
HAL Id: lirmm-01347427
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01347427v1

Submitted on 14 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

All in One: Mining Multiple Movement Patterns
Nhat Hai Phan, Pascal Poncelet, Maguelonne Teisseire

To cite this version:
Nhat Hai Phan, Pascal Poncelet, Maguelonne Teisseire. All in One: Mining Multiple Movement
Patterns. International Journal of Information Technology and Decision Making, 2016, 15 (5), pp.1115-
1156. �10.1142/s0219622016500280�. �lirmm-01347427�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01347427v1
https://hal.archives-ouvertes.fr

All in One: Mining Multiple Movement Patterns

P. Nhat Hai P. Poncelet M. Teisseire

Abstract

Recent improvements in positioning technology have led to a much
wider availability of massive moving object data. A crucial task is to find
the moving objects that travel together. Usually, these object sets are
called object movement patterns. Due to the emergence of many different
kinds of object movement patterns in recent years, different approaches
have been proposed to extract them. However, each approach only focuses
on mining a specific kind of patterns. In addition to being a painstak-
ing task due to the large number of algorithms used to mine and manage
patterns, it is also time consuming. Moreover, we have to execute these al-
gorithms again whenever new data are added to the existing database. To
address these issues, we first redefine movement patterns in the itemset
context. Secondly, we propose a unifying approach, named GeT Move,
which uses a frequent closed itemset-based object movement pattern-
mining algorithm to mine and manage different patterns. GeT Move is de-
veloped in two versions which are GeT Move and Incremental GeT Move.
To optimize the efficiency and to free the parameters setting, we further
propose a Parameter Free Incremental GeT Move algorithm. Compre-
hensive experiments are performed on real and large synthetic datasets to
demonstrate the effectiveness and efficiency of our approaches.

Keywords: Object movement pattern; frequent closed itemset; unify-
ing approach; trajectories.

1 Introduction

Nowadays, many electronic devices are used for real world applications. Teleme-
try attached on wildlife, GPS installed in cars, sensor networks, and mobile
phones have enabled the tracking of almost any kind of data and has led to an
increasingly large amount of data that contains moving objects and numerical
data. Therefore, analysis on such data to find interesting patterns is attract-
ing increasing attention for applications such as movement pattern analysis,
animal behavior study, route planning and vehicle control, location prediction,
location-based services.

Early approaches designed to recover information from spatio-temporal datasets
included ad-hoc queries aimed as answering queries concerning a single predi-
cate range or nearest neighbour. For instance, ”finding all the moving objects
inside area A between 10:00 am and 2:00 pm” or ”how many cars were driven

1

between Main Square and the Airport on Friday” [29]. Spatial query extensions
in GIS applications are able to run this type of query. However, these techniques
are used to find the best solution by exploring each spatial object at a specific
time according to some metric distance measurement (usually Euclidean). As
results, it is difficult to capture collective behaviour and correlations among the
involved entities using this type of queries.

Recently, there has been growing interest in the querying of patterns which
capture ’group’ or ’common’ behaviour among moving entities. This is par-
ticularly true for the development of approaches to identify groups of moving
objects for which a strong relationship and interaction exist within a defined
spatial region during a given time duration. Some examples of these patterns
are flocks[1] [2] [14] [15], moving clusters[4] [7] [18], convoy queries[3] [16], stars
and k-stars[17], closed swarms[6] [13], group patterns[21], periodic patterns[25],
co-location patterns[22], TraLus[23], etc...

To extract these kinds of patterns, different algorithms have been proposed.
Naturally, the computation is costly and time consuming because we need to
execute different algorithms consecutively. However, if we had an algorithm
which could extract different kinds of patterns, the computation cost will be
significantly reduced and the process would be much less time consuming. Since
the results are comparative, it is beneficial for analysts to better exploit and
understand the object movement behavior.

In some applications (e.g. cars), object locations are continuously reported
by using Global Positioning System (GPS). Therefore, new data is always avail-
able. If we do not have an incremental algorithm, we need to execute again and
again the algorithms on the whole database including existing data and new
data to extract patterns. This is of course, cost-prohibitive and time consuming
as well. An incremental algorithm can indeed improve the process by combining
the results extracted from the existing data and the new data to obtain the final
results.

With the above issues in mind, we propose GeT Move a unifying incremental
object movement pattern-mining approach. Part of this approach is based on
an existing state-of-the-art algorithm which is extended to take advantage of
well-known frequent closed itemset (FCI) mining algorithms. In order to apply
it, we first redefine object movement patterns in an itemset context. Secondly,
we propose a spatio-temporal matrix to describe original data and then an
incremental FCI-based object movement pattern-mining algorithm to extract
patterns.

Naturally, obtaining the optimal parameters is a difficult task for most of
algorithms which require parameter setting. Even if we are able to obtain the
optimal parameters after doing many executions and result evaluations on a
dataset, the optimal values of parameters will be different on other datasets. To
tackle this issue and to optimize the efficiency as well as to free the parameter
setting, we propose a parameter free incremental GeT Move. The basic idea
is to re-arrange the input data based on nested concept[31] so that incremen-
tal GeT Move can automatically extract patterns without parameter setting
efficiently.

2

This work is extended from our previous work[32] [33] and the main contri-
butions of this paper are summarized below.

• We re-define the object movement patterns in the itemset context which
enable us to effectively extract different kinds of movement patterns.

• We present incremental approaches, named GeT Move and Incremental GeT Move,
which efficiently extract frequent closed itemsets from which object move-
ment patterns are retrieved.

• We design and propose a parameter free incremental GeT Move. The ad-
vantages of this approach is that it does not require the parameter setting
and automatically extract patterns efficiently.

• We propose to deal with new data arriving and propose an explicit com-
bination of pairs of FCIs-based pattern mining algorithm. This approach
efficiently combines the results in the existing database with the arriving
data to obtain the final results.

• We present comprehensive experimental results over both real and large syn-
thetic databases. The results demonstrate that our techniques enable us to
effectively extract different kinds of patterns. Furthermore, our approaches
are more efficient compared to state-of-the-art algorithms in most of cases.

• The system is deployed and available to the public[33].

The remaining sections of the paper are organized as follows. Section 2
discusses preliminary definitions of the object movement patterns as well as
the related work. The patterns such as swarms, closed swarms, convoys and
group patterns are redefined in an itemset context in Section 3. We present our
approaches in Section 4. Experiments testing effectiveness and efficiency are
shown in Section 5. Finally, we draw our conclusions in Section 6.

2 Object Movement Patterns

In this section, we briefly propose an overview of the main object movement
patterns. We thus define the different kinds of patterns and then we discuss the
related work.

2.1 Preliminary Definitions

The problem of object movement patterns has been extensively addressed over
the last years. Basically, a object movement patterns are designed to group sim-
ilar trajectories or objects which tend to move together during a time interval.
So many different definitions can be proposed and today lots of patterns have
been defined such as flocks[1] [2] [14] [15], convoys[3] [16], swarms and closed
swarms[6] [13], moving clusters[4] [7] [18] and even periodic patterns[25].

In this paper, we focus on proposing a unifying approach to effectively and
efficiently extract all these different kinds of patterns. First of all, let us as-
sume that we have a group of moving objects ODB = {o1, o2, . . . , oz}, a set

3

Table 1: An example of a moving object database.
Objects ODB Timesets TDB x y

o1 t1 2.3 1.2
o2 t1 2.1 1
o1 t2 10.3 28.1
o2 t2 0.3 1.2

(a) Swarm (b) Convoy

Figure 1: An example of swarm and convoy where c1, c2, c3, c4 are clusters
gathering closed objects together at specific timestamps.

of timestamps TDB = {t1, t2, . . . , tn} and at each timestamp ti ∈ TDB , spatial
information1 x, y for each object. For example, Table 1 illustrates an example
of a moving object database. Usually, in object movement pattern mining, we
are interested in extracting a group of objects staying together during a period.
Therefore, from now, O = {oi1 , oi2 , . . . , oip}(O ⊆ ODB) stands for a group of
objects, T = {ta1 , ta2 , . . . , tam}(T ⊆ TDB) is the set of timestamps within which
objects stay together. Let ε be the user-defined threshold standing for a mini-
mum number of objects and mint the minimum number of timestamps. Thus
|O| (resp. |T |) must be greater than or equal to ε (resp. mint). In the following,
we formally define all the different kinds of movement patterns.

Informally, a swarm is a group of moving objects O containing at least ε
individuals which are closed each other for at least mint timestamps. Then a
swarm can be formally defined as follows:

Definition 1. Swarm[6]. A pair (O, T) is a swarm if: (1) : ∀tai ∈ T, ∃c s.t. O ⊆ c, c is a cluster.
(2) : |O| ≥ ε.
(3) : |T | ≥ mint.

(2.1)

Note that the meaning of the above conditions are: (1) there is at least one
cluster containing all the objects in O at each timestamp in T , (2) there must
be at least ε objects, (3) there must be at least mint timestamps.

For example, as shown in Figure 1a, if we set ε = 2 and mint = 2, we can find
the following swarms ({o1, o2}, {t1, t3}), ({o1, o2}, {t1, t4}), ({o1, o2}, {t3, t4}),
({o1, o2}, {t1, t3, t4}). We can note that these swarms are in fact redundant since
they can be grouped together in the following swarm ({o1, o2}, {t1, t3, t4}).

1Spatial information can be for instance GPS location.

4

To avoid this redundancy, Zhenhui Li et al.[6] propose the notion of closed
swarm for grouping together both objects and timstamps. A swarm (O, T) is
object-closed if, when fixing T , O cannot be enlarged. Similarly, a swarm (O, T)
is time-closed if, when fixing O, T cannot be enlarged. Finally, a swarm (O, T)
is a closed swarm if it is both object-closed and time-closed and can be defined
as follows:

Definition 2. Closed Swarm[6]. A pair (O, T) is a closed swarm if: (1) : (O, T) is a swarm.
(2) : @O′ s.t. (O′, T) is a swarm and O ⊂ O′.
(3) : @T ′ s.t. (O, T ′) is a swarm and T ⊂ T ′.

(2.2)

For instance, in the previous example, ({o1, o2}, {t1, t3, t4}) is a closed swarm.
A convoy is also a group of objects such that these objects are closed each

other during at least mint time points. The main difference between convoy
and swarm (or closed swarm) is that convoy lifetimes must be consecutive. In
essential, by adding the consecutiveness condition to swarms, we can define
convoy as follows:

Definition 3. Convoy[3]. A pair (O, T), is a convoy if:{
(1) : (O, T) is a swarm.
(2) : ∀i, 1 ≤ i < |T |, tai+1

= tai + 1.
(2.3)

For instance, on Figure 1b, with ε = 2,mint = 2 we have two convoys
({o1, o2}, {t1, t2, t3, t4}) and ({o1, o2, o3}, {t3, t4}). In this paper, we not only
consider maximal convoys[3] but also valid (resp. closed) convoys[34]. Similar
to swarm and closed swarm, a convoy becomes a valid convoy if it cannot be
enlarged in terms of objects and timestamps.

