effort [28]–[30]. The multijoint human motor sys-
tem requires to handle complex interaction torques which is
compensated by predictive motor control located within the
cerebellar cortex. Sensory information on the early phases of
the movement enters the cerebellum and triggers the memory
related to the optimal joint torque. As a result, motor learn-
ing and control are executed flawlessly and are easily adapted
to the ever-changing environment and newly generated goals.
The aim of BMI control of a prosthetic or robotic limb is to
allow seamless human-like movement but to date, they incur
joint redundancy issues during movement tasks. To solve this
problem, one needs to include a learning controller to manage
peripheral drive for a multijoint system to allow an optimal
human-like movement of the limb.

Several models have been formulated to deal with the
redundancy issues in the past and such models are gener-
ally defined as “minimum X,” where X is jerk [31], torque
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Fig. 1. BMI paradigm employed in this paper for simultaneous control of
multi-DOFs robot using adaptive left-right MI decoder and synergetic motor
learning for peripheric joint redundancy management. The black dots indicate
the targets for the subjects in the vertical plane.

changes [32], motor command [33], and energy consump-
tion [34]. Researchers basically assume the use of a physical
inverse dynamical model [35] or approximation-based mod-
els [36]. Hayashibe and Shimoda [26] have proposed an
optimal method for multijoint redundancy management using
tacit learning scheme. This technique optimizes the multijoint
problem without any prior knowledge of the system dynamics
by using the task space error. Phenomenological optimal solu-
tions can be generated without using so-called mathematical
optimization process. In this paper, we have adopted this syn-
ergetic learning control technique for the peripheral multijoint
management of a 3-DOF robotic arm.

The details of the online BMI control paradigm, shown in
Fig. 1, are as follows. The participant observes the current
position of the end-effector of the robot and attempts to gen-
erate the required MI signal. The process involves filtering and
extracting features from the raw EEG signal. Then, the fea-
tures are fed as inputs to the decoder to identify the MI state
(left/right MI). The decoded output is then transmitted to the
robot as commands to move it up or down in the vertical plane.
Prior to the onset of the online task, the robot is trained to its
dynamic environment using a tacit learning approach [37] for a
fixed period of 70 s. In this paper, the load carried by the robot
is treated as the environmental change along with segmental
inertial configuration changes. As a result, the movement of
the joints of the robot adapts to the changing load. To make the
decoder co-adaptable to the changing brain state of the sub-
ject, we measure the posterior probability (P) of each incoming
event. If P fulfills the required conditions of the system then it
is included in the training dataset with a higher weight than the
older data, while the oldest data is removed from the dataset
and the decoder is retrained online. If P does not fulfill the
conditions, then we reject the incoming data and the decoder
does not need to be retrained. This step is included to change
the learning of the decoder with the current mental state of
the subject.

Fig. 2. Standard 10–20 representation of the electrodes present in an Emotiv
headset.

Our proposed scheme adapts at different stages. First,
the decoder/ classifier is designed to continuously adapt to
the changing brain signal, while the subject simultaneously
observes the movement of the robot. Second, the peripheral
motor controller is adaptable to the given physical environ-
ment. Because of the two adaptive function, the subject is free
to control the robot arm without burdening himself to control
complex joint management. Hence, here we have proposed a
tridirectional form of adaptation (user-decoder-robot).

B. Experiment Description

1) Subjects and Data Acquisition: The EEG in this paper is
recorded using a 14 channel Emotiv Epoc neuro-headset with
a sampling rate of 128 Hz and an in-built band-pass filter of
0.2–45 Hz. The electrodes: AF3, F7, F3, FC5, T7, P7, O1, O2,
P8, T8, FC6, F4, F8, and AF4, are arranged on the basis of
the standard 10–20 system (Fig. 2) [38]. Nine healthy subjects
with no prior experience on BMI (six male and three female,
one left-handed and eight right-handed), participated in this
experiment over a period of two days. In the first day, the
subjects perform the tasks on two separate sessions. The data
from the first session is used to train the decoder, while the
same from the second session is used for offline testing the
training of the decoder. In the second day, the subjects would
control the movement of a robot arm in real-time based on
the decoder trained on the previous day. Since, we are dealing
with human subjects for experimental purpose, we abide by
the norms of Helsinki Declaration of 1975, revised in 2000.
Prior to the experiments, the subjects are informed about the
purpose of the experiment and the tasks they have to perform.

