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a b s t r a c t

For every r ∈ N, we denote by θr the multigraph with two vertices and r parallel edges.
Given a graph G, we say that a subgraph H of G is a model of θr in G if H contains θr as a
contraction.We prove that the following edge variant of the Erdős–Pósa property holds for
every r > 2: if G is a graph and k is a positive integer, then either G contains a packing of k
mutually edge-disjoint models of θr , or it contains a set S of fr (k) edges such that G \ S has
no θr -model, for both fr (k) = O(k2r3 polylog kr) and fr (k) = O(k4r2 polylog kr).

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Typically, an Erdős–Pósa property reveals relations between covering and packing invariants in combinatorial structures.
The origin of the study of such properties comes from the Erdős–Pósa Theorem [5], stating that there is a function f : N → N
such that for every k ∈ N and for every graph G, either G contains k vertex-disjoint cycles, or there is a set X of f (k) vertices
in Gmeeting all cycles of G. In particular, Erdős and Pósa proved this result for f (k) = O(k · log k).

An interesting line of research aims at extending Erdős–Pósa Theorem for packings and coverings of more general graph
structures. In this direction, we say that a graph class G satisfies the Erdős–Pósa property if there exists a function fG : N → N
such that, for every graph G and every positive integer k, either G contains k mutually vertex-disjoint subgraphs, each
isomorphic to a graph in G, or it contains a set S of fG(k) vertices meeting every subgraph of G that is isomorphic to a graph
in G. When this property holds for a class G, we call the function fG the gap of the Erdős–Pósa property for the class G. In this
sense, the classic Erdős–Pósa Theorem says that the class containing all cycles satisfies the Erdős–Pósa property with gap
O(k · log k).

Given a graph J , we denote by M(J) the set of all graphs containing J as a contraction. Robertson and Seymour proved
the following proposition, which in particular can be seen as an extension of the Erdős–Pósa Theorem.

Proposition 1. Let J be a graph. The class M(J) satisfies the Erdős–Pósa property if and only if J is planar.
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Fig. 1. The graph θ5 .

Aproof of Proposition 1 appeared for the first time in [18]. Another proof can be found inDiestel’smonograph [4, Corollary
12.4.10 and Exercise 40 of Chapter 12]. In view of Proposition 1, it is natural to try to derive good estimations of the gap
function fM(J) in the case where J is a planar graph. In this direction, the recent breakthrough results of Chekuri and Chuzhoy
imply that fM(J)(k) = k · polylog k [2] when J is a planar graph and, even more, that fM(J) = (k + |V (J)|)O(1) [3]. Before this,
the best known estimation of the gap for planar graphs was exponential, namely fM(J)(k) = 2O(k log k), and could be deduced
from [14] using the proof of [18]. Moreover, some improved polynomial gaps have been proven for particular instantiations
of the graph J (see [6–9,15,16]). Another direction is to add restrictions on the graphs G that we consider, which usually
allows to optimize the gap fM(J). In this direction, it is known that fM(J) = O(k) in the case where graphs are restricted to
some non-trivial minor-closed class [10].

We consider the edge counterpart of the Erdős–Pósa property, where packings are edge-disjoint (instead of
vertex-disjoint) and coverings contain edges instead of vertices. We say that a graph class G satisfies the edge variant of the
Erdős–Pósa property if there exists a function fG such that, for every graph G and every positive integer k, either G contains
k mutually edge-disjoint subgraphs, each isomorphic to a graph in G, or it contains a set X of fG(k) edges meeting every
subgraph of G that is isomorphic to a graph in G. Recently, the edge variant of the Erdős–Pósa property was proved in [12]
for 4-edge-connected graphs in the case where G contains all odd cycles.