Until now, we have considered that we have a group of objects that move
close to each other for a long time interval. For instance, as shown in Ref.
28, moving clusters and different kinds of flocks virtually share essentially the
same definition. Basically, the main difference is the use of clustering tech-
niques. Flocks, for instance, usually consider a rigid definition of the radius
while moving clusters and convoys apply a density-based clustering algorithm
(e.g. DBScan[5]). Moving clusters can be seen as special cases of convoys with
the additional condition that they need to share some objects between two con-
secutive timestamps[28]. Therefore, in the following, for brevity and clarity
sake, we will mainly focus on convoy and density-based clustering algorithm.

According to the previous definitions, the main difference between convoys
and swarms is about the consecutiveness and non-consecutiveness of clusters
during a time interval. In Ref. 21, Hwang et al. propose a general pattern,
called a group pattern, which essentially is a combination of both convoy and
closed swarm. Basically, group pattern is a set of disjointed convoys which

5

Figure 2: A group pattern example.

Figure 3: A periodic pattern example.

are generated by the same group of objects in different time intervals. By
considering a convoy as a timepoint, a group pattern can be seen as a swarm of
disjointed convoys. Additionally, group pattern cannot be enlarged in terms of
objects and number of convoys. Therefore, group pattern is essentially a closed
swarm of disjointed convoys. Formally, group pattern can be defined as follows:

Definition 4. Group Pattern[21]. Given a set of objects O, a minimum weight
threshold minwei, a set of disjointed convoys TS = {s1, s2, . . . , sn}, a minimum
number of convoys minc. (O, TS) is a group pattern if:{

(1) : (O, TS) is a closed swarmε w.r.t minc.

(2) :
∑|TS|

i=1 |si|
|TDB | ≥ minwei.

(2.4)

Note that minc is only applied for TS (i.e. |TS | ≥ minc).

For instance, see Figure 2, with mint = 2 and ε = 2, we have a set of convoys
TS = {({o1, o2}, {t1, t2}), ({o1, o2}, {t4, t5})}. Additionally, with minc = 1, we
have ({o1, o2}, TS) is a closed swarm of convoys because |TS | = 2 ≥ minc,
|O| ≥ ε and (O, TS) cannot be enlarged. Furthermore, with minwei = 0.5,

(O, TS) is a group pattern since |[t1,t2]|+|[t4,t5]|
|TDB | = 4

5 ≥ minwei.
Previously, we overviewed patterns in which a group objects move together

during some time intervals. However, mining patterns from individual object
movement is also interesting. In Ref. 25, N. Mamoulis et al. propose the notion
of periodic pattern in which an object follows the same routes (approximately)
over regular time intervals. For example, people wake up at the same time and
generally follow the same route to their work everyday. Informally, given an ob-
ject’s trajectory including N time-points, TP which is the number of timestamps
that a pattern may re-appear. The object’s trajectory is decomposed into b NTP c

6

sub-trajectories. TP is data-dependent and has no definite value. For example,
TP can be set to ’a day’ in traffic control applications since many vehicles have
daily patterns, while annual animal migration patterns can be discovered by
TP = ’a year’. For instance, see Figure 3, an object’s trajectory is decomposed
into daily sub-trajectories.

Essentially, a periodic pattern is a closed swarm discovered from b NTP c sub-
trajectories. For instance, in Figure 3, we have 3 daily sub-trajectories and
from them we extract the two following periodic patterns {c1, c2, c3, c4} and
{c1, c3, c4}. The main difference in periodic pattern mining is the preprocessing
data step while the definition is similar to that of closed swarms. As we have
provided the definition of closed swarms, we will mainly focus on closed swarm
mining below.

2.2 Related Work

As mentioned before, many approaches have been proposed to extract patterns.
The interested readers may refer to Ref. 20, 28 where short descriptions of the
most efficient or interesting patterns and approaches are proposed. For instance,
Gudmundsson and van Kreveld[1], Vieira et al.[2] define a flock pattern, in which
the same set of objects stay together in a circular region with a predefined radius,
Kalnis et al.[4] propose the notion of moving cluster, while Jeung et al.[3] define
a convoy pattern.

Jeung et al.[3] adopt the DBScan algorithm[5] to find candidate convoy pat-
terns. The authors propose three algorithms that incorporate trajectory simpli-
fication techniques in the first step. The distance measurements are performed
on trajectory segments of as opposed to point based distance measurements.
Another problem is related to the trajectory representation. Some trajecto-
ries may have missing timestamps or are measured at different time intervals.
Therefore, the density measurements cannot be applied between trajectories
with different timestamps. To address the problem of missing timestamps, the
authors proposed to interpolate the trajectories by creating virtual time points
and by applying density measurements on trajectory segments. Additionally,
the convoy is defined as a maximal pattern when it has at least k clusters during
k consecutive timestamps. To accurate the discovery of convoys, H. Yoon et al.
propose the notion of valid convoy [34] which can not be enlarged in terms of
timestamps and objects. In this paper, we focus on valid convoy since it is more
general than maximal convoy.

Recently, Zhenhui Li et al.[6] propose the concept of swarm and closed swarm
and the ObjectGrowth algorithm to extract closed swarms. The ObjectGrowth
method is a depth-first-search framework based on the objectset search space
(i.e., the collection of all subsets of ODB). For the search space of ODB , they per-
form depth-first search of all subsets of ODB through a pre-order tree traversal.
Even though, the search space remains still huge for enumerating the object-
sets in O (2|ODB |). To speed up the search process, they propose two pruning
rules. The first pruning rule, called Apriori Pruning, is used to stop traversal
the subtree when we find further traversal that cannot satisfy mint. The second

7

Figure 4: An illustrative example.

Table 2: A Cluster Matrix.
TDB t1 t2 t3

Clusters CDB c11 c21 c31 c12 c22 c32 c13 c23

ODB

o1 1 1 1
o2 1 1 1
o3 1 1 1
o4 1 1 1
o5 1 1 1

pruning rule, called Backward Pruning, makes use of the closure property. It
checks whether there is a superset of the current objectset, which has the same
maximal corresponding timeset as that of the current one. If so, the traversal
of the subtree under the current objectset is meaningless. After pruning the
invalid candidates, the remaining ones may or may not be closed swarms. Then
a Forward Closure Checking is used to determine whether a pattern is a closed
swarm or not.

In Ref. 21, Hwang et al. propose two algorithms to mine group patterns,
known as the Apriori-like Group Pattern Mining algorithm and Valid Group-
Growth algorithm. The former explores the Apriori property of valid group
patterns and extends the Apriori algorithm[11] to mine valid group patterns.
The latter is based on idea similar to the FP-growth algorithm[27]. Recently
in Ref. 29, A. Calmeron proposes a frequent itemset-based approach for flock
identification purposes.

Even if these approaches are very efficient they suffer the problem that they
only extract a specific kind of patterns. When considering a dataset, it is quite
difficult, for the decision maker, to know in advance the kind of patterns em-
bedded in the data. Therefore proposing an approach able to automatically
extract all these different kinds of patterns can be very useful since the results
are comparative. This is the problem we address in this paper and that will be
developed in the next sections.

8

3 Object Movement Patterns in Itemset Con-
text

Extracting different kinds of patterns requires the use of several algorithms and
to deal with this problem, we propose an unifying approach to extract and
manage the patterns.

Database of clusters. A database of clusters, CDB = {Ct1 , Ct2 , . . . , Ctm},
is the collection of snapshots of the moving object clusters at timestamps {t1, t2, . . . , tm}.
Note that an object could belong to several clusters at one timestamp (i.e. clus-
ter overlapping). Given a cluster c ∈ CDB and c ⊆ ODB , |c| and t(c) are
respectively used to denote the number of objects belonging to cluster c and the
timestamp that c is involved in. To make our framework more general, we take
clustering as a preprocessing step. The clustering methods could be different
based on various scenarios. We leave the details of this step in the Appendix
A. Obtaining Clusters.

Basically, patterns are evolution of clusters over time. Therefore, to manage
the evolution of clusters, we need to analyse the correlations between them.
Furthermore, if clusters share some characteristics (e.g. share some objects),
they could be a pattern. Consequently, if a cluster is considered as an item we
can have a set of items (called itemset). The key issue essentially is to efficiently
combine items (clusters) to find itemsets (a set of clusters) which share some
characteristics or satisfy some properties to be considered as a pattern. To
describe cluster evolution, moving object data is presented as a cluster matrix
from which patterns can be extracted.

Definition 5. Cluster Matrix. Assume that we have a set of clusters CDB.
A cluster matrix is thus a matrix of size |ODB | × |CDB | such that each row
represents an object and each column represents a cluster. The value of the
cluster matrix cell, (oi, cj) is 1 (resp. empty) if oi is in (resp. is not in) cluster
cj. A cluster (or item) cj is a cluster formed by applying clustering techniques.

For instance, the data from our illustrative example (Figure 4) is presented
in a cluster matrix in Table 2. Object o1 belongs to the cluster c11 at timestamp
t1. For clarity reasons, in the following, cij represents the cluster ci at time tj .
Therefore, the matrix cell (o1-c11) is 1, meanwhile the matrix cell (o4-c11) is
empty because object o4 does not belong to cluster c11.

By presenting data in a cluster matrix, each object acts as a transaction
while each cluster cj stands for an item. Additionally, an itemset can be formed
as Υ = {cta1

, cta2
, . . . , ctap

} with life time TΥ = {ta1 , ta2 , . . . , tap} where ta1 <
ta2 < . . . < tap , ∀ai : tai ∈ TDB , ctai

∈ Cai . The support of the itemset Υ,
denoted σ(Υ), is the number of common objects in every items belonging to Υ,
O(Υ) =

⋂p
i=1 ctai

. Additionally, the length of Υ, denoted |Υ|, is the number of
items or timestamps (= |TΥ|).

For instance, in Table 2, for a support value of 2 we have: Υ = {c11, c12}
veryfying σ(Υ) = 2. Every items (resp. clusters) of Υ, c11 and c12, are in the

9

Figure 5: A swarm from our example.

transactions (resp. objects) o1, o2. The length of |Υ| is the number of items
(= 2).

Naturally, the number of clusters can be large; however, the maximum length
of itemsets is |TDB |. Since, we are working on movement pattern context and
thus clusters at the same timestamp cannot be in the same itemsets.

Now, we will define some useful properties to extract the patterns presented
in Section 2 from frequent itemsets as follows:

Property 1. Swarm. Given a frequent itemset Υ = {cta1
, cta2

, . . . , ctap
}.

(O(Υ), TΥ) is a swarm if, and only if:{
(1) : σ(Υ) ≥ ε
(2) : |Υ| ≥ mint

(3.5)

Proof. After construction, we have σ(Υ) ≥ ε and σ(Υ) = |O(Υ)| then |O(Υ)| ≥
ε. Additionally, as |Υ| ≥ mint and |Υ| = |TΥ| then |TΥ| ≥ mint. Furthermore,
∀taj ∈ TΥ, O(Υ) ⊆ ctaj

, means that at any timestamps, we have a cluster

containing all objects in O(Υ). Consequently, (O(Υ), TΥ) is a swarm because it
satisfies all the requirements of the Definition 1.