2) Task and Stimuli: The experiment designed for this
paper is divided into two phases: 1) offline and 2) online.
In the offline phase, we determine the parameters of the sup-
port vector machines (SVMs) decoder for each subject. We
perform an offline validation of the adaptivity of the decoder
prior to employing it for the online phase.

The training and offline testing sessions comprise instructing
the subjects through a sequence of visual stimulus to imag-
ine the movement of the corresponding MI task, which is,
left and right movement. Fig. 3 shows the generic structure of
the visual cue. First, a blank screen is projected to the sub-
ject for 20 s, which provides the baseline of the EEG. Then,
a fixation “+” is displayed on screen for 1 s which is an
indicator to the subject to get ready for the task. Next, the
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Fig. 3. Timing diagram of a single trial to train the subject in left and right
hand MI (as indicated by left and right arrow, respectively).

instructions are provided to the subject for 3 s in form of
arrows. According to the direction of the arrow, the subject
imagines either left or right hand movement. Following the
instructions, a blank screen is again displayed for 1.5–3.5 s.
It allows the subject to relax during the task and removes the
possibility of over-lapping between two mental states. Each
task is repeated 40 times for the training session and 20 times
for the offline testing session.

During the online tasks, the subjects are not shown any
visual cues but are provided with audio cues from the operator.
The operator would instruct the subject to move toward the top
or bottom target (shown as black dots in Fig. 3). The subject
would then generate the necessary MI commands to move the
robot toward the target. The sequence of the instructions are
random in nature and he/she would take several discrete steps
(MI trials) to reach the target. The control commands required
to move the robot is as follows: 1) left MI indicates upward
movement of the robot and 2) right MI indicates downward
movement of the robot. The subject observes the movement
of the robot arm, which is considered as FB to the subject. If
the decoder makes an error by producing the wrong output,
then the subject on observing the error would attempt to fix it
by generating the right brain signal.

The robot used in this experiment has 3-DOF and is
located in Brain Science Institute-Toyota Collaboration Center,
RIKEN, Japan. The decoder output commands from the
decoder are sent remotely through an secure shell (SSH) file
transfer protocol [39] from INRIA-LIRMM, France. Prior to
the subject sending commands to the robot, peripheral motor
controller is trained using synergetic learning to adapt to the
given dynamical environment including arm inertial configura-
tion and the newly given end-point load which influences inter-
action torques of multijoints in complex way. Here, the online
task required the subject to guide the robot end-point toward
the target based on the instructions from the operator. The
online experimental task was repeated twice for each weight.

C. Co-Adaptive EEG-BMI System

The BMI system employs wavelet transforms [40], [41] for
feature extraction, Laplacian EigenMaps [42] to determine the
relevant features and an SVM classifier [43] to decode between
the two mental states. The BMI system achieves co-adaptivity
by the method mentioned in Section II-A.

1) Preprocessing: It is known from [4] and [38] that
MI signals are characterized by the presence of event
ERD/ERS [44], which are dominant in μ (8–12 Hz) and

central β (16–24 Hz) band of the EEG [38]. We preprocess
the raw EEG data by applying a band-pass filter in 8–25 Hz
range using a 4th order elliptical filter of 1 dB passband ripple
and 30 dB stopband ripple [15]. Elliptical filters are charac-
terized by a very sharp frequency roll-off and is equiripple in
nature, which provides good attenuation of the pass- and the
stop-band ripples [45]. With this step, noise due to muscle or
eye movement, environmental interference and other parallel
brain processes (not related to the tasks) is also removed.

2) Feature Extraction: The filtered signals are then pro-
cessed using discrete wavelet transform (DWT) [41] to derive
the signature features related to left- and right-MI. Wavelet
transform provides localized frequency information over a
given time period, which is highly suitable for nonstation-
ary signals like EEG. The DWT decomposes the signal at
different resolutions into coarse approximation and detail
coefficient [41].

