R. P. Rao and R. Scherer, Brain-Computer Interfacing [In the Spotlight, IEEE Signal Processing Magazine, vol.27, issue.4, pp.150-152, 2010.
DOI : 10.1109/MSP.2010.936774

D. J. Mcfarland and J. R. Wolpaw, Brain-Computer Interface Operation of Robotic and Prosthetic Devices, Computer, vol.41, issue.10, pp.52-56, 2008.
DOI : 10.1109/MC.2008.409

J. J. Daly and J. R. Wolpaw, Brain???computer interfaces in neurological rehabilitation, The Lancet Neurology, vol.7, issue.11, pp.1032-1043, 2008.
DOI : 10.1016/S1474-4422(08)70223-0

J. R. Wolpaw, N. Birbaumer, D. J. Mcfarland, G. Pfurtscheller, and T. M. Vaughan, Brain???computer interfaces for communication and control, Clinical Neurophysiology, vol.113, issue.6, pp.767-791, 2002.
DOI : 10.1016/S1388-2457(02)00057-3

E. A. Martinez-garcia, E. Gallegos, and K. S. Jaichandar, Telepresence by deploying an avatar robot with brain-robot interfacing, 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp.144-149, 2012.
DOI : 10.1109/ICIEA.2012.6360713

I. S. Kotchetkov, B. Y. Hwang, G. Appelboom, C. P. Kellner, E. S. Connolly et al., Brain-computer interfaces: military, neurosurgical, and ethical perspective, Neurosurgical Focus, vol.28, issue.5, p.25, 2010.
DOI : 10.3171/2010.2.FOCUS1027

R. Scherer, Toward Self-Paced Brain–Computer Communication: Navigation Through Virtual Worlds, IEEE Transactions on Biomedical Engineering, vol.55, issue.2, pp.675-682, 2008.
DOI : 10.1109/TBME.2007.903709

N. E. Bunderson, Real-Time Control of an Interactive Impulsive Virtual Prosthesis, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.22, issue.2, pp.363-370, 2014.
DOI : 10.1109/TNSRE.2013.2274599

M. Van and . Vliet, Designing a brain-computer interface controlled video-game using consumer grade EEG hardware, Proc. ISSNIP Conf. Biosignals Biorobot. (BRC), pp.1-6, 2012.

]. D. Marshall, D. Coyle, S. Wilson, and M. Callaghan, Games, Gameplay, and BCI: The State of the Art, IEEE Transactions on Computational Intelligence and AI in Games, vol.5, issue.2, pp.82-99, 2013.
DOI : 10.1109/TCIAIG.2013.2263555

L. F. Nicolas-alonso and J. Gomez-gil, Brain Computer Interfaces, a Review, Sensors, vol.12, issue.12, pp.1211-1279, 2012.
DOI : 10.3390/s120201211

J. D. Millan, Combining brain-computer interfaces and assistive technologies: state-of-the-art and challenges, Frontiers in Neuroscience, vol.1, p.161, 2010.
DOI : 10.3389/fnins.2010.00161

S. Bhattacharyya, A. Konar, and D. N. Tibarewala, A differential evolution based energy trajectory planner for artificial limb control using motor imagery EEG signal, Biomedical Signal Processing and Control, vol.11, pp.107-113, 2014.
DOI : 10.1016/j.bspc.2014.03.001

S. Bhattacharyya, A. Konar, and D. N. Tibarewala, Motor imagery, P300 and error-related EEG-based robot arm movement control for rehabilitation purpose, Medical & Biological Engineering & Computing, vol.18, issue.6, pp.1007-1017, 2014.
DOI : 10.1007/s11517-014-1204-4

J. R. Millan, F. Renkens, J. Mourino, and W. Gerstner, Noninvasive Brain-Actuated Control of a Mobile Robot by Human EEG, IEEE Transactions on Biomedical Engineering, vol.51, issue.6, pp.1026-1033, 2004.
DOI : 10.1109/TBME.2004.827086

S. Bhattacharyya, EEG controlled remote robotic system from motor imagery classification, 2012 Third International Conference on Computing, Communication and Networking Technologies (ICCCNT'12), pp.1-8, 2012.
DOI : 10.1109/ICCCNT.2012.6395890

Y. Chae, J. Jeong, and S. Jo, Toward Brain-Actuated Humanoid Robots: Asynchronous Direct Control Using an EEG-Based BCI, IEEE Transactions on Robotics, vol.28, issue.5, pp.1131-1144, 2012.
DOI : 10.1109/TRO.2012.2201310

J. Long, A Hybrid Brain Computer Interface to Control the Direction and Speed of a Simulated or Real Wheelchair, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.20, issue.5, pp.720-729, 2012.
DOI : 10.1109/TNSRE.2012.2197221