For instance, in Figure 5, for the frequent itemset Υ = {c11, c13} we have
(O(Υ) = {o1, o2, o3}, TΥ = {t1, t3}) which is a swarm with support threshold
ε = 2 and mint = 2. We can notice that σ(Υ) = 3 > ε and |Υ| = 2 ≥ mint.

Essentially, a closed swarm is a swarm which satisfies the object-closed and
time-closed conditions therefore closed-swarm property is as follows:

Property 2. Closed Swarm. Given a frequent itemset Υ = {cta1
, cta2

, . . . , ctap
}.

(O(Υ), TΥ) is a closed swarm if and only if: (1) : (O(Υ), TΥ) is a swarm.
(2) : @Υ′ s.t O(Υ) ⊂ O(Υ′), TΥ′ = TΥ and (O(Υ′), TΥ) is a swarm.
(3) : @Υ′ s.t. O(Υ′) = O(Υ), TΥ ⊂ TΥ′ and (O(Υ), TΥ′) is a swarm.

(3.6)

Proof. After construction, we obtain (O(Υ), TΥ) which is a swarm. Additionally,
if @Υ′ s.t O(Υ) ⊂ O(Υ′), TΥ′ = TΥ and (O(Υ′), TΥ) is a swarm then (O(Υ), TΥ)
cannot be enlarged in terms of objects. Therefore, it satisfies the object-closed

10

Figure 6: A convoy from our example.

condition. Furthermore, if @Υ′ s.t. O(Υ′) = O(Υ), TΥ ⊂ TΥ′ and (O(Υ), TΥ′)
is a swarm then (O(Υ), TΥ) cannot be enlarged in terms of lifetime. Therefore,
it satisfies the time-closed condition. Consequently, (O(Υ), TΥ) is a swarm and
it satisfies object-closed and time-closed conditions and therefore (O(Υ), TΥ) is
a closed swarm according to the Definition 6.

According to the Definition 3, a convoy is a swarm which satisfies the lifetime
consecutiveness condition. Therefore, for an itemset, we can extract a convoy if
the following property holds:

Property 3. Convoy. Given a frequent itemset Υ = {cta1
, cta2

, . . . , ctap
}.

(O(Υ), TΥ) is a convoy if and only if:{
(1) : (O(Υ), TΥ) is a swarm.
(2) : ∀j, 1 ≤ j < p : taj+1

= taj + 1.
(3.7)

Proof. After construction, we obtain (O(Υ), TΥ) which is a swarm. Additionally,
if Υ satisfies the condition (2), it means that the Υ’s lifetime is consecutive.
Consequently, (O(Υ), TΥ) is a convoy according to the Definition 3.

For instance, see Table 2 and Figure 6, for the frequent itemset Υ = {c11, c12, c13}
we have (O(Υ) = {o1, o2}, TΥ = {t1, t2, t3}) is a convoy with support threshold
ε = 2 and mint = 2. Note that o3 is not in the convoy.

Please remind that a group pattern is a set of disjointed convoys which share
the same objects, but in different time intervals. Therefore, the group pattern
property is as follows:

Property 4. Group Pattern. Given a frequent itemset Υ = {cta1
, cta2

, . . . , ctap
},

a mininum weight minwei, a minimum number of convoys minc, and a set of
consecutive time segments TS = {s1, s2, . . . , sn}. (O(Υ), TS) is a group pattern
if and only if:

(1) : |TS | ≥ minc.
(2) : ∀si, si ⊆ TΥ, |si| ≥ mint.
(3) :

⋂n
i=1 si = ∅,

⋂n
i=1O(si) = O(Υ).

(4) : ∀s 6∈ TS , s is a convoy, O(Υ) 6⊆ O(s).

(5) :
∑n

i=1 |si|
|T | ≥ minwei.

(3.8)

11

Table 3: Periodic Cluster Matrix.
TDB t1 t2 t3

Clusters CDB c11 c12 c22 c13

STDB

st1 1 1 1
st2 1 1 1
st3 1 1 1

Proof. If |TS | ≥ minc then we know that there are at least minc consecutive
time intervals si in TS . Furthermore, if ∀si, si ⊆ TΥ then we have O(Υ) ⊆ O(si).
Additionally, if |si| ≥ mint then (O(Υ), si) is a convoy (Definition 3). Now,
TS actually is a set of convoys of O(Υ) and if

⋂n
i=1 si = ∅ then TS is a set of

disjointed convoys. A little bit further, if ∀s 6∈ TS , s is a convoy andO(Υ) 6⊆ O(s)

then @TS′ s.t. TS ⊂ TS′ and
⋂|TS′ |
i=1 O(si) = O(Υ). Therefore, (O(Υ), TS) cannot

be enlarged in terms of number of convoys. Similarly, if
⋂n
i=1O(si) = O(Υ) then

(O(Υ), TS) cannot be enlarged in terms of objects. Consequently, (O(Υ), TS)
is a closed swarm of disjointed convoys because |O(Υ)| ≥ ε, |TS | ≥ minc and
(O(Υ), TS) cannot be enlarged (Definition 6). Finally, if (O(Υ), TS) satisfies
condition (5) then it is a valid group pattern due to Definition 4.

As mentioned before, the main difference in periodic pattern mining is the
input data while the definition is similar to that of closed swarm. The cluster
matrix which is used for periodic mining can be defined as follows:

Definition 6. Periodic Cluster Matrix (PCM). Periodic cluster matrix is a
cluster matrix with some differences as follows: 1) Object o is a sub-trajectory
st, 2) STDB is a set of all sub-trajectories in dataset.

For instance, see Table 3, a trajectory of objects is decomposed into 3 sub-
trajectories and from them a periodic cluster matrix can be generated by ap-
plying clustering techniques. Assume that we can extract a frequent itemset
Υ = {cta1

, cta2
, . . . , ctap

} from periodic cluster matrix, the periodic can be de-
fined as follows:

Property 5. Periodic Pattern. Given a mininum weight minwei, a frequent
itemset Υ = {cta1

, cta2
, . . . , ctap

} which is extracted from periodic cluster matrix.
(ST (Υ), (T)Υ) is a periodic pattern if and only if (ST (Υ), (T)Υ) is a closed
swarm. Note that ST (Υ) =

⋂p
i=1 ctai

Above, we presented some useful properties to extract object movement
patterns from itemsets. Now we will focus on the fact that from an itemset
mining algorithm we are able to extract the set of all movement patterns. We
thus start the proof process by analyzing the swarm extracting issue. This first
lemma shows that from a set of frequent itemsets we are able to extract all the
swarms embedded in the database.

Lemma 1. Let FI = {Υ1,Υ2, . . . ,Υl} be the frequent itemsets being mined
from the cluster matrix with minsup = ε. All swarms (O, T) can be extracted
from FI.

12

Proof. Let us assume that (O, T) is a swarm. Note, T = {ta1 , ta2 , . . . , tam}.
According to the Definition 1 we know that |O| ≥ ε. If (O, T) is a swarm
then ∀tai ∈ T, ∃ctai

s.t. O ⊆ ctai
therefore

⋂m
i=1 ctai

= O. Additionally, we

know that ∀ctai
, ctai

is an item so ∃Υ =
⋃m
i=1 ctai

is an itemset and O(Υ) =⋂m
i=1 ctai

= O, TΥ =
⋃m
i=1 tai = T . Therefore, (O(Υ), TΥ) is a swarm. So,

(O, T) is extracted from Υ. Furthermore, σ(Υ) = |O(Υ)| = |O| ≥ ε then Υ is
a frequent itemset and Υ ∈ FI. Finally, ∀(O, T) s.t. if (O, T) is a swarm then
∃Υ s.t. Υ ∈ FI and (O, T) can be extracted from Υ, we can conclude ∀ swarm
(O, T), it can be mined from FI.

We can consider that by adding constraints such as ”consecutive lifetime”,
”time-closed”, ”object-closed”, ”integrity proportion” to swarms, we can re-
trieve convoys, closed swarms and moving clusters. Therefore, if Swarm, CSwarm,
Convoy, MCluster respectively contain all swarms, closed-swarms, convoys and
moving clusters then we have: CSwarm ⊆ Swarm, Convoy ⊆ Swarm and
MCluster ⊆ Swarm. By applying Lemma 1, we retrieve all swarms from fre-
quent itemsets. Since, a set of closed swarms, a set of convoys and a set of
moving clusters are subsets of swarms and they can therefore be completely
extracted from frequent itemsets. Additionally, all periodic patterns also can
be extracted because they are similar to closed swarms. Now, we will consider
group patterns and we show that all of them can be directly extracted from the
set of all frequent itemsets.

Lemma 2. Given FI = {Υ1,Υ2, . . . ,Υl} which contains all frequent itemsets
mined from cluster matrix with minsup = ε. All group patterns (O, TS) can be
extracted from FI.

Proof. ∀(O, TS) is a valid group pattern, we have ∃TS = {s1, s2, . . . , sn} and
TS is a set of disjointed convoys of O. Therefore, (O, Tsi) is a convoy and
∀si ∈ TS ,∀t ∈ Tsi ,∃ct s.t. O ⊆ ct. Let us assume Csi is a set of clusters
corresponding to si, we know that ∃Υ, Υ is an itemset, Υ =

⋃n
i=1 Csi and

O(Υ) =
⋂n
i=1O(Csi) = O. Additionally, (O, TS) is a valid group pattern;

therefore, |O| ≥ ε so |O(Υ)| ≥ ε. Consequently, Υ is a frequent itemset and
Υ ∈ FI because Υ is an itemset and σ(Υ) = |O(Υ)| ≥ ε. Consequently,
∀(O, TS),∃Υ ∈ FI s.t. (O, TS) can be extracted from Υ and therefore all group
patterns can be extracted from FI.

As we have shown that patterns such as swarms, closed swarms, convoys,
group patterns can be similarly mapped into frequent itemset context. How-
ever, mining all frequent itemsets is cost prohibitive in some cases. Fortunately,
the set of frequent closed itemsets has been proved to be a condensed collec-
tion of frequent itemsets, i.e., both a concise and lossless representation of a
collection of frequent itemsets (Ref. 8, 9, 10, 24, 26). They are concise since
a collection of frequent closed itemsets is orders of magnitude smaller than the
corresponding collection of frequents. This allows the use of very low minimum
support thresholds. Moreover, they are lossless, because it is possible to derive
the support of every frequent itemsets in the collection from them. Therefore,

13

Figure 7: The main process.

we only need to extract frequent closed itemsets (FCIs) and then to scan them
with properties to obtain the corresponding object movement patterns instead
of having to mine all frequent itemsets (FIs).

4 Frequent Closed Itemset-based Object Move-
ment Pattern Mining Algorithm

Previously, patterns have been redefined in the itemset context. In this sec-
tion, we propose two approaches i.e., GeT Move and Incremental GeT Move,
to efficiently extract patterns. The global process is illustrated in Figure 7.