In this paper, we have selected Daubechies wavelet of the
fourth order as the mother wavelet. As mentioned earlier, MI
signals are dominant in the 8–12 Hz and 16–24 Hz range. We
have extracted 3 s of EEG from onset of every stimuli, decom-
posed it to its fourth level and then reconstructed it using only
the third and fourth detail coefficient. The final feature vec-
tor is constructed from the average of the reconstructed signal
at D3 and D4 level. Thus, the final dimension of the feature
vector for each trial is 384 features × 14 electrodes.

3) Feature Selection: Sometimes due to high dimensional-
ity of the features, the decoder suffers from high computational
time, lack of relevant information, and overfitting, which in
turn has a detrimental effect on the performance of the BMI.
To negate this problem, researchers employ some form of lin-
ear or nonlinear dimensionality reduction technique [46], [47].
Laplacian EigenMap [42] is an unsupervised manifold learning
algorithm which performs nonlinear dimensionality reduction
by the following four basic steps.

1) Compute the nearest neighbors of the input data.
2) Using neighborhood relations construct a weight graph

matrix.
3) Optimize the graph matrix based on a fitness function.
4) Project the final data from the top or bottom half of the

matrix.
Extensive details on Laplacian EigenMaps are given in [42].

The advantage of this technique is to provide an optimal
embedding solution to the manifold, for interpreting the
dimensionality reduction problem geometrically, by maintain-
ing the locality and proximity relations. Thus, it is insensitive
to outliers and noise.

In this paper, we have determined the optimal dimensional-
ity of relevant features for each subject from their validation
results. The dimension which yields the best accuracy is used
during online testing. The dimension of the reduced feature
vector for each subject is mentioned in Table II.

4) Decoder Design: Selection of a classifier algorithm is
also an important issue. SVM [43] nowadays has earned
popularity for its good recognition accuracy and speed.
Training time of SVM is significantly small in comparison
to naive Bayesian and multilayered perceptron [43]. This
motivated us to select SVM in the present application.
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Fig. 4. BMI adaptive scheme employed in this paper.

An SVM classifier maps the input vectors in high dimen-
sional feature space through some nonlinear mapping which
can easily separate the data point vectors of two classes by a
hyperplane. The hyperplane is a linear decision function con-
structed from a small amount of training data, called support
vectors. The optimal hyperplane is a plane having the max-
imum distance from support vectors of the two classes. The
data points placed beyond the margins of the hyperplane are
easily classified into their respective classes. The aim of the
SVM classifiers is to determine the separating hyperplane with
the maximum margin.

To make the decoder adaptive to the changing brain state
of the subject, we have employed the posterior probability (P)
of the data-points, which is described as follows.

1) Initially train the decoder (SVM in this paper) using
L(L > 0.5 × N) datapoints, where N is the total number
of datapoints.

2) Input N − L datapoints to the trained decoder and
determine their respective posterior probabilities (P).

3) If P > 0.7, include the current datapoint and remove the
first datapoint to create a new feature vector.

4) Retrain the decoder and repeat from step 1.
To decide on the optimal value of P, we determined the

accuracy of the classifier for different values of P from [0, 1]
with step-size of 0.1. The value which provided the opti-
mal result is selected as the final value for offline validation
and online testing. The influence of P with different value is
discussed on the result section. A simplified block diagram
of the steps involved in the adaptive process is illustrated
in Fig. 4.

D. Peripheric Motor Learning of the Dynamic Environment

Tacit learning employs the command signal accumulated
during repetitive interaction with the environment to develop
an appropriate behavior for the system. The motor learn-
ing paradigm for multijoint reaching coordination, first pro-
posed in [26] and shown in Fig. 5, can be summarized
as follows.

1) The subject intends to move toward the target, which
is represented by the direction to the target, and it is

Fig. 5. Block diagram of the tacit learning-based synergetic motor control
paradigm.

regarded as the proportional (P) FB error between the
target and current endpoint.

2) The FB force error is mapped into the joint torque space
by using the Jacobian of the robot arm and the motor-
command error works as a supervising signal.