D. Coyle, J. Garcia, A. R. Satti, and T. M. Mcginnity, EEG-based continuous control of a game using a 3 channel motor imagery BCI: BCI game, 2011 IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB), pp.1-7, 2011.
DOI : 10.1109/CCMB.2011.5952128

J. Li and L. Zhang, Bilateral adaptation and neurofeedback for brain computer interface system, Journal of Neuroscience Methods, vol.193, issue.2, pp.373-379, 2010.
DOI : 10.1016/j.jneumeth.2010.09.010

J. Faller, A Co-Adaptive Brain-Computer Interface for End Users with Severe Motor Impairment, PLoS ONE, vol.43, issue.7, 2013.
DOI : 10.1371/journal.pone.0101168.t002

J. Digiovanna, B. Mahmoudi, J. Fortes, J. C. Principe, and J. C. Sanchez, Coadaptive Brain–Machine Interface via Reinforcement Learning, IEEE Transactions on Biomedical Engineering, vol.56, issue.1, pp.54-64, 2009.
DOI : 10.1109/TBME.2008.926699

M. J. Bryan, S. A. Martin, W. Cheung, and R. P. Rao, Probabilistic co-adaptive brain???computer interfacing, Journal of Neural Engineering, vol.10, issue.6, 2013.
DOI : 10.1088/1741-2560/10/6/066008

F. Galan, A brain-actuated wheelchair: Asynchronous and non-invasive Brain???computer interfaces for continuous control of robots, Clinical Neurophysiology, vol.119, issue.9, pp.2159-2169, 2008.
DOI : 10.1016/j.clinph.2008.06.001

M. Hayashibe and S. Shimoda, Synergetic motor control paradigm for optimizing energy efficiency of multijoint reaching via tacit learning, Frontiers in Computational Neuroscience, vol.8, issue.21, pp.613-623, 2014.
DOI : 10.3389/fncom.2014.00021

URL : https://hal.archives-ouvertes.fr/lirmm-00979632

J. W. Krakauer, M. F. Ghilardi, and C. Ghez, Independent learning of internal models for kinematic and dynamic control of reaching, Nat. Neurosci, vol.2, issue.11, pp.1026-1031, 1999.

W. T. Thach, What is the role of the cerebellum in motor learning and cognition?, Trends in Cognitive Sciences, vol.2, issue.9, pp.331-337, 1998.
DOI : 10.1016/S1364-6613(98)01223-6

D. M. Wolpert, R. C. Miall, and M. Kawato, Internal models in the cerebellum, Trends in Cognitive Sciences, vol.2, issue.9, pp.338-347, 1998.
DOI : 10.1016/S1364-6613(98)01221-2

M. Kawato, Internal models for motor control and trajectory planning, Current Opinion in Neurobiology, vol.9, issue.6, pp.718-727, 1999.
DOI : 10.1016/S0959-4388(99)00028-8

T. Flash and N. Hogan, The coordination of arm movements: An experimentally confirmed mathematical model, J. Neurosci, vol.5, issue.7, pp.1688-1703, 1985.

Y. Uno, M. Kawato, and R. Suzuki, Formation and control of optimal trajectory in human multijoint arm movement. Minimum torque-change model, Biol. Cybern, vol.61, issue.2, pp.89-101, 1989.

C. M. Harris and D. M. Wolpert, Signal-dependent noise determines motor planning, Nature, vol.394, issue.6695, pp.780-784, 1998.
DOI : 10.1038/29528

R. M. Alexander, A minimum energy cost hypothesis for human arm trajectories, Biological Cybernetics, vol.76, issue.2, pp.97-105, 1997.
DOI : 10.1007/s004220050324

J. Nakanishi, R. Cory, M. Mistry, J. Peters, and S. Schaal, Operational Space Control: A Theoretical and Empirical Comparison, The International Journal of Robotics Research, vol.27, issue.6, pp.737-757, 2008.
DOI : 10.1177/0278364908091463

J. Peters, S. Schaal, S. Shimoda, Y. Yoshihara, and H. Kimura, Learning to control in operational space Adaptability of tacit learning in bipedal locomotion, Int. J. Robot. Res. IEEE Trans. Auton. Mental Develop, vol.27, issue.5 2, pp.197-212, 2008.