In the first step, a clustering approach (Figure 7-(1)) is applied at each time-
stamp to group objects into different clusters. For each timestamp ta, we have a
set of clusters Ca = {c1ta , c2ta , . . . , cmta}, with 1 ≤ k ≤ m, ckta ⊆ ODB . Moving
object data can thus be converted to a cluster matrix CM (Table 2).

4.1 GeT Move

After generating the cluster matrix CM , a FCI mining algorithm is applied on
CM to extract all the FCIs. By scanning FCIs and checking properties, we can
obtain the patterns.

In this paper, LCM algorithm[26] is applied to extract FCIs as it is known
to be a very efficient algorithm. The key feature of the LCM algorithm is that
after discovering a FCI X, it generates a new generator X[i] by extending X
with a frequent item i, i 6∈ X. Using a total order relation on frequent items,
LCM verifies if X[i] violates this order by performing tests using only the tidset2

of X, called T (X), and those of the frequent items i. If X[i] is not discarded,

2Called tidlists in Ref. 24 and denotations in Ref. 26.

14

then X[i] is an order preserving generator of a new FCI. Then, its closure is
computed using the previously mentioned tidsets.

In this process, we discard some useless itemset candidates. In object move-
ment patterns, items (resp. clusters) must belong to different timestamps and
therefore items (resp. clusters) which form a FCI must be in different times-
tamps. In contrast, to extract potential movement patterns by combining a set
of items, these items cannot be in the same timestamp. Consequently, FCIs
which include more than 1 item in the same timestamp will be discarded.

Thanks to the above characteristic, we now have the maximum length of
the FCIs which is the number of timestamps |TDB |. Additionally, the LCM
search space only depends on the number of objects (transactions) |ODB | and
the maximum length of itemsets |TDB |. Consequently, by using LCM and by
applying the property, GeT Move is not affected by the number of clusters and
therefore the computing time can be greatly reduced.

The pseudo code of GeT Move is described in Algorithm 1. The core of
GeT Move algorithm is based on the LCM algorithm which has been slightly
modified by adding the pruning rule and by extracting patterns from FCIs. The
initial value of FCI X is empty and then we start by putting item i into X (lines
2-3). By adding i into X, we have X[i] and if X[i] is a FCI then X[i] is used as a
generator of a new FCI, call LCM Iter(X, T (X), i(X)) (lines 4-5). In LCM Iter,
we first check properties presented in Section 3 (line 8) for FCI X. Next, for
each transaction t ∈ T (X), we add all items j, which are larger than i(X) and
satisfy the pruning rule, into the occurrence set J [j] (lines 9-11). Next, for each
j ∈ J [j], we check to see if J [j] is a FCI, and if so, then we recall LCM Iter
with the new generator (lines 12-14). After terminating the call for J [j], the
memory for J [j] is released for the future use in J [k] for k < j (lines 15).

Regarding to the PatternMining sub-function (lines 16-37), the algorithm
basically checks properties of the itemset X to extract patterns. If X satisfies
the mint condition then X is a closed swarm (lines 18-19). After that, we check
the consecutive time constraint for convoy and moving cluster (lines 21-22) and
then if the convoy satisfies mint condition and correctness in terms of object
containing (line 31), outputs convoy (line 32). Next, we put the convoy into
a group pattern gPattern (line 33) and then output gPattern if it satisfies
the minc condition and minwei condition at the end of scanning X (line 37).
Regarding to the moving cluster mc, we check the integrity at each pair of
consecutive timestamps (line 24). If mc satisfies the condition then the previous
item xk will be merged into mc (line 25). If not, we check the mint condition
for mc ∪ xk and if it is satisfied then we output mc ∪ xk as a moving cluster.

4.2 Incremental GeT Move

Usually, the transaction length can be large corresponding to |TDB |. Further-
more, FCI mining approaches can be slowed down when working with long
transactions. Thus, the problem here is that if we apply GeT Move on the
whole dataset, the extraction of the itemsets can be very time consuming.

To deal with this issue, we propose the Incremental GeT Move algorithm.

15

(a) The entire dataset.

(b) Data after applying frequent closed itemsets mining
on Blocks.

Figure 8: A case study example. (b)-ci11 (resp. ci12, ci22) is a frequent closed
itemset extracted from block 1 (resp. block 2).

The basic idea is to shorten the transactions by splitting the trajectories (resp.
cluster matrix CM) into short intervals, called blocks. By applying FCI min-
ing on each short interval, the data can then be compressed into local FCIs.
Additionally, the length of itemsets and the number of items can be greatly
reduced.

For instance, see Figure 8, if we consider [t1, t100] as a block and [t101, t200] as
another block, the maximum length of itemsets in both blocks is 100 (insteads
of 200). Additionally, the original data can be greatly compressed (i.e. Figure
8b) and only 3 items remain: ci11, ci12, ci22. Consequently, the process is much
improved.

Definition 7. Block. Given a set of timestamps TDB = {t1, t2, . . . , tn}, a
cluster matrix CM . CM is vertically split into equivalent (in terms of intervals)
smaller cluster matrices and each of them is a block b. Assume Tb is a set of
timestamps of block b, Tb = {t1, t2, . . . , tk}, thus we have |Tb| = k ≤ |TDB |.

Assume that we obtain a set of blocks B = {b1, b2, . . . , bp} with |Tb1 | =
|Tb2 | = . . . = |Tbp |,

⋃p
i=1 bi = CM and

⋂p
i=1 bi = ∅. Given a set of FCI col-

lections CI = {CI1, CI2, . . . , CIp} where CIi is mined from block bi. CI is
presented as a closed itemset matrix which is formed by horizontally connecting
all local FCIs: CIM =

⋃p
i=1 CIi.

Definition 8. Closed Itemset Matrix (CIM). Closed itemset matrix is a cluster
matrix with some differences as follows: 1) Timestamp t now becomes a block
b, 2) Item c is a frequent closed itemset ci.

16

For instance, see Table 4, we have two sets of FCIs CI1 = {ci11}, CI2 =
{ci12, ci22} which are respectively extracted from blocks b1, b2. Closed itemset
matrix CIM = CI1∪CI2 means that CIM is created by horizontally connecting
CI1 and CI2. Consequently, we have CIM as in Table 4.

We have already provided blocks to compress original data. Now, by applying
FCI mining on the closed itemset matrix CIM , we are able to retrieve all FCIs
from corresponding data. Note that items (in CIM) which are in the same
block cannot be in the same frequent closed itemset.

Lemma 3. Given a cluster matrix CM which is vertically split into a set of
blocks B = {b1, b2, . . . , bp} so that ∀Υ,Υ is a frequent closed itemset and Υ is
extracted from CM then Υ can be extracted from closed itemset matrix CIM .

Proof. Let us assume that ∀bi,∃Ii is a set of items belonging to bi and therefore

we have
⋂|B|
i=1 Ii = ∅. If ∀Υ,Υ is a FCI extracted from CM then Υ is formed

as Υ = {γ1, γ2, . . . , γp} where γi is a set of items s.t. γi ⊆ Ii. Additionally, Υ
is a FCI and O(Υ) =

⋂p
i=1O(γi) then ∀O(γi), O(Υ) ⊆ O(γi). Furthermore, we

have |O(Υ)| ≥ ε; therefore, |O(γi)| ≥ ε so γi is a frequent itemset. Assume that
∃γi, γi 6∈ CIi then ∃Ψ,Ψ ∈ CIi s.t. γi ⊆ Ψ and σ(γi) = σ(Ψ), O(γi) = O(Ψ).
Note that Ψ, γi are from bi. Remember that O(Υ) = O(γ1)∩O(γ2)∩. . .∩O(γi)∩
. . .∩O(γp) then we have: ∃Υ′ s.t. O(Υ′) = O(γ1)∩O(γ2)∩. . .∩O(Ψ)∩. . .∩O(γp).
Therefore, O(Υ′) = O(Υ) and σ(Υ′) = σ(Υ). Additionally, we know that γi ⊆ Ψ
so Υ ⊆ Υ′. Consequently, we obtain Υ ⊆ Υ′ and σ(Υ) = σ(Υ′). Therefore, Υ is
not a FCI. That violates the assumption and therefore we have: if ∃γi, γi 6∈ CIi
therefore Υ is not a FCI. Finally, we can conclude that ∀Υ,Υ = {γ1, γ2, . . . , γp}
is a FCI extracted from CM , ∀γi ∈ Υ, γi must belong to CIi and γi is an item
in closed itemset matrix CIM . Therefore, Υ can be retrieved by applying FCI
mining on CIM .

By applying Lemma 3, we can obtain all the FCIs and from the itemsets,
patterns can be extracted. Note that the Incremental GeT Move does not de-
pend on the length restriction mint. The reason is that mint is only used in
Pattern Mining step. Whatever mint (mint ≥ block size or mint ≤ block size),
Incremental GeT Move can extract all the FCIs and therefore the final results
are the same.

The pseudo code of Incremental GeT Move is described in Algorithm 2. The
main difference between the code of Incremental GeT Move and GeT Move is
the Update sub-function. In this function, we, step by step, generate the closed
itemset matrix from blocks (line 14 and lines 22-26). Next, we apply GeT Move
to extract patterns (line 5).

4.3 Toward A Parameter Free Incremental GeT Move Al-
gorithm

Until now, we have presented the Incremental GeT Move which splits the orig-
inal cluster matrix into different equivalent blocks. The experiment results
(Section 5) show that the algorithm is efficient. However, the disadvantage of

17

this approach is that we do not know what is the optimal block size. To iden-
tify them, different techniques can be applied, such as data sampling in which
a sample of data is used to investigate the optimal block sizes. Even if this
approach is appealing, extracting such a sample is very difficult.

To tackle this problem, we propose an innovative solution to dynamically
assign blocks to Incremental GeT Move. First of all, we would like to propose
the definition of a fully nested cluster matrix (resp. block) (Figure 9c) as follows.

Definition 9. Fully nested cluster matrix (resp. block). An n × m 0-1 block
b is fully nested if for any two columns ri and ri+1 (ri, ri+1 ∈ b) we have
ri ∩ ri+1 = ri+1.

We can consider that the LCM is very efficient when it is applied on dense(
resp. (fully) nested

)
datasets and blocks. Let E be the universe of items,

consisting of items 1, . . . , n. A subset X of E is called an itemset. In the
LCM algorithm process on a common cluster matrix, for any X, we make the
recursive call for X[i] for each i ∈ {i(X) + 1, . . . , |E|} because we do not know
which X[i] will be a closed itemset when X is extended by adding i to X.
Meanwhile, for a fully nested cluster matrix, we know that only the recursive
call for item i = i(X) + 1 is valuable and the other recursive calls for each item
i ∈ {i(X) + 2, . . . , |E|} are useless. Note that i(X) returns the last item of X.

Property 6. Recursive Call. Given a fully nested cluster matrix nCM (resp.
block), a universe of items E of nCM , an itemset X which is a subset of E.
All the FCIs can be generated by making a recursive call of item i = i(X) + 1.