3) Here, the local proportional derivative (PD) control
mainly relates to a local reflex loop which regulates the
joint angles to change smoothly.

4) The torque command accumulation part, defined by an
integral I, serves as a unique learning process which
corresponds to tacit learning. This portion learns to com-
pensate the interaction torques such as gravitational and
limb inertia components, and converts into a predictive
torque pattern following the motor learning.

Specifically, the controllers for tacit learning can be
expressed as follows:

τ 1 = −JT(θ)k�r − A�θ − Bθ̇ (1)

τ 2 = −JT(θ)k�r − A�θ − Bθ̇ + C
∫

τ 1dt

τ 1, τ 2,�θ , θ̇ ∈ Rm,�r ∈ Rn, JT(θ) ∈ Rm×n (2)

where, m is the number of joints, n is the dimensional num-
ber of the task space, τ2 implies the control torque inputs of
the joints during tacit learning. θ and θ̇ refers to the angles
and angular velocities of joints, respectively. JT(θ)k�r corre-
sponds to the neural substrate of force mapping functionality
presumably due to corticospinal control [48]. A and B are
diagonal matrices which contain the proportional and deriva-
tive gains of the PD controller and C is made of the gains
of the torque command integration regarding motor-command
error and local FB torque. The PD controller corresponds to a
local reflex loop as a function of muscle spindles. Even though
this paper is a joint-level representation, the resisting features
against muscle length change and velocity change can still be
captured by the resisting feature in the joint angle and angular
velocity changes as in local PD controller. The robot consists
of the upper arm, forearm and hand segments with a 3-DOF
configuration. Each joint is actuated using a DC motor with
an encoder and a harmonic drive gearing for backdrivability.
Each motor is current-controlled with servo-amplifier drives.
Thus, each joint has a local torque control to generate the
specified joint torque for the robot. The control algorithms
are executed on a master PC with the interface of analog-to-
digital and digital-to-analog converters from the encoders and
to the motors, respectively. This manipulator is redundant as
the three motor axes are in parallel.
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The detailed performance of the synergetic learning con-
troller is mentioned in [26]. The configuration allows the joints
to be controlled independently and thus it can be presumed as a
modular structure present within cerebellar pathways. Typical
optimal solutions are based on model-based cost approach, but
this approach optimizes the process by repetitive interaction
with the environment rather than using some cost function.
This learning controller turns into predictive control from ini-
tial FB control while synergetically modifying the redundant
joint space usage toward energy efficient solutions. The joint
synergy may appear through the environmental interactions.

E. BMI Evaluation Metrics

To evaluate the performance of the BMI system during
training and validation, we have employed four quantita-
tive measures. They are: 1) classification accuracy [49];
2) sensitivity [49]; 3) specificity [49]; and 4) area under the
curve (AUC) [50].

Now, the definition of the above evaluation parameters,
where TP is the true positive, TN is the true negative, FP is
the false positive, and FN is the false negative, is as follows.

1) Classification Accuracy: It is the measure of how cor-
rectly a classifier can predict a class. It is given by

Accuracy = TP + TN

TP + TN + FP + FN
. (3)

2) Sensitivity: It is the measure of how correctly a classifier
has classified the positive class. It is given by

Sensitivity = TP

TP + FN
. (4)

3) Specificity: It is the measure of how correctly a classifier
has classified the negative class. It is given by

Specificity = TN

TN + FP
. (5)

4) Area Under the Curve: AUC is derived from the receiver
operating characteristic (ROC) [51] curve of the classi-
fier performance. ROC is a curve between true positive
rate (sensitivity) in the y-axis and false positive rate
(1–specificity) in the x-axis obtained by varying the
decision boundary. Perfect classification is denoted by
a point in the upper left corner (0, 1) indicating 100%
specificity and 100% sensitivity. The random guess line
is the line joining (0, 0) and (1, 1) and contains the point
(0.5, 0.5). Points in the upper portion of the random
guess line indicate good prediction and the points below
the line indicate poor prediction. Thus, we can say ROC
curve is a plot of the classification result of the most
positive classification to the most negative classification
and the resultant AUC is widely used as a classification
metric.