In this paperwe concentrate on the casewhereG = M(J) for some graph J . We find it an interesting questionwhether an
edge-analogue of Proposition 1 exists or not. To our knowledge, the only case for whichM(J) satisfies the edge variant of the
Erdős–Pósa property is when J = K3, i.e.when the class of graphs G contains all cycles. This result is the edge-counterpart of
the Erdős–Pósa Theorem and appears as a (hard) exercise in [4, Exercise 23 of Chapter 7]. For every r > 2, let θr be the graph
containing two vertices and r multiple edges between them (see Fig. 1). The results of this paper can be stated as follows:

Theorem 1. The edge variant of the Erdős–Pósa property holds for M(θr) with gap fM(θr ), with

fM(θr )(k) = O(k2r3 polylog kr) and fM(θr )(k) = O(k4r2 polylog kr).

Theorem 1 is the edge-counterpart of the main result of [9]. The proof is presented in Section 3 and contains three main
ingredients. The first is a reduction of the problem to graphs of bounded degree, presented in Section 3.1. The second is an
application of recent results of [2] to obtain bounds on the treewidth of the graphs we consider (Section 3.2) and the last is
an extension of the techniques in [10] fitting our needs, which is presented in Section 3.3. Section 2 contains definitions and
preliminary results and Section 4 discusses further research about the problem investigated in this paper.

2. Definitions and preliminaries

For any graph G, V(G) (respectively E(G)) denotes the set of vertices (respectively edges) of G. Even when dealing with
multigraphs (i.e. graphs where more than one edge is allowed between two vertices) we will use the term graph. A graph G′

is a subgraph of a graph G if V(G′) ⊆ V(G) and E(G′) ⊆ E(G), and we denote this by G′
⊆ G. If X is a subset of V(G)

(respectively E(G)), we denote by G[X] the subgraph of G induced by X , i.e. the graph with vertex set X (respectively ∪e∈X e)
and edge set {{x, y} ∈ E(G), x ∈ X and y ∈ X} (respectively X). If S is a subset of vertices or edges of a graphG, the graphG\S
is the graph obtained from G after the removal of the elements of S. For every vertex v ∈ V(G) the neighborhood of v in G,
denoted by NG(v), is the subset of vertices that are adjacent to v, and its size is called the degree of v in G, written degG(v).
The maximum degree ∆(G) of a graph G is the maximum value taken by degG over V(G). Given a non-negative integer k, a
triple (V1, S, V2) is called a k-separation triple of a graph G if |S| 6 k and {V1, S, V2} is a partition of V(G) such that there is
no edge between a vertex of V1 and a vertex of V2. Unless otherwise stated, logarithms are binary. For any two integers a, b
such that a 6 b, the notation [[a, b]] stands for the set of integers {a, a + 1, . . . , b}. In a tree T , rooted at a vertex r ∈ V(T ), a
vertex u ∈ V(T ) is said to be a descendant of a vertex v ≠ u if the path in T from r to u contains v. The set of descendants of v
is denoted by descT (v). A graph is biconnected if the removal of any vertex leaves the graph connected, and a biconnected
component of a graph is a maximal biconnected subgraph.
Minors and models. In a graph G, a contraction of an edge e = {u, v} ∈ E(G) is the operation that removes e from G and
identifies the verticesu and v. In this paper,we keepmultiple edges thatmay appear between twovertices after a contraction
(for instance, contracting an edge in a triangle gives a graph with two vertices connected by two edges). For any graph J ,
let M(J) denote the class of contraction models (models for short) of J , i.e. the class of graphs that can be contracted to J .
We say that a graph J is minor of a graph G (denoted by J 6m G) if a subgraph of G is a model of J (J-model for short), or,
equivalently, if J can be obtained from G by a series of vertex deletions, edge deletions, and edge contractions.
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Packings and coverings. Let G and J be graphs. We denote by packv
J (G) the maximum number of vertex-disjoint models of J

in G and by covervJ (G) the minimum size of a subset S ⊆ V(G) (called J-vertex-hitting set) that meets the vertex sets of all
models of J in G. These invariants are widely studied in the context of the classic Erdős–Pósa property.