Proof. After construction, we have ∀i ∈ E,O(i) ∩ O(i + 1) = O(i + 1); thus,
O(i + 1) ⊆ O(i). Additionally, ∀i′ ∈ {i(X) + 2, . . . , |E|} we need to make a
recursive call forX[i′] and let assume that we obtain a frequent itemsetX∪i′∪X ′
with X ′ ⊆ {i(X) + 3, . . . , |E|}. We can consider that O(i′) ⊆ O

(
i(X) + 1

)
and

therefore O(X∪i′∪X ′) = O
(
X∪

(
i(X)+1

)
∪i′∪X ′

)
. Consequently, X∪i′∪X ′

is not a FCI because (X∪i′∪X ′) ⊂
(
X∪

(
i(X)+1

)
∪i′∪X ′

)
and O(X∪i′∪X ′) =

O
(
X ∪

(
i(X) + 1

)
∪ i′ ∪X ′

)
. Furthermore,

(
X ∪

(
i(X) + 1

)
∪ i′ ∪X ′

)
can be

generated by making a recursive call for i(X) + 1. We can conclude that it is
useless to make a recursive call for ∀i′ ∈ {i(X) + 2, . . . , |E|} and additionally,
all FCIs can be generated only by making a recursive call for i(X) + 1.

By applying Property 6, we can consider that LCM is more efficient on a
fully nested matrix because it reduces unnecessary recursive calls. Therefore, our
goal is to retrieve fully nested blocks to improve the performance of Incremental
GeT Move. In order to reach this goal, we first apply the nested and segment
nested Greedy algorithm 3 (Ref. 31) to re-arrange the cluster matrix (Figure 9a)
so that it now becomes a nested cluster matrix (Figure 9b). Then, we propose
a sub-function Nested Block Partition

(
Figure 7-(4)

)
to dynamically split the

nested cluster matrix into fully nested blocks (Figure 9c).

3http://www.aics-research.com/nestedness/

18

(a) (b) (c)

Figure 9: Examples of non-nested , almost nested, fully nested datasets. Black
= 1, white = 0. (a) Original, (b) Almost nested, (c) Fully nested.

By following the Definition 9 and scanning the nested cluster matrix from
the beginning to the end, we are able to obtain all fully nested blocks. We start
from the first column of nested cluster matrix, then we check the next column
and if the nested condition is held then the block is expanded; otherwise, the
block is set and we create a new block. Note that all small blocks containing
only 1 column are merged into a sparse block SpareB. At the end, we obtain
a set of fully nested blocks NestedB and a sparse block SpareB. Finally, the
Incremental GeT Move is applied on B = NestedB ∪ SpareB.

The pseudo code of Fully Nested Block Partition sub-function is described
in Algorithm 3.

4.4 Object Movement Pattern Mining Algorithm Based
on Explicit Combination of FCI Pairs

In real world applications (e.g. cars), object locations are continuously reported
by using Global Positioning System (GPS). Therefore, new data is always avail-
able. Let us denote the new movement data as (ODB , TDB′). Naturally, it
is cost-prohibitive and time consuming to execute Incremental GeT Move (or
GeT Move) on the entire database (denoted (ODB , TDB ∪ TDB′)) which is cre-
ated by merging (ODB , TDB′) into the existing database (ODB , TDB). To tackle
this issue, we provide an approach which efficiently combines the existing fre-
quent closed itemsets FCIsDB with the new frequent closed itemsets FCIsDB′ ,
which are extracted from DB′, to obtain the final results FCIsDB∪DB′ .

For instance, in Table 5, we have two sets of frequent closed itemsets FCIsDB
and FCIsDB′ . Each FCI will be presented as a |ODB |-bit binary numeral. Let
us define a set of operations that will be used for object movement pattern min-
ing based on explicit combination of FCI pairs. Given two FCIs ci and ci′, we
have that:

• ci ∧ ci′: returns b(ci) ∧ b(ci′).
• ci ∨ ci′: returns b(ci) ∨ b(ci′).
• ci ∪ ci′: returns a set of clusters that are the union of ci1 and ci′1.

• Size(ci) returns the number of ’1’s in ci. Note that Size(ci) = O(ci) = σ(ci).

The principle function of our algorithm is to explicitly combine all pairs of
FCIs(ci, ci′) to generate new FCIs. Let us assume that ci∧ ci′ = γ, γ = ci∪ ci′

19

Figure 10: An example of the explicit combination of pairs of FCIs-based ap-
proach.

is a FCI if σ(γ) is larger than ε and that there are no subsets of O(ci), O(ci′)
so that they are supersets of O(γ). Here is an explicit combination of a pair of
FCIs(ci, ci′):

Property 7. Explicit Combination of a pair of FCIs. Given FCIs ci and ci′

so that ci ∈ FCIsDB , ci
′ ∈ FCIsDB′ , a . ci ∪ ci′ is a FCI that belongs to

FCIsDB∪DB′ if and only if:
if ci ∧ ci′ = γ then
(1) : Size(γ) ≥ ε.
(2) : @p : p ∈ FCIsDB , O(γ) ⊆ O(p) ⊆ O(ci).
(3) : @p′ : p′ ∈ FCIsDB′ , O(γ) ⊆ O(p′) ⊆ O(ci′).

(4.9)

where ci = {cta1
, cta2

, . . . , ctap
} and ci′ = {c′ta1

, c′ta2
, . . . , c′tap

}.

Proof. After construction, we have @p : p ∈ FCIsDB , O(γ) ⊆ O(p) ⊆ O(ci). We
assume that ∃i s.t. i ∈ CDB , O(γ) ⊆ i and i /∈ ci therefore ∃p s.t. p = {∀i|i ∈
CDB , O(γ) ⊆ i, i /∈ ci} ∪ ci, O(γ) ⊆ O(p). Consequently, ∀i ∈ CDB , O(γ) ⊆ i
then i ∈ p and therefore p is a FCI and p ∈ FCIsDB . This violates the
assumption and therefore @i s.t. i ∈ CDB , O(γ) ⊆ i and i /∈ ci or ∀i s.t.
i ∈ CDB , O(γ) ⊆ i then i ∈ ci. Similarly, if @p′ : p′ ∈ FCIsDB′ , O(γ) ⊆
O(p′) ⊆ O(ci′) then ∀i′ s.t. i′ ∈ CDB′ , O(γ) ⊆ i′ then i′ ∈ ci′. Consequently, if
∀i ∈ CDB∪DB′ , O(γ) ⊆ i then i ∈ ci∪ ci′. Additionally, Size(γ) = σ(γ) ≥ ε and
therefore ci ∪ ci′ is a FCI and ci ∪ ci′ ∈ FCIsDB∪DB′ .

We can consider that if ci ∪ ci′ is a FCI, they must respectively be the
two longest FCIs which contain O(γ) in FCIsDB and FCIsDB′ . (O(γ), ci ∪
ci′) is a new FCI and it will be stored in a set of new frequent closed item-
sets, named FCIsnew. To efficiently make all combinations, we first partition
FCIsDB , FCIsDB′ and FCIsnew into different partitions in terms of support
so that the FCIs, that have the same support value, will be in the same parti-
tion (Figure 10). Secondly, partitions are combined from the smallest support
values (resp. longest FCIs) to the largest ones (resp. shortest FCIs). New FCIs
will be added into the right partition in FCIsnew. By using this approach, it is
guaranteed that the first time there is ci∧ ci′ = γ, Size(γ) ≥ ε then ci∪ ci′ is a
new FCI because they are the two longest FCIs which contain O(γ). Therefore,
we just ignore the later combinations which return γ as the result. Furthermore,
to ensure that γ already exists in FCIsnew or not, we only need to check items

20

in the FCIsnew partition whose support value is equal to Size(γ). We can
consider that by partitioning FCIsDB , FCIsDB′ and FCIsnew, the process is
much improved. Additionally, we also propose a pruning rule to speed up the
approach by ending the combination running of a FCI ci′ as follows:

Lemma 4. The combination running of ci′ is ended if:

∃ci ∈ FCIsDB s.t. ci ∧ ci′ = ci′, ci ∪ ci′ is a FCI. (4.10)

Proof. Assume that ∃Υ : Υ ∈ FCIsDB , σ(Υ) ≥ σ(ci),Υ ∧ ci′ = ci′. If O(ci) ⊆
O(Υ) then we have ci ∈ FCIsDB , O(ci′) ⊆ O(ci) ⊆ O(Υ) and this violates
the condition 2 in Property 7, therefore Υ ∪ ci′ is not a FCI. If O(ci) * O(Υ)
then ∃i ∈ CDB s.t. O(ci′) ⊆ i and i /∈ Υ. Furthermore, ∃p : p = {∀i|i ∈
CDB , O(ci′) ⊆ i, i /∈ Υ}∪Υ. So, ∀i, i ∈ CDB , O(ci′) ⊆ i then i ∈ p and therefore
p is a FCI and p ∈ FCIsDB . Additionally, O(ci′) ⊆ O(p) ⊆ O(Υ). This violates
the condition 2 in Property 7, therefore Υ ∪ ci′ is not a FCI. Consequently, we
can conclude that @Υ s.t. Υ ∈ FCIsDB , σ(Υ) ≥ σ(ci),Υ ∧ ci′ = ci′ and Υ ∪ ci′
is a FCI. Therefore, we do not need to continue the combination running of
ci′.

Similar to Lemma 4, in the explicit combination process, ci will be deac-
tivated for further combinations when there is a ci′ so that ci ∧ ci′ = ci and
ci ∪ ci′ is a FCI. After generating all new FCIs in FCIsnew, the final results
FCIsDB∪DB′ is created by collecting FCIs in FCIsDB , FCIsDB′ , FCIsnew. In
this step, some of them will be discarded such that:

Property 8. Discarded FCIs in FCIsDB∪DB′ creating step. All the FCIs which
satisfy the following conditions will not be selected as a FCIs in the final results.{

(1) : ∀ci ∈ FCIsDB , if ∃ci′ ∈ FCIsDB′ s.t. ci ∧ ci′ = ci.
(2) : ∀ci′ ∈ FCIsDB′ , if ∃ci ∈ FCIsDB s.t. ci ∧ ci′ = ci′.

(4.11)

Note that during the explicit combination step, the FCIs which will not be
selected for the final results are removed. It means that we only add all suitable
FCIs into FCIsDB∪DB′ and therefore it is optimized and much less costly. In the
worst case scenario, the complexity of explicit combination of pairs of FCIs step

is O(|FCIsDB | × |FCIsDB′ | × |FCIsnew|
#partitions(FCIsnew)). Naturally, TDB′ is much

smaller than TDB and therefore FCIsDB′ , FCIsnew are very small compare
to FCIsDB . Consequently, the process can be potentially greatly improved
when compare to the executing of Incremental GeT Move on the entire database
(ODB , TDB∪DB′).

The pseudo code of the Object Movement Pattern Mining Algorithm Based
on Explicit Combination of FCI Pairs is described in Algorithm 4.