D. J. Barrett, R. E. Silverman, and . Ssh, The Secure Shell: The Definitive Guide, 2001.

S. Darvishi and A. , Brain-Computer Interface Analysis using Continuous Wavelet Transform and Adaptive Neuro-Fuzzy Classifier, 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.3220-3223, 2007.
DOI : 10.1109/IEMBS.2007.4353015

P. Herman, G. Prasad, T. M. Mcginnity, and D. Coyle, Comparative Analysis of Spectral Approaches to Feature Extraction for EEG-Based Motor Imagery Classification, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.16, issue.4, pp.317-326, 2008.
DOI : 10.1109/TNSRE.2008.926694

M. Belkin and P. Niyogi, Laplacian Eigenmaps for Dimensionality Reduction and Data Representation, Neural Computation, vol.15, issue.6, pp.1373-1396, 2003.
DOI : 10.1126/science.290.5500.2319

D. J. Sebald and J. A. Bucklew, Support vector machine techniques for nonlinear equalization, IEEE Transactions on Signal Processing, vol.48, issue.11, pp.3217-3226, 2000.
DOI : 10.1109/78.875477

C. Qiang, P. Hu, and F. Huanqing, Experiment study of the relation between motion complexity and event-related desynchronization/synchronization, Proc. 1st Int. Conf. Neural Interface Control, pp.14-16, 2005.

S. Bhattacharyya, D. Basu, A. Konar, and D. N. Tibarewala, Interval type-2 fuzzy logic based multiclass ANFIS algorithm for real-time EEG based movement control of a robot arm, Robotics and Autonomous Systems, vol.68, pp.104-115, 2015.
DOI : 10.1016/j.robot.2015.01.007

I. Fodor, A survey of dimension reduction techniques, Center Appl. Sci. Comput., Livermore Nat. Lab, 2002.
DOI : 10.2172/15002155

L. Van-der-maaten, E. O. Postma, and H. J. Van-den-herik, Dimensionality reduction: A comparative review, pp.1-22, 2008.

E. Bizzi, F. Mussa-ivald, and S. Giszter, Computations underlying the execution of movement: a biological perspective, Science, vol.253, issue.5017, pp.287-291, 1991.
DOI : 10.1126/science.1857964

E. Alpaydin, Introduction to Machine Learning (Adaptive Computation and Machine Learning), 2004.

J. A. Hanley and B. J. Mcneil, The meaning and use of the area under a receiver operating characteristic (ROC) curve., Radiology, vol.143, issue.1, pp.29-36, 1982.
DOI : 10.1148/radiology.143.1.7063747

M. Fatourechi, Comparison of Evaluation Metrics in Classification Applications with Imbalanced Datasets, 2008 Seventh International Conference on Machine Learning and Applications, pp.777-782, 2008.
DOI : 10.1109/ICMLA.2008.34

J. Hurtado-rincon, S. Rojas-jaramillo, Y. Ricardo-cespedes, A. M. Alvarez-meza, and G. Castellanos-dominguez, Motor imagery classification using feature relevance analysis: An Emotiv-based BCI system, 2014 XIX Symposium on Image, Signal Processing and Artificial Vision, pp.1-5, 2014.
DOI : 10.1109/STSIVA.2014.7010165

S. Dharmasena, K. Lalitharathne, K. Dissanayake, A. Sampath, and A. Pasqual, Online classification of imagined hand movement using a consumer grade EEG device, 2013 IEEE 8th International Conference on Industrial and Information Systems, pp.537-541, 2013.
DOI : 10.1109/ICIInfS.2013.6732041

S. Fok, An EEG-based brain computer interface for rehabilitation and restoration of hand control following stroke using ipsilateral cortical physiology, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.6277-6280, 2011.
DOI : 10.1109/IEMBS.2011.6091549

R. R. Bouckaert, Choosing between two learning algorithms based on calibrated tests, Proc. Mach. Learn. Int. Conf, pp.51-58, 2003.

J. Faller, Online co-adaptive brain-computer interfacing: Preliminary results in individuals with spinal cord injury, 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER), pp.977-980, 2013.
DOI : 10.1109/NER.2013.6696099

R. Kus, Asynchronous BCI Based on Motor Imagery With Automated Calibration and Neurofeedback Training, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.20, issue.6, pp.823-835, 2012.
DOI : 10.1109/TNSRE.2012.2214789

Z. Li, M. Hayashibe, C. Fattal, and D. Guiraud, Muscle Fatigue Tracking with Evoked EMG via Recurrent Neural Network: Toward Personalized Neuroprosthetics, IEEE Computational Intelligence Magazine, vol.9, issue.2, pp.38-46, 2014.
DOI : 10.1109/MCI.2014.2307224

URL : https://hal.archives-ouvertes.fr/lirmm-00980641

M. Hayashibe, D. Guiraud, J. L. Pons, and D. Farina, Editorial: Biosignal processing and computational methods to enhance sensory motor neuroprosthetics, Frontiers in Neuroscience, vol.8, issue.181, pp.6-9, 2015.
DOI : 10.3389/fnins.2014.00181

URL : https://hal.archives-ouvertes.fr/lirmm-01235841