Similarly, we write packe
J (G) for the maximum number of edge-disjoint models of J in G and covereJ (G) for the minimum

size of a subset S ⊆ E(G) (called J-edge-hitting set) that meets the edge sets of all models of J in G. Obviously, for every two
graphs G and J , the following inequality holds:

packe
J (G) 6 covereJ (G).

A graph J is said to satisfy the (vertex-)Erdős–Pósa property for minors (vertex-Erdős–Pósa property for short) if there is a
function fJ : N → N, called vertex-Erdős–Pósa gap of J , such that for every graph G, the following holds:

covervJ (G) 6 fJ(packv
J (G)).

The research of this paper is motivated by the course of detecting graphs J for which there is a function hJ : N → N
satisfying the following inequality for every graph G:

covereJ (G) 6 hJ(packe
J (G)). (1)

Such graphs are said to satisfy the edge variant of the Erdős–Pósa property forminors (or, in short, the edge-Erdős–Pósa property)
and the function hJ is called the gap of the edge-Erdős–Pósa property for J (edge-Erdős–Pósa gap for short). This definition is
an edge-counterpart to the existing Erdős–Pósa property and (vertex-)Erdős–Pósa gap.
Treewidth. A tree decomposition of a graph G is a pair (T , V) where T is a tree and V a family (Vt)t∈V(T ) of subsets of V(G)
(called bags) indexed by the vertices of T and such that
(i)


t∈V(T ) Vt = V(G);

(ii) for every edge e of G there is an element of V containing both endpoints of e; and
(iii) for every v ∈ V(G), the subgraph of T induced by {t ∈ V(T ) | v ∈ Vt} is connected.

Thewidth of a tree decomposition T is defined as maxt∈V(T ) |Vt | − 1 (that is, the maximum size of a bag minus one). The
treewidth of G, written tw(G), is the minimum width of any of its tree decompositions.

A tree decomposition (T , V) of a graph G is said to be a nice tree decomposition if
(i) every vertex of T has degree at most 3;
(ii) T is rooted at one of its vertices r whose bag is empty (Vr = ∅); and
(iii) every vertex t of T is

• either a base node, i.e. a leaf of T whose bag is empty (Vt = ∅) and different from the root;
• or an introduce node, i.e. a vertex with only one child t ′ such that Vt = Vt ′ ∪ {u} for some u ∈ V(G);
• or a forget node, i.e. a vertex with only one child t ′ such that Vt ′ = Vt ∪ {u} for some u ∈ V(G);
• or a join node, i.e. a vertex with two children t1 and t2 such that Vt = Vt1 = Vt2 .

It is known that every graph has an optimal tree decomposition which is nice [13].
The graph θr and the Erdős–Pósa property. The vertex-Erdős–Pósa property of θr received some attention, in particular in
[7,9,11]. For instance the main result of [9] is the following estimation of the vertex-Erdős–Pósa gap for θr .

Proposition 2 ([9]). For every positive integer r, θr has the vertex-Erdős–Pósa property with gap O(k2).

However in this estimation the dependency in terms of r is hidden in the multiplicative constant of the Big-O notation.
By a careful analysis of the size of a θr -hitting set presented in [9] (c.f. Lemma 6), the estimation of the gap of Proposition 2
can bemade quadratic in both k and r . From this, we can derive an O(k3r3) edge-Erdős–Pósa gap for θr (Corollary 2) by using
our Lemma 7 that makes possible to translate a θr -vertex-hitting set into a θr -edge-hitting set.

However, Theorem 1 gives better estimations of this gap, either in k or in r .
Patterns in graphs of big treewidth. In the following section, we will use several propositions asserting that every graph G of
treewidth at least cH contains some fixed graph H as a minor, where the constant cH depends on H . For instance, we will
show in Lemma 6 a simple relation between the constant ck·θr and the vertex-Erdős–Pósa gap for θr . These propositions are
stated thereafter.

Proposition 3 ([17, Lemma 3.2]). For every integer r > 1 and graph G, if tw(G) > 2r − 1 then G contains a θr -model.