21

5 Experimental Results

A comprehensive performance study has been conducted on real datasets and
synthetic datasets. All the algorithms are implemented in C++, and all the
experiments are carried out on a 2.8GHz Intel Core i7 system with 4GB Memory.
The system runs Ubuntu 11.10 and g++ version 4.6.1.

The implementations of our proposed algorithms are also integrated in our
demonstration system[33] and it is public online4. As in Ref. 6, the two following
datasets5 have been used during experiments: Swainsoni dataset includes 43
objects evolving over 764 different timestamps. The dataset was generated
from July 1995 to June 1998. Buffalo dataset concerns 165 buffaloes and the
tracking time from year 2000 to year 2006. The original data has 26610 reported
locations and 3001 timestamps.

Similar to Ref. 6, 3, 21, we first use linear interpolation to fill in the missing
data. For study purposes, we needed the objects to stay together for at least
mint timestamps. As Ref. 6, 3, 21, DBScan[5] (MinPts = 2, Eps = 0.001) is
applied to generate clusters at each timestamp.

5.1 Effectiveness

We proved that mining object movement patterns can be similarly mapped
into itemset mining issue. Therefore, in theoretical way, our approaches can
provide the correct results. Experimentally, we do a further comparison, we first
obtain the object movement patterns by employing traditional algorithms such
as, CMC,CuTS∗6 (convoy mining), ObjectGrowth (closed swarm mining) as
well as our approaches. To apply our algorithms, we split the cluster matrix into
blocks such as each block b contains 25 consecutive timestamps. Additionally,
to retrieve all the patterns, in the reported experiments, the default value of ε is
set to 2 (two objects can form a pattern), mint is 1. Note that the default values
are the hardest conditions for examining the algorithms. Then in the following
we mainly focus on different values of mint in order to obtain different sets of
convoys, closed swarms and group patterns. Note that for group patterns, minc
is 1 and minwei is 0.

The results show that our proposed approaches obtain the same results com-
pared to the traditional algorithms. An example of patterns is illustrated in
Figure 11. For instance, see Figure 11a, a closed swarm is discovered within a
frequent closed itemset. Furthermore, from the itemset, a convoy and a group
pattern are also extracted (i.e. Figures 11b, 11c).

22

5.2 Efficiency

5.2.1 Incremental GeT Move and GeT Move Efficiency

To show the efficiency of our algorithms, we generate larger synthetic datasets
using Brinkhoff’s network7-based generator of moving objects as in Ref. 6. We
generate 500 objects (|ODB | = 500) for 104 timestamps (|TDB | = 104) using the
generator’s default map with low moving speed (250). There are 5× 106 points
in total. DBScan (MinPts = 3, Eps = 300) is applied to obtain clusters for
each timestamp.

In the efficiency comparison, we employ CMC,CuTS∗ and ObjectGrowth.

4www.lirmm.fr/˜phan/index.jsp
5http://www.movebank.org
6The source code of CMC,CuTS∗ is available at

http://lsirpeople.epfl.ch/jeung/source codes.htm
7http://iapg.jade-hs.de/personen/brinkhoff/generator/

(a) One of discovered closed swarms. (b) One of discovered convoys.

(c) One of discovered group patterns.

Figure 11: An example of patterns discovered from Swainsoni dataset.

23

(a) Running time w.r.t. ε (b) Running time w.r.t. mint

(c) Running time w.r.t. |ODB | (d) Running time w.r.t. |TDB |

Figure 12: Running time on Swainsoni dataset.

Note that, in Ref. 6, ObjectGrowth outperforms V G-Growth[21] (a group pat-
terns mining algorithm) in terms of performance and therefore we will only
consider ObjectGrowth and not both. Note that GeT Move and Incremen-
tal GeT Move extracted closed swarms, convoys and group patterns mean-
while CMC,CuTS∗ only extracted convoys and ObjectGrowth extracted closed
swarms. Additionally, we also employ a state of the art incremental frequent
itemset mining algorithm, CanTree[35], which is known as a very efficient method.
In CanTree, the cluster matrix is horizontally sliced into blocks each of them
contains 10% number of objects in |ODB |. By doing this we are able to apply
CanTree in an incremental way.

Efficiency w.r.t. ε,mint. Figures 12a, 13a, 14a show running time w.r.t.
ε. It is clear that our approaches outperform other algorithms. ObjectGrowth
and CanTree are the slowest ones and the main reason is that with low mint
(default mint = 1), the Apriori Pruning rule (the most efficient pruning rule)
is no longer effective. Therefore, the search space is greatly enlarged (2|ODB | in
the worst case). Additionally, there is no pruning rule for ε and therefore the
change of ε does not directly affect the running time of ObjectGrowth. Fur-
thermore, the reasons why CanTree is slower than the other algorithms are: 1)
the CanTree has to build the tree from which closed frequent itemsets are ex-
tracted while, other algorithms do not need to build this tree; 2) most of frequent
itemset mining algorithms are designed for short transactions and CanTree is

24

(a) Running time w.r.t. ε (b) Running time w.r.t. mint

(c) Running time w.r.t. |ODB | (d) Running time w.r.t. |TDB |

Figure 13: Running time on Buffalo dataset.

25

(a) Running time w.r.t. ε (b) Running time w.r.t. mint

(c) Running time w.r.t. |ODB | (d) Running time w.r.t. |TDB |

Figure 14: Running time on Synthetic dataset.

one of them. Meanwhile, in moving object context, a transaction is very long
(thousand of clusters). A little bit further, GeT Move is lower than Incremental
GeT Move. The main reason is that GeT Move has to process with long trans-
actions. Meanwhile, thanks to blocks, the number of items is greatly reduced
and transactions are not long as the ones in GeT Move.

Figures 12b, 13b, 14b show running time w.r.t. mint. In almost all cases,
our approaches outperform other algorithms. See Figures 13b, 14b, with low
mint, our algorithm is much faster than the others. However, when mint is
higher (mint > 200 in Figure 13b, mint > 20 in Figure 14b) our algorithms
take more time than CuTS* and ObjectGrowth. This is because with high value
of mint, the number of patterns is significantly reduced (Figures 15b, 16b, 17b)
(i.e. no extracted convoy when mint > 100 (resp. mint > 200, mint > 10),
Figure 15b (resp. Figures 16b, 17b)) and therefore CuTS* and ObjectGrowth
is faster. Meanwhile, GeT Move and Incremental GeT Move have to work with
FCIs.

Efficiency w.r.t. |ODB |, |TDB |. Figures 12c-d, Figures 13c-d, Figures 14c-
d show the running time when varying |ODB | and |TDB | respectively. In all
figures, Incremental GeT Move outperforms other algorithms. However, with
synthetic data (Figure 14d) and lowest values of ε = 2 and mint = 1, GeT Move
is a little bit faster than Incremental GeT Move. This is due to the fact that
Incremental GeT Move does not have any information to obtain the better par-

26

(a) # of patterns w.r.t. ε (b) # of patterns w.r.t. mint

(c) # of patterns w.r.t. |ODB | (d) # of patterns w.r.t. |TDB |

Figure 15: Number of patterns on Swainsoni dataset. Note that # of frequent
closed itemsets is equal to # of closed swarms.

27

(a) # of patterns w.r.t. ε (b) # of patterns w.r.t. mint

(c) # of patterns w.r.t. |ODB | (d) # of patterns w.r.t. |TDB |

Figure 16: Number of patterns on Buffalo dataset. Note that # of frequent
closed itemsets is equal to # of closed swarms.

28

(a) # of patterns w.r.t. ε (b) # of patterns w.r.t. mint

(c) # of patterns w.r.t. |ODB | (d) # of patterns w.r.t. |TDB |

Figure 17: Number of patterns on Synthetic dataset. Note that # of frequent
closed itemsets is equal to # of closed swarms.

29

Figure 18: Running time w.r.t ε
on large Synthetic dataset.

Figure 19: Running time w.r.t block
size.

titions (blocks).
Scalability w.r.t. ε. We can consider that the running time of algorithms

does not change significantly when varied mint, |ODB |, |TDB | in synthetic data
(Figures 14). However, they are quite different when varying ε (default mint =
1). Therefore, we generate another large synthetic data to test the scalability
of algorithms on ε. The dataset includes 50,000 objects moving during 10,000
timestamps and it contains 500 million locations in total. The executions of
CMC and CuTS* stop due to a lack of memory capacity after processing 300
million locations. Additionally, ObjectGrowth cannot provide the results after
1 day running. The main reason is that with low mint (= 1), the search space
is significant larger (≈ 250,000). Meanwhile, thanks to the LCM approach, our
algorithms can provide the results within hours (Figure 18).

Efficiency w.r.t. Block-size. To investigate the optimal value of block-
size, we examine Incremental GeT Move by using the default values of ε,mint
with different block-size values on real datasets and synthetic dataset (|ODB | =
500, |TDB | = 1, 000). The optimal block-size range can be from 20 to 30 times-
tamps within which Incremental GeT Move obtains the best performance for
all the datasets (Figure 19). This is because objects tend to move together
in suitable short interval (from 20 to 30 timestamps). Therefore, by setting
the block-size in this range, the data is efficiently compressed into FCIs. Mean-
while, with larger block-size values, the movements of objects are quite different;
therefore, the data compressing is not so efficient. Regarding to small block-size
values (from 5 to 15), we have to face up to a large number of blocks so that
the process is slowed down. In the previous experiments, block-size is set to 25.

5.2.2 Parameter Free Incremental GeT Move Efficiency

The experimental results show that, so far, Incremental GeT Move and GeT Move
outperform other algorithms. Additionally, our algorithms can work with low
ε and mint values. In this section, we perform another experiment to exam-
ine the efficiency of the Parameter Free Incremental GeT Move algorithm. In
this experiment, we compare performances of six algorithms: 1) Parameter

30

free Incremental GeT Move, named Nested Incremental GeT Move, 2) Nested
GeT Move which is the application of GeT Move on nested cluster matrix CMN ,
3) Incremental GeT Move which is executed with the optimal block size values
on original cluster matrix CM , 4) GeT Move which is applied on original clus-
ter matrix CM , 5) CanTree which is applied on original cluster matrix, and
6) Nested CanTree which is the application of CanTree on (horizontal) nested
cluster matrix8.

Efficient w.r.t. Real datasets. Figures 21, 22 show that Nested Incremental
GeT Move (resp. Parameter Free Incremental GeT Move) greatly outperforms
the other algorithms. It is due to the better performance of LCM algorithm
on nested cluster matrix (resp. fully nested blocks) compared to the original
cluster matrix. Essentially, with the nested cluster matrix, the number of com-
binations of frequent itemsets X and items i to ensure the closeness is greatly
reduced. Therefore, the performance of the LCM algorithm is much improved.
The fact is that Nested GeT Move is always better than GeT Move (Figures 21,
22, 23). Additionally, the Swainsoni and Buffalo datasets contain many fully
nested blocks (Table 6 and Figure 20). Consequently, the Nested Incremental
GeT Move is more efficient than the other algorithms.