We have quantified the performance of the online task of
moving the robot arm using left and right hand MI by the
following metrics: 1) accuracy and 2) time taken, i.e., the time
taken to process and decode the incoming EEG signal and
transmit it remotely to the robot using SSH protocol.

Fig. 6. Topographical plot of brain activation during −500 to 1000 ms for
(a) left-hand MI and (b) right-hand MI for subject 6.0 ms marks the onset of
the task.

III. RESULTS

This section begins with the detection of ERD/ERS sig-
nals from the EEG acquired from the Emotiv system. Then,
it presents the results on the performance of the BMI system
during training and offline testing of the decoder, performance
of the peripheral motor controller during its learning stage and
the complete performance of BMI system (which includes the
trained BMI decoder and the trained peripheral motor con-
troller) during online experimentation. The offline processing
and online experimentation has been executed in MATLAB
Windows 8.1 environment.

A. Detection of ERD/ERS Patterns

The Emotiv acquisition system, used in this paper, does not
have any channels directly over the primary motor cortex, but
it has channels, FC5, FC6, P7, and P8, in the vicinity of the
region. Thus, for MI studies, one can use these channels to
detect the ERD/ERS waveform. Emotiv is a low-cost, portable
EEG acquisition system and thus, in recent years, researchers
have used it in detection of P300, steady state visually evoked
potential, and ERD/ERS waveform. Hurtado-Rincon et al. [52]
and Dharmasena et al. [53] has successfully classified between
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TABLE I
TRAINING RESULTS OF THE DECODER DURING NO ADAPTATION AND ADAPTATION

TABLE II
VALIDATION OF THE DECODER ON A NEW DATASET (OF 40 TRIALS) DURING NO ADAPTATION AND ADAPTATION

left- and right-MI. Fok et al. [54] have acquired brain signals
related to movement to successfully drive a powered orthosis
tasked at opening and closing of the patient’s hand.

Fig. 6 provides a topographical plot of brain activation dur-
ing −500 to 1000 ms for left- and right-hand MI tasks for
subject 6. As noted from the plots, the right side of the brain
is more active during left hand MI and vice-versa. Also, the
frontoparietal region of the brain is more active than other
regions. The inferences derived from the plots confirms the
presence of ERD/ERS.

B. BMI Adaptive Decoder Training and Validation

To analyze the training performance of the decoder, we have
used k-fold cross validation technique [49], where we have
taken the value of k to be 7 to lower the variance of the
outcome. In Table I, we have shown the average of the classi-
fication metric [i.e., accuracy, sensitivity, specificity, and AUC
(in %)] for all the nine subjects. In the same table, we have
also compared the results of the decoder while it is adapt-
ing (adaptation column in the table) and when we did not
include the adaptation to the decoder (no adaptation column
in the table). A significant increase in the performance metric
is noted for all the subjects when we have included our adap-
tation scheme to the BMI. The adaptation result suggests an
increase of average accuracy, sensitivity, specificity, and AUC
by 9.03%, 7.54%, 8.77%, and 6.37%, respectively, from its
nonadaptive counterpart. We further statistically validate the
results of the nonadaptive and adaptive decoder using a 5-
by-2 paired t-test [55], where the null hypothesis states that
the nonadaptive decoder is at most as accurate as the adap-
tive decoder. The p-values as observed from Table I suggests
that for all subjects rejects the null hypothesis at 5% signifi-
cance level, and thus, it is statistically shown that the adaptive
decoder is more accurate than the nonadaptive one.

Fig. 7. Average accuracies obtained over nine subjects, while changing the
limiting posterior probability from 0.1 to 1.0.

The average accuracy indicates that the decoder can detect
87% of the incoming features to be true. Sometimes, the accu-
racy may provide a skewed result by detecting one class very
well but the other class very poorly. Thus, the sensitivity,
specificity and AUC provides a more reliable result in this
context. Sensitivity suggests how good the decoder is to detect
a positive class, while sensitivity suggests how good it detects
the negative result. The AUC on the other hand, indicates the
tradeoff between the sensitivity and specificity to make the
decoder produce an optimal result. The average sensitivity,
specificity and AUC being more than 85% suggests that the
decoder can detect 85% of the positive and negative classes
without adversely affecting each other.