Proposition 4 ([9, Lemma 1], see also [1]). Let k and r be two positive integers. For every graph G, if tw(G) > 2k2r2 then G
contains at least k vertex-disjoint models of θr .

Proposition 5 ([2, Theorem1.1]). There is a function fProposition 5(t) = O(polylog t) such that, for every graphG and every positive
integers h and p, if hp2 6 tw(G)

fProposition 5(tw(G))
, there is a partition G1, . . . ,Gh of G into vertex-disjoint subgraphs such that tw(Gi) > p

for each i ∈ [[1, h]].

Proposition 6 ([2, Theorem1.2]). There is a function fProposition 6(t) = O(polylog t) such that, for every graphG and every positive
integers h and p, if h3p 6 tw(G)

fProposition 6(tw(G))
then there is a partition G1, . . . ,Gh of G into vertex-disjoint subgraphs such that

tw(Gi) > p for each i ∈ [[1, h]].
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Fig. 2. A marked tree T with µ(T ) = 5 and a 3-good partition (T1, T2) of root v. Marked vertices appear in white.

3. The edge-Erdős–Pósa property for graphs θr

3.1. Bounding the degree

In the sequel, we deal with graphs in which some vertices aremarked. If G is a graph andm : V(G) → {0, 1} is a function,
we say that (G,m) is a graph marked by m. A vertex v of G such that m(v) = 1 is said to be marked. We denote by µ the
function that, given a graph, returns its number of marked vertices. We now define an r-good partition. Given a positive
integer r , a marked tree (T ,m) is said to have an r-good partition of root v if there is a pair ((T1,m1), (T2,m2)) of marked
trees such that:

(i) T1 and T2 are subtrees of T such that (E(T1), E(T2)) is a partition of E(T );
(ii) r 6 µ ((T1,m1)) 6 2r;
(iii) v ∈ V(T2); and
(iv) every vertex that is marked in (T ,m) is either marked in (T1,m1) or marked in (T2,m2), but not in both. In other words,

for every u ∈ V(T ),

• if v ∈ V(T1) ∩ V(T2) thenm(v) = 1 ⇔ m1(v) = 1 orm2(v) = 1 but not both;
• otherwise, let i ∈ {1, 2} be the integer such that v ∈ V(Ti). Then we havem(v) = mi(v).

We remark that because of (iv), µ(T ) = µ(T1) + µ(T2). If for every v ∈ V(T ), (T ,m) has an r-good partition of root v,
then T is said to have an r-good partition. Examples of a marked tree and of a good partition are given in Fig. 2.

Lemma 1. For every integer r > 0 and every marked tree (T ,m), if µ(T ) > 2r then (T ,m) has an r-good partition.

Proof. Let r > 0 be an integer. We prove this lemma by induction on the size of the tree.
Base case: |V(T )| = 0. Since 2r > 2 > |V(T )|, T does not have 2r marked vertices and we are done.
Induction step:Assume that for every integer n′ < n, everymarked tree (T ′,m′) on n′ vertices and satisfyingµ((T ′,m′)) > 2r
has an r-good partition (induction hypothesis).

Let us prove that every marked tree on n vertices has a r-good partition if it has at least 2r marked vertices. Let (T ,m) be
a tree on n vertices and let v be a vertex of T . We assume that µ((T ,m)) > 2r . We distinguish two cases.

• µ((T ,m)) = 2r:
Let T1 = T , let m1 = m, let T2 = ({v}, ∅), and let m2 : V(T2) → {0, 1} be the function equal to 0 on every vertex of T2.
Remark that (E(T1), E(T2)) = (E(T ), ∅) is a partition of E(T ), T2 contains v, and as (T ,m) contains (exactly) 2r marked
vertices, so does (T1,m). Consequently ((T1,m1), (T2,m2)) is an r-good partition of (T ,m).

• µ((T ,m)) > 2r:
We distinguish different cases depending on the degree of the root v in T .