Efficient w.r.t. Synthetic dataset. We can consider that Nested Incre-
mental GeT Move is quite similar to Nested GeT Move (Figure 23). This is
because: 1) Synthetic data is very sparse, 2) there are few fully nested blocks,
3) the nested blocks contain a very small number of items (i.e. 0.1% matrix
fill by ’1’ and only 8 fully nested blocks which average length is 2, see Table
6 and Figures 20e-f). Therefore, the processing time of nested blocks is quite
short. Meanwhile, there is a large nested sparse block which is the main par-
tition that need to be processed by both Nested Incremental GeT Move and
Nested GeT Move.

Additionally, thanks to the nested sparse block, the performance of LCM is
improved a lot. Therefore, Nested Incremental GeT Move and Nested GeT Move
are better than the others in most of cases. Exceptionally, with small number of
objects |ODB | (i.e. |ODB | = 50, Figure 23c) or high ε (i.e. ε ≥ 9, Figure 23a),
Incremental GeT Move is slightly better than Nested Incremental GeT Move
and Nested GeT Move. The main reason is that Incremental GeT Move splits
the cluster matrix CM into different small blocks within which there are a small
number of items and FCIs. Thus, the computation cost is reduced. On the other
hand, Nested Incremental GeT Move and Nested GeT Move need to work with
a large nested sparse block.

5.2.3 Object Movement Pattern Mining Algorithm Based on Ex-
plicit Combination of FCI Pairs

In this section, an experiment is designed to examine the object movement
pattern mining algorithm based on explicit combination of FCI pairs and to
identify when we should update the database. We first use half of Swainsoni,

8horizontal nested cluster matrix is a nested matrix so that any two rows ri and ri+1 we
have ri ∪ ri+1 = ri+1.

31

(a) Original Swainsoni cluster matrix.

(b) Nested Swainsoni cluster matrix.

(c) Original Buffalo cluster matrix.

(d) Nested Buffalo cluster matrix.

(e) Original Synthetic cluster matrix.

(f) Nested Synthetic cluster matrix.

Figure 20: Original cluster matrices and nested cluster matrices.

(a) Running time w.r.t. ε (b) Running time w.r.t. mint

(c) Running time w.r.t. |ODB | (d) Running time w.r.t. |TDB |

Figure 21: Running time on Swainsoni dataset.

32

(a) Running time w.r.t. ε (b) Running time w.r.t. mint

(c) Running time w.r.t. |ODB | (d) Running time w.r.t. |TDB |

Figure 22: Running time on Buffalo dataset.

Buffalo and Synthetic datasets as a DB. Then the other half is used to generate
DB′ which is increased step by step up to the maximum size (Figure 24). In
this experiment, Incremental GeT Move is employed to extract FCIs from DB
and DB′.

For real datasets (Swainsoni and Buffalo), the explicit combination algorithm
is more efficient than the Incremental GeT Move in all cases (Figures 24a, b).
This is because we already have FCIsDB and therefore we only need to extract
FCIsDB′ and then combine FCIsDB and FCIsDB′ . Additionally, the Swain-
soni and Buffalo are sufficiently dense (i.e. 17.8% and 7.2% with large number
of fully nested blocks, see Table 6) so that the numbers of FCIs in FCIsDB and
FCIsDB′ are not huge. Consequently, the number of combinations is reduced
and thus the algorithm is more efficient. In Figures 24a-b, we can consider that
the running time of the explicit combination algorithm significantly changes
when |TDB′ | > 15%|TDB |. This means that it is better to update the database
when |TDB′ | < 15%|TDB |.

For the synthetic dataset, the explicit combination algorithm is only efficient
on small DB′ (i.e. |TDB′ | < 20%|TDB |, Figure 24c) because the dataset is very
sparse. In fact, the number of FCIs in FCIsDB′ is enlarged when the size of
DB′ increases. Thus, the explicit combination algorithm is not efficient because
of the huge number of combinations.

Overall, we can consider that the explicit combination algorithm obtains

33

(a) Running time w.r.t. ε (b) Running time w.r.t. mint

(c) Running time w.r.t. |ODB | (d) Running time w.r.t. |TDB |

Figure 23: Running time on Synthetic dataset.

good efficiency when TDB′ is smaller than 15% of TDB .
To summarize, Incremental GeT Move and GeT Move outperform the other

algorithms. Additionally, our algorithms can work with low values of ε and
mint. To reach the optimal efficiency, we propose a parameter free Incremental
GeT Move (resp. Nested Incremental GeT Move) which dynamically assigns
fully nested blocks for the algorithm from the nested cluster matrix. The ex-
perimental results show that the efficiency is greatly improved with the Nested
Incremental GeT Move and Nested GeT Move. Furthermore, by storing FCIs
in a closed itemset database (see Figure 7), it is possible to reuse them whenever
new object movements arrive. The experimental results show that it is better
to update the database when TDB′ is smaller than 15% of TDB by applying the
explicit combination algorithm.

6 Conclusion and Discussion

In this paper, we propose a (parameter free) unifying incremental approach to
automatically extract different kinds of object movement patterns by applying
frequent closed itemset mining techniques. Their effectiveness and efficiency
have been evaluated by using real and synthetic datasets. Experiments show
that our approaches outperform traditional ones.

Another issue we plan to address is how to take into account the arrival

34

(a) Running time on Swainsoni (b) Running time on Buffalo

(c) Running time on Synthetic data

Figure 24: Explicit combination algorithm efficiency.

of new objects which were not available for the first extraction. Now, as we
have seen, we can store the results (resp. FCIs) to improve the process when
new object movements arrive. In this approach we take the hypothesis is that
the number of objects remains the same. However in some applications these
objects could be different.

A Obtaining Clusters

The clustering method is not fixed in our system. Users can cluster cars along
highways using a density-based method, or cluster birds in 3 dimension space
using the k-means algorithm. Clustering methods that generate overlapping
clusters are also applicable, such as EM algorithm or using a rigid definition
of the radius to define a cluster. Moreover, clustering parameters are decided
by users’ requirements or can be indirectly controlled by setting the number of
clusters at each timestamp.

Usually, most of clustering methods can be done in polynomial time. In our
experiments, we used DBScan [5], which takes O(|ODB |log(|ODB |)× |TDB |) in
total to do clustering at every timestamp. To speed it up, there are also many
incremental clustering methods for moving objects. Instead computing clusters
at each timestamp, clusters can be incrementally updated from last timestamps.

In fact, different clustering algorithms can generate different object-cluster

35

matrix and thus the extracted movement patterns will be different as well.
However, the clustering algorithm depends on application domains and indeed
users have many ways to reprocess the data. Indeed, we can show the common
movement patterns under different clustering methods. For instance, Table
7 expresses the Jaccard similarity between sets of closed swarms under three
different clustering algorithms. The Jaccard similarity can be defined as follows:

Definition 10. Jaccard Similarity for Movement Patterns. Given two sets
of closed swarms CS = {cs1, . . . , csn} and CS′ = {cs′1, . . . , cs′m}, the jaccard
similarity between CS and CS′ is given as follows:

Jaccard(CS,CS′) =

∑
cs∈CS

∑
cs′∈CS′(

|O(cs)∩O(cs′)|
|O(cs)∪O(cs′)| ×

|Tcs∩Tcs′ |
|Tcs∪Tcs′ |

)

|CS| × |CS′|
(A.12)

The issue is that there is no guarantee that the common ones are mean-
ingful for the end users. Indeed, in many cases the common patterns express
already known information which is not interesting for analysts. For instance,
Incremental GeT Move has also been successfully applied to extract the inter-
actions between genes after patients taken HIV treatments and the clustering
method is a gene segment-based clustering since other clustering methods have
been proved to provide irrelevant results. Note that we have ground trust given
by bio-informatics experts. Obviously, the clustering approach for reprocessing
data clearly depends on the application domain and thus our concern is focusing
on movement pattern mining from object-cluster matrix.

References

[1] Gudmundsson J, van Kreveld M. Computing longest duration flocks in tra-
jectory data. In: GIS 06, New York, NY, USA, pp.35-42.

[2] Vieira MR, Bakalov P, Tsotras VJ. On-line Discovery of Flock Patterns in
Spatio-Temporal Data. In: GIS 09, New York, NY, USA, pp.286-295.

[3] Jeung H, Yiu ML, Zhou X, Jensen CS, Shen HT. Discovery of Convoys in
Trajectory Databases. PVLDB 2008, 1(1):1068-1080.

[4] P. Kalnis, N. Mamoulis, S. Bakiras. On Discovering Moving Clusters in
Spatio-temporal Data. In SSTD 2005, Angra dos Reis, Brazil, pages 364-
381.

[5] Ester M., Kriegel H.-P., Sander J., Xu X. A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise. KDD ’96, Port-
land, pp. 226-231.

[6] Z. Li, B. Ding, J. Han, R. Kays. Swarm: Mining Relaxed Temporal Moving
Object Clusters. VLDB2010, Singapore, pp. 723-734.

36

[7] Y. Li, J. Han, and J. Yang. Clustering moving objects. SIGKDD2004, pp.
617-622. ISBN: 1581138881.

[8] R. Taouil, N. Pasquier, Y. Bastide, and L. Lakhal. Mining bases for asso-
ciation rules using closed sets. ICDE’00, page 307-307.

[9] M. J. Zaki. Mining non-redundant association rules. DMKD, 9(3):223-248,
2004.

[10] C. Lucchese, S. Orlando, and R. Perego. Fast and memory efficient mining
of frequent closed itemsets. TKDE, 18(1):21-36, January 2006.

[11] R. Agrawal and R. Srikant. Fast algorithms for mining association rules.
VLDB’94, pp.487-499.

[12] B. Goethals and M.J. Zaki. Frequent Itemsets Mining Implementations.
ICDM’2003 Workshop on Frequent Itemset Mining Implementations, Mel-
bourne, Florida, USA, volume 90 of CEUR Workshop Proceedings. CEUR-
WS.org, 2003.

[13] Z. Li, M. Ji, J.-G. Lee, L. Tang, Y. Yu, J. Han, and R. Kays. Movemine:
Mining moving object databases. In SIGMOD 2010, Indianapolis, Indiana,
pp.1203-1206.

[14] J. Gudmundsson, M. J. van Kreveld, and B. Speckmann. Efficient detection
of motion patterns in spatio-temporal data sets. In GIS, 2004, pp.250-257.

[15] P. Laube and S. Imfeld. Analyzing relative motion within groups of trackable
moving point objects. In GIS, 2002, pp.132-144.

[16] H. Jeung, X. Zhou, H. T. Shen. Convoy Queries in Spatio-Temporal
Databases. ICDE 2008, Cancun, Mexico, pp.1457-1459.

[17] F. Verhein. Mining Complex Spatio-Temporal Sequence Patterns. SDM’09,
John Ascuaga’s Nuggest-Sparks, Nevada, pp.605-616.

[18] C.S. Jensen, D. Lin, and B.C. Ooi. Continuous clustering of moving objects.
In KDE(2007), pp. 1161-1174. issn: 1041-4347.