Through Fig. 7, we also show the influence of changing the
posterior probability (P) on the decoder output. On changing
P from 0.1 to 1.0, there is a gradual increase of the aver-
age accuracies (of the training data) till P > 0.7 and then it
decreases. From this observation, we have selected P > 0.7.

Next, we validate the performance of our BMI decoder over
a new independent dataset, which for this paper is the second
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(a)

(c)

(b)

(d)

Fig. 8. Endpoint transition of robot with load (a) 300 g and trajectory of the shoulder-elbow-wrist joints for 300 g load and (b) 600 g and trajec-
tory of the shoulder-elbow-wrist joints for 600 g load. (c) Phase potrait of joint angle-angular velocity for the shoulder-elbow joints at different weight
conditions. (d) Energy consumption of time sequential changes in one cycle of up/down motion with 600 g load along with its FB component and
FF component.

offline session. This step is included in this paper to check
the performance of the classifier on a new dataset, prior to
using it for online experimentation and confirm its ability to
perform at par with its training result. Here, the features of
the independent dataset is fed directly to the trained classi-
fier, which provides the output. The results of validating the
decoder is presented in Table II. We notice a slight decrease in
accuracy, sensitivity, specificity and AUC by 4.86%, 1.68%,
5.91%, and 9.23% from its training counterpart. The slight
decrease can be attributed to the nonstationarity of the EEG
and due to some fatigue encountered by the subjects after the
training session. Anyways, the decrease is not large and the
decoder can detect the required class correctly by 75% for all
the subjects where for subject 1, 3, and 9, it can detect 90% of
the signals correctly. The result also suggests that the decoder
did not overfit during training. Similar to the training results,
on inclusion of the adaptive paradigm, an increase of average
accuracy, sensitivity, specificity, and AUC is noted by 7.22%,
13.34%, 2.11%, and 6.72%, respectively, from its nonadap-
tive counterpart. Again we statistically validate the adaptive
decoder with its nonadaptive counterpart using 5-by-2 paired

t-test for the same null hypothesis. As noted from the p-values
of Table II, seven of the nine subjects rejects the null hypoth-
esis at 5% significance level and thus for these subjects the
adaptive decoder are more accurate than its nonadaptive coun-
terpart. But for subjects 4 and 7, the null hypothesis is accepted
and thus the adaptive decoder is as accurate as its nonadaptive
counterpart.

From the validation dataset, we also determine the best
dimension of features for each subject which is shown in the
FS column of the table. It is noted from the table that the value
of FS not only changes for each subject but also during no
adaptation and adaptation circumstances. It shows how each
subject varies from each other and as a result each subject
has his/her own individual decoder trained. The positive result
shown during validation allowed us to use the decoder during
online testing of the BMI system.

C. Learning of the Synergetic Motor Controller

For this experiment, we have used two different loads of 300
and 600 g as unknown loads for the robot. It means the load



BHATTACHARYYA et al.: SYNERGETIC BMI PARADIGM FOR MULTI-DOF ROBOT CONTROL 965

Fig. 9. Subject performing the online control of multi-DOF robot in a
simultaneous way by using co-adaptive BMI. The black dots indicate the
targets for the subjects in the vertical plane.

is not a-priori known for the motor controller. For both the
weights, prior to the subject sending commands to the robot,
peripheral motor controller is trained using our approach for
70 s to adapt to the given dynamical environment including
arm inertial configuration and end-point load.

Fig. 8 describes the learning of the peripheral motor con-
troller using tacit learning. Fig. 8(a) and (b) illustrates the
trajectory of the robot arm during its learning for both
the loads. The time sequential transition of the end-point of
the robot for both the figures are illustrated using a color map
which changes with the progress of time. The lines (in blue)
show the trajectory of each individual links. The black bar rep-
resents the target limit. Both the figures demonstrate the ability
of the synergetic controller to adapt the multijoint usage in
redundant space to the different load conditions by changing
the motion range of each angle joints.

Fig. 8(c) shows the shoulder-elbow phase map for the dif-
ferent weights. The figure illustrates that the shoulder is used
less when the load gets heavy, while the wrist usage is also
minimized to reduce the total energy consumption for the same
task.