Case 1: deg(v) = 1.
Let u be the neighbor of v in T , let T ′

= T \ {v}, and m′
= m|V(T ′). Remark that µ((T ′,m′)) > 2r andV(T ′)

 = |V(T )| − 1. By induction hypothesis, (T ′,m′) has an r-good partition ((T ′

1,m
′

1), (T
′

2,m
′

2)) of root u.
We extend it to T by setting T1 = T ′

1, m1 = m′

1, T2 =

V(T ′

2) ∪ {v}, E(T ′

2) ∪ {v, u}

, and m2 = m′

2. Notice that T2
contains v. As the subtree T ′

1 contains at least r and atmost 2r marked vertices (induction hypothesis), so does T1.
Also, remark that (E(T1), E(T2)) is a partition of E(T ) and that since u ∈ T ′

2, the graph T2 is connected. Therefore
((T1,m1), (T2,m2)) is an r-good partition of T .

Case 2: deg(v) = d > 1.
Let u1, . . . , ud be the neighbors of v in T and for every i ∈ [[1, d]], let Ci be the connected component of T \ {v}

that contains ui. We also define, for every i ∈ [[1, d]], the restricted marking function wi = m|V (Ci).
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Subcase (a): there exists i ∈ [[1, d]] such that µ((Ci, wi)) > 2r.
Let T ′

= (V(Ci) ∪ {v}, E(Ci) ∪ {u, v}) and let m′
= m|V(T ′). Remark that

V(T ′)
 < |V(T )|

and µ((T ′,m′)) > 2r. According to the induction hypothesis, (T ′,m′) has an r-good partition
((T ′

1,m
′

1), (T
′

2,m
′

2)) of root v. Similarly as before, we can extend it into an r-good partition
((T1,m1), (T2,m2)) of (T ,m). This is done by setting:

T1 = T ′

1,

m1 = m′

1,

T2 = (V(T ′

2) ∪ (V(G) \ V(Ci)), E(G) \ E(T ′

1)), and

m2 :


u → m′

2(u) if u ∈ V(Ci) ∪ {v}

u → m(u) otherwise.

As ((T ′

1,m
′

1), (T
′

2,m
′

2)) is an r-good partition of root v, v ∈ V(T ′

2) and therefore T2 is connected.
Subcase (b): there exists i ∈ [[1, d]] such that r 6 µ((Ci, wi)) 6 2r.

Let T1 = Ci and T2 = T [E(T ) \ E(T1)]. In this case, (E(T1), E(T2)) is a partition of E(T ) and T2 is
connected since it contains v, the vertex which is adjacent to the Cj’s. Thus, if we set m1 = m|V (T1)
and m2 = m|V (T2), ((T1,m1), (T2,m2)) is an r-good partition of (T ,m).

Subcase (c): for all i ∈ [[1, d]], µ((Ci, wi)) < r.

Let j = min

j ∈ [[2, d]],

j
i=1 µ((Ci, wi)) > r


. Such value exists since µ((T ,m)) > 2r . We then

set:

T1 = (∪i∈[[1,j]] V(Ci) ∪ {v}, ∪i∈[[1,j]](E(Ci) ∪ {v, ui})),

m1 :


v → 0
u ∈ V(T1) \ {v} → m(u),

T2 = T [E(T ) \ E(T1)] , and
m2 = m|V (T2).

By definition of j, µ((T1,m1)) > r and as for every i ∈ [[1, d]], µ((Ci, wi)) < r we also have
µ((T1,m1)) < 2r . As before, the pair ((T1,m1), (T2,m2)) is an r-good partition of (T ,m).

In conclusion, we proved by induction that for every integer r , every tree having at least 2r marked vertices has an r-good
partition. �

In the sequel we will deal with packings of the graph θr , for r > 1. The following remark is important.

Remark 1. If G is not biconnected, the number of edge-disjoint models of θr in G is equal to the sum of the number of
edge-disjointmodels of θr in every biconnected component ofG.This enables us to treat biconnected components separately.