[19] W. A. Kosters, W. Pijls, V. Popova. Complexity Analysis of Depth First and
FP-Growth Implementations of APRIORI. MLDM 2003, Leipzig, Germany,
pp. 284-292.

[20] V. Bogorny and S. Shekhar. Spatial and Spatio-Temporal Data Mining.
Tutorial on Spatial and Spatio-Temporal Data Mining, ICDM2010, Sydney,
Australia.

[21] Y. Wang, E.-P. Lim, and S.-Y. Hwang. Efficient Mining of Group Patterns
from User Movement Data. In DKE(2006), pp. 240-282.

37

[22] H. Cao, N. Mamoulis, D.W. Cheung. Discovery of Collocation Episodes in
Spatiotemporal Data. In ICDM’06, Hong Kong, pp.823-827, ISBN: 0-7695-
2701-9.

[23] J.-g. Lee and J. Han. Trajectory Clustering: A Partition-and-Group Frame-
work. In SIGMOD 2007, pp. 593-604.

[24] C. Lucchesse, S. Orlando, and R. Perego. DCI-Closed: A fast and mem-
ory efficient algorithm to mine frequent closed itemsets. Proceedings of
the IEEE ICDM Workshop on Frequent Itemset Mining Implementations
(FIMI 2004), volume 126 of CEUR Workshop Proceedings, Brighton, UK,
1 November 2004.

[25] N. Mamoulis, H. Cao, G. Kollios, M. Hadjieleftheriou, Y. Tao, D. W.
Cheung. Mining, Indexing, and Querying Historical Spatiotemporal Data.
SIGKDD, 2004, pp. 236-245.

[26] T. Uno, M. Kiyomi, and H. Arimura. LCM ver. 2: Efficient mining al-
gorithms for frequent/closed/maximal itemsets. Proceedings of the IEEE
ICDM Workshop on Frequent Itemset Mining Implementations (FIMI
2004), volume 126 of CEUR Workshop Proceedings, Brighton, UK, 1
November 2004.

[27] J. Han, H. Pei, and Y. Yin. Mining Frequent Patterns without Candidate
Generation. In SIGMOD’00, Dallas, New York, USA, pp. 1-12.

[28] J. Han, Z. Li, and L. A. Tang. Mining Moving Object, Trajectory and Traffic
Data. In DASFAA’10 (tutorial), Tsukuba, Japan.

[29] A. O. C. Romero. Mining moving flock patterns in large spatio-temporal
datasets using a frequent pattern mining approach. Master Thesis, Univer-
sity of Twente, faculty ITC, March 2011.

[30] T. Uno, T. Asai, Y. Uchida, and H. Arimura. An efficient algorithm for
enumerating closed patterns in transaction databases. Proceedings of the
7th International Conference on Discovery Science, Padova, Italy, pp. 16-
31, 2-5 October 2004.

[31] H. Mannila, E. Terzi. Nestedness and Segmented Nestedness. In KDD’07,
August 12-15, 2007, San Jose, California, USA, pp. 480-489.

[32] P. N. Hai, P. Poncelet, M. Teisseire. GeT Move: An Efficient and Unifying
Spatio-Temporal Pattern Mining Algorithm for Moving Objects. In IDA
2012, pp. 276-288.

[33] P. N. Hai, D. Ienco, P. Poncelet, M. Teisseire. Extracting Trajectories
through an Efficient and Unifying Spatio-Temporal Pattern Mining System.
In ECML-PKDD 2012 (demo paper), pp. 820-823.

38

[34] H. Yoon, C. Shahabi. Accurate Discovery of Valid Convoys from Moving
Object Trajectories. In SSTDM ’09, 6 December 2009, Miami, Florida, USA,
pp. 636-643.

[35] C. K.-S. Leung, Q. I. Khan, T. Hoque. CanTree: A Tree Structure for
Efficient Incremental Mining of Frequent Patterns. In ICDM’05, 27 - 30
November 2005, Houston, Texas, USA, pages 274-281.

39

Algorithm 1: GeT Move

Input : Occurrence sets J , int ε, int mint, set of items CDB , double θ, int minc, double
minwei

1 begin
2 X := I(T (∅)); //The root
3 for i := 1 to |CDB | do
4 if |T (X[i])| ≥ ε and |X[i]| is closed then
5 LCM Iter(X[i], T (X[i]), i);

6 LCM Iter(X, T (X), i(X))
7 begin
8 PatternMining(X,mint); /*X is a pattern?*/
9 foreach transaction t ∈ T (X) do

10 foreach j ∈ t, j > i(X), j.time 6∈ time(X) do
11 insert j to J [j];

12 foreach j ∈ J [j] in the decreasing order do
13 if |T (J [j])| ≥ ε and J [j] is closed then
14 LCM Iter(J [j], T (J [j]), j);
15 Delete J [j];

16 PatternMining(X,mint)
17 begin
18 if |X| ≥ mint then
19 output X; /*Closed Swarm*/
20 gPattern := ∅; convoy := ∅;mc := ∅;
21 for k := 1 to |X − 1| do
22 if xk.time = x(k+1).time− 1 then
23 convoy := convoy ∪ xk;

24 if
|T (xk)∩T (xk+1)|
|T (xk)∪T (xk+1)| ≥ θ then

25 mc := mc ∪ xk;
26 else
27 if |mc ∪ xk| ≥ mint then
28 output mc ∪ xk; /*MovingCluster*/
29 mc := ∅;
30 else
31 if |convoy ∪ xk| ≥ mint and |T (convoy ∪ xk)| = |T (X)| then
32 output convoy ∪ xk; /*Convoy*/
33 gPattern := gPattern ∪ (convoy ∪ xk);

34 if |mc ∪ xk| ≥ mint then
35 output mc ∪ xk; /*MovingCluster*/
36 convoy := ∅;mc := ∅;
37 if |gPattern| ≥ minc and

size(gPattern)
|TDB | ≥ minwei then

38 output gPattern; /*Group Pattern*/

39 Where: X is itemset, X[i] := X ∪ i, i(X) is the last item of X, T (X) is list of tractions that X
belongs to, J [j] := T (X[j]), j.time is time index of item j, time(X) is a set of time indexes of X,
|T (convoy)| is the number of transactions that the convoy belongs to, |gPattern| and
size(gPattern) respectively are the number of convoys and the total length of the convoys in
gPattern.

Table 4: Closed Itemset Matrix.
Block B b1 b2

Frequent Closed Itemsets CI ci11 ci12 ci22

ODB

o1 1 1
o2 1 1
o3 1 1
o4 1 1

40

Algorithm 2: Incremental GeT Move

Input : Occurrence sets K, int ε, int mint, double θ, set of Occurrence sets
(blocks) B, int minc, double minwei

1 begin
2 K := ∅;CI := φ; int item total := 0;
3 foreach b ∈ B do
4 LCM(b, ε, Ib);
5 GeT Move(K, ε,mint, CI, θ,minc,minwei);

6 LCM(Occurrence sets J , int σ0, set of items C)
7 begin
8 X := I(T (∅)); //The root
9 for i := 1 to |C| do

10 if |T (X[i])| ≥ ε and |X[i]| is closed then
11 LCM Iter(X[i], T (X[i]), i);

12 LCM Iter(X, T (X), i(X))
13 begin
14 Update(K,X, T (X), item total + +);
15 foreach transaction t ∈ T (X) do
16 foreach j ∈ t, j > i(X), j.time 6∈ time(X) do
17 insert j to J [j];

18 foreach j,J [j] 6= φ in the decreasing order do
19 if |T (J [j])| ≥ ε and J [j] is closed then
20 LCM Iter(J [j], T (J [j]), j);
21 Delete J [j];

22 Update(K,X, T (X), item total)
23 begin
24 foreach t ∈ T (X) do
25 insert item total into K[t];
26 CI := CI ∪ item total;

41

Algorithm 3: Fully Nested Block Partition

Input : a nested cluster matrix CMN

Output: a set of blocks B
1 begin
2 B := ∅;NestedB := ∅;SpareB := ∅;
3 foreach item i ∈ CMN do
4 if i ∩ (i+ 1) = (i+ 1) then
5 NestedB := NestedB ∪ i;
6 else
7 NestedB := NestedB ∪ i;
8 if |NestedB| ≤ 1 then
9 SpareB.push all(NestedB);

10 NestedB := ∅
11 else
12 B := B ∪NestedB;
13 NestedB := ∅
14 return B := B ∪ SpareB;

15 where the purpose SpareB.push all(NestedB) function is to put all items in
NestedB to SpareB.

Table 5: An example of FCI binary presentation.
FCIsDB FCIsDB′

binary(FCI) b(ci1) b(ci2) b(ci′1) b(ci′2)

ODB

o1 1 0 1 0
o2 1 0 1 1
o3 0 1 0 1
o4 0 1 0 1

42

Algorithm 4: Explicit Combination of Pairs of FCIs-based Object Move-
ment Pattern Mining Algorithm

Input : a set of FCIs FCIsDB , Occurrence sets K, int ε, int mint, double θ, set of
Occurrence sets (blocks) B′, int minc, double minwei

1 begin
2 FCIsDB′ := ∅;FCIsnew := ∅;FCIsDB∪DB′ := ∅;
3 FCIsDB′ := Incremental GeT Move* (K, ε,mint, CI, θ, B

′,minc,minwei);
4 foreach partition P ′ ∈ FCIsDB′ do
5 foreach FCI ci′ ∈ P ′ do
6 foreach partition P ∈ FCIsDB do
7 foreach FCI ci ∈ P do
8 γ := ci ∧ ci′;
9 if Size(γ) ≥ ε and FCIsnew.notContain(γ, Size(γ)) then

10 γ := ci ∪ ci′;
11 FCIsnew.add(γ, Size(γ));
12 if γ = ci then
13 FCIsDB .remove(ci);
14 if γ = ci′ then
15 FCIsDB .remove(ci

′);
16 go to line 5;

17 FCIsDB∪DB′ := FCIsDB ∪ FCIsDB′ ∪ FCIsnew;
18 foreach FCI X ∈ FCIsDB∪DB′ do
19 PatternMining(X,mint); /*X is a pattern?*/

20 Where: Incremental GeT Move* is an Incremental GeT Move without
PatternMining sub-function, FCIsnew.notContain(γ, Size(γ)) returns true if there
does not exists γ in partition which has the support value is Size(γ).

Table 6: Fully nested blocks on datasets.
Dataset Matrix fill #Nested blocks avg.length

Swainsoni 17.8% 102 4.52
Buffalo 7.2% 602 2.894

Synthetic 0.1% 8 2.00

Table 7: Jaccard similarity between extracted closed swarms under different
clustering methods on Swainsoni dataset. Radius-based rigid algorithm with
r = 3 and K-mean with k = 5.

DBScan Radius-based rigid K-mean
DBScan 1 0.32258 0.39288

Radius-based rigid 0.32258 1 0.31969
K-mean 0.39288 0.31969 1

43