Fig. 8(d) presents the temporal transition of energy con-
sumption in synergetic learning control with a 600 g load.
The energy consumption was calculated by summing up each
joint energy consumption by integrating τ θ̇ , and dividing it by
time to compute as work rate (power). From (4), let us consider
the torque component of PD FB as an FB controller and the
integral term as a feedforward (FF) controller. During learn-
ing, the contribution of FF is increased until the torque from
FF converges into a certain pattern. Thus, synergetic learning
matches with the typical human motor learning process. As
noted from the figure, motion is initially generated by endpoint
error principally (influence of FB), but this part is being mini-
mized and predictive FF pattern takes over during the learning
of the lifting up/down motion.

D. Online Performance of the Simultaneous Multi-DOF
Robot Control by Co-Adaptive BMI

Following the training of robot controller using synergetic
motor learning algorithm, the subject is ready to move the
robot arm by his/her motor intention. An example of the sub-
ject performing the task is shown in Fig. 9. The subject from

(a)

(b)

Fig. 10. Trace of the movement of the robot arm during simultaneous multi-
DOF robot control which is driven by the subject motor intention through
co-adaptive BMI. The robot is holding (a) 300 g load, (b) 600 g load. The
joint angle variance on shoulder and wrist for the heavier weight condition
has become half compared to lighter weight condition.

one end generates the instructed brain signals (left or right MI).
The decoder decodes the brain signal to generate the corre-
sponding control command necessary to move the robot in
either up or down direction. The command is transferred to
the robot via SSH remote communication. The online task
requires the subject to move the robot between the two targets
(shown as black dots in Fig. 9).

Fig. 10 shows an example of the trace of the movement of
the robot arm [similar to Fig. 8(a) and (b)] which is driven
by the subject motor intention through co-adaptive BMI. As
seen from the figure, the robot requires a number of steps (or
trials of MI extraction) to reach the target. The time sequential
transition of the end-point of the robot for both the figures are
illustrated using a color map which changes with the progress
of time. As noted from the figures, when the robot carries a
heavier weight (i.e., 600 g in this paper), there is a smaller
displacement in the shoulder and wrist joint as compared to a
lighter weight condition (i.e., 300 g in this paper). This obser-
vation is also validated by the joint angle variance metric
shown in Table III. The results from the table that the joint
angle variance on shoulder (1.67◦) and wrist (2.03◦) for the
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TABLE III
ONLINE PERFORMANCE ON MULTIJOINT ROBOT ARM ADAPTIVE BMI CONTROL WITH DIFFERENT LOAD CONDITIONS

heavier weight condition has become less than half compared
to lighter weight condition (5.66◦ for shoulder and 5.15◦ for
wrist). This joint usage variation appears automatically with-
out changing any setting in the controller. By using prioceptive
information such as torque and joint angles, this adaptation
systematically appears through the synergetic learning con-
trol [26]. This observation regarding minimal shoulder and
wrist usage for heavy object manipulation is well matched to
the situation in human motor control. Holding heavy object in
the air requires redundant torque production if you hold it by
using multiple joints. Thus, when we need to lift up the heavy
object, it is efficient if we minimize the multiple joint usage
to reduce total energy consumption.

Further, from Table III, the average accuracies of all
subjects are over 75% with subject 1 producing an accu-
racy of 80% for both weights. The time taken to transfer
each command over a remote connection to the robot is
around 8.5 s which is considered to be a high value for
real-time applications. Such high value may be attributed
to the high processing time required by MATLAB and
the time to transfer the commands from one computer to
another through the Internet across different continents. The
link to a video showing a subject controlling the multijoint
robot is given in http://www.lirmm.fr/∼hayashibe/SMC/
SynergeticBMIx2.5speed.mp4.

IV. DISCUSSION

In this section, we describe some co-adaptive approaches
implemented by other researchers. A detailed comparison is
difficult as the studies are different in terms of the paradigms
and the performance evaluation. An intuitive comparison of
the training and validation results of this paper is thus given
to fit our results with existing literature.