Lemma 2. Let k > 0, r > 0 be two integers, and let G be a biconnected graph with ∆(G) > 2kr. Then packe
θr
(G) > k.

Proof. As G is biconnected, the removal of a vertex v ofmaximumdegree gives a connected graph. Let T be aminimal tree of
G \ {v} spanning the neighborhood NG(v) of v. We mark the vertices of T that are elements of NG(v): this gives the marking
function m for T . Let us prove by induction on k that (T ,m) has k edge-disjoint marked subtrees (T1,m1), . . . , (Tk,mk),
each containing at least r marked vertices. If we do so, then we are done because {{v}, Ti}i∈[[1,k]] is a collection of k
edge-disjoint θr models. In fact, as for every i ∈ [[1, k]], Ti contains r ′ > r vertices adjacent to v in G, contracting the edges of
Ti in G[{v} ∪ V(Ti)] gives the graph θr ′ . Let r > 0 be an integer.
Base case k = 1: Clear.
Induction step k > 1: Assume that for every k′ < k, every treewith at least 2k′r verticesmarked has k′ edge-disjoint subtrees,
each with at least r marked vertices. Let (T ,m) be a marked tree such that µ((T ,m)) > 2kr. According to Lemma 1, (T ,m)
has an r-good partition ((T1,m1), (T ′

1,m
′

1)) such that r 6 µ((T1,m1)) 6 2r and µ((T ′

1,m
′

1)) = µ((T ,m)) − µ((T1,m1)) >
2(k−1)r. By induction hypothesis, (T ′

1,m
′

1) has k−1 edge-disjoint marked subtrees (T2,m2), . . . , (Tk,mk) each containing
at least r marked vertices. Remark that as all these trees are subgraphs of T ′

1, which is edge-disjoint from T1 in T , they are
edge-disjoint from T1 as well. Consequently, (T1,m1), (T2,m2), . . . , (Tk,mk) is the family of edge-disjoint subtrees wewere
looking for. �

3.2. Bounding the treewidth

Lemma 3. There is a function hr(k) = O(kr2 polylog kr) such that for every positive integers k and r and every graph G,
if tw(G) > hr(k), then packv

θr
(G) > k.
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Proof. LetG be a graph and k, r be two positive integers. By Proposition 4, if tw(G) > 2k2r2, thenG contains k vertex-disjoint
models of θr . Therefore, we only have to consider the case where tw(G) < 2k2r2.

As fProposition 5(t) = O(polylog t) (cf. Proposition 5 for the definition of fProposition 5), there are three positive reals t0, A > 1,
and α > 1 such that for every real t > t0 we have fProposition 5(t) 6 A logα(t). Let B = max(0,maxi∈[[1,⌈t0⌉]] fProposition 5(i)) and
observe that for every positive integer i we have fProposition 5(i) 6 A logα(i) + B.

Let hr(k) = k(2r)2 · (A logα(2k2r2) + B) for every positive integers k and r . Observe that hr(k) = O(kr2 polylog kr). We
will show that graphs whose treewidth is at least hr(k) contain k vertex-disjoint models of θr . For every positive integers r
and k, if tw(G) > hr(k) then we have

tw(G) > k(2r)2 · (A logα(tw(G)) + B) (as we assume tw(G) < 2k2r2)
tw(G)

A logα(tw(G)) + B
> k(2r)2 (because A logα(tw(G)) + B is positive)

tw(G)

fProposition 5(tw(G))
> k(2r)2 (as tw(G) is integer).

Notice that k and 2r meet the conditions of Proposition 5. Consequently, there is a partition G1, . . . ,Gk of G into
vertex-disjoint subgraphs such that ∀i ∈ [[1, k]], tw(Gi) > 2r . By Proposition 3, each of these subgraphs contains a model
of θr . Consequently, G contains k vertex-disjoint models of θr , as required. �

A very similar proof can be used to show the following lemma, using Proposition 6.

Lemma 4. There is a function hr(k) = O(k3r polylog kr) such that, for every positive integers k and r and every graph G,
if tw(G) > hr(k), then packv

θr
(G) > k.

3.3. From vertices to edges

In this section, we show how an estimation of a vertex-Erdős–Pósa gap can be derived from the bound on the treewidth
obtained in Section 3.2. The proof of the two following lemmas are inspired from the proof of [10, Lemma 2].

Lemma 5 (Adapted from Lemma 2 of [10]). Let k > 3, r be two positive integers and G a graph such that packv
θr
(G) = k. Then

G has a (tw(G) + 1)-separation triple (V1, S, V2) such that 1
3k 6 packv

θr
(G[V1]) 6 2

3k.

Proof. Let (T , V) be an optimal nice tree decomposition of G. For all t ∈ V(T ), let Ht be the subset of V(G) equal
to


t ′∈descT (t) Vt ′


\ Vt , that is, informally, the subset of vertices that are in bags below Vt but not in Vt . We also define

the function p : V(T ) → N as: ∀t ∈ V(T ), p(t) = packv
θr
(G[Ht ]), which counts the number of vertex-disjoint models of θr

in the subgraph of G induced by Ht .

Remark 2. The function p is nondecreasing along every path from a vertex of T to the root of T , because if a vertex t ′ ∈ V(T )
is a child of a vertex t ∈ V(T ), then Ht ′ ⊆ Ht , and thus packv

H(G[Ht ′ ]) 6 packv
H(G[Ht ]).

Remark 3. As T is a nice decomposition of G, its vertices can be of four different types. We make remarks about the value
taken by p depending on the type of the vertices:

Base node t: p(t) = 0, because since t has no descendant, Ht = ∅;
Introduce node t with child t ′: as the unique element of Vt \ V ′

t cannot appear in the bags of descT (t ′) (by definition of a
tree decomposition), Ht = Ht ′ and then p(t) = p(t ′);

Forget node t with child t ′: Ht contains one vertex more than Ht ′ therefore p(t) − p(t ′) ∈ {0, 1};
Join node t with children t1 and t2: Ht = Ht1 ∪ Ht2 , but Ht1 and Ht2 are disjoint and there is no edge between the vertices

of Ht1 and of Ht2 in G[Ht ] (otherwise the set Vt1 = Vt2 would contain an endpoint of this edge, which also belongs
to Ht1 or Ht2 , and this is contradictory). Thus there is no θr -model in G[Ht ] that uses (simultaneously) vertices of
Ht1 and of Ht2 , and therefore p(t) = p(t1) + p(t2).

Let t ∈ V(T ) be a node such that p(t) > 2
3k and such that for every child t ′ of t , p(t ′) 6 2

3k. Let us make some claims
about t .

Claim 1. such a t exists.

Proof of Claim 1. The value of p on the root r of T is k (because G[Hr ] = G) and according to the previous remark, the value
of p on base nodes is 0. As p is nondecreasing on a path from a base node to the root (see Remark 2), such a vertex t exists. �

Claim 2. t is unique.
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Proof of Claim 2. To show that t is unique, we assume by contradiction that there is another t ′ ∈ V (T ) with t ′ ≠ t and
p(t ′) > 2

3k, and such that for every child t ′′ of t ′, p(t ′′) 6 2
3k. Three cases can occur:

(i) t ′ is a descendant of t . However, p is nondecreasing along any path from a vertex to the root (Remark 2) and p(t ′) > 2
3k,

whereas the value of p for each child of t is at most 2
3k: this is a contradiction.

(ii) t is a descendant of t ′. The same argument applies (symmetric situation).
(iii) t and t ′ are not in the above situations. Let v be the least common ancestor of t and t ′. As p is nondecreasing along any

path from a vertex to the root, the child vt (respectively vt ′ ) of v of which t (respectively t ′) is descendant should
be such that p(vt) > 2

3k (respectively p(vt ′) > 2
3k). By definition of v, we have vt ≠