Faller et al. [56] developed co-adaptive cue-based training
paradigms for ERD-based BCI to benefit severely disabled
patients, including ones with spinal cord injury. The BCI ana-
lyzes the EEG from three bipolar locations: 1) C3; 2) Cz; and
3) C4 while the user performs left and right hand MI and relax
with eye open tasks alternatively. The BCI auto-calibrates and
provides FB about the MI tasks after 5 min of data collection.
The BCI first performs outlier rejection and then selects the
most discriminable logarithmic band-power (from 9 to 14 and
16 to 26 Hz) as features for the linear disciminant analysis

classifier. The mean average accuracy thus obtained for six
tetraplegic participants 69.5% ± 6.4. In another similar work
of Faller et al. [22], they developed a co-adaptive system which
implements a noncontrol state which allows the system to be
self-paced in nature. This system worked significantly better
than chance for 18 of 22 users in 24 min of training and 11
of 22 users for the self-pace paradigm.

In another interesting work, Kus et al. [57] developed a BCI
system which followed an asynchronous mode of operation,
automatic selection of parameters based on initial calibration
and incremental update of the classifier parameters from FB.
In their study, the EEG was spatially filtered based on spectral
power estimation and relevant features were selected based on
mutual information criterion. The final feature vector are used
to recognize the MI by using a multinomial logistic regres-
sion classifier. The participants performed right hand, left hand
and foot MI based on instructions from a visual cue with an
accuracy of 74.84%.

As noted from the few studies discussed, most researchers
adapt the BCI system either through training or by continuous
update of the classifier. In this paper, the subject adapts to the
instructions by visually observing the movement of the robot
arm in real-time and space. We have employed this form of
adaptation to the subject to make the task more realistic and
practical. The system has two adaptive functions. First, the
BCI system continuously adapts to the current mental state
of the subject by providing higher weights to the most recent
signals and lesser weights to the older signals. The second
system side adaptation occurs in the peripheral motor con-
troller which adapts to the dynamic environment the robot
is exposed to. The advantage of a separate motor learning
control scheme, even for 3-DOF joint control, allows the sub-
ject to focus on the lower dimensional endpoint control of
the robot while the proprioceptive information from the robot
is processed inside the peripheral motor control and adapts
accordingly while performing simultaneous multijoint control.

The development of a tridirectional (user-decoder-robot)
BCI control of multi-DOF control is a novel attempt toward
its aim. The results obtained in this preliminary study demon-
strate that the use of automated interfaces to solve redundancy
of joint movement is indeed possible and the positive results
encourage us to further dwell into developing a tridirec-
tional adaptive system for rehabilitative and assistive sys-
tems [58], [59].

http://www.lirmm.fr/~hayashibe/SMC/SynergeticBMIx2.5speed.mp4
http://www.lirmm.fr/~hayashibe/SMC/SynergeticBMIx2.5speed.mp4
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V. CONCLUSION

In this paper, we have proposed a new BMI paradigm
which integrates an MI EEG to extract the target intention
with adaptive decoder for cortical signals and a synergetic
motor learning control to cope with the peripheral control of
a multijoint redundant robot arm with environmental dynamics
adaptation capability. The proposed method allowed for BMI-
controlled robot to employ different joint usage depending on
the given payload systematically through the learning process.
This paradigm takes into account the tridirectional adaptations
between the user, the BMI system and the multi-DOF arm. To
the best of the authors’ knowledge, it is a first system which
incorporates dual adaptive nature in each cortical level and
peripheral motor control level in BMI. We also should note
the fact that the robot is controlled with torque control manner
and not with position control, which is highly recommended
for human-machine interaction, and known as natural human
control nature. The positive result, thus obtained, has opened
a door to proceed forward in this research, but it was verified
with simple task as a starting point.

Future direction in this line of research would involve the
incorporation of including a quantitative measure of the visual
FB and further refinement of the adaptive and peripheral learn-
ing algorithm. To improve the speed and robustness of the BCI
control alogrithm, we would design a self-paced experiment
with the provision of an error FB through EEG [15]. Also, we
will increase the types and number of different environment
conditions toward a unified BMI framework for multijoint
control interface.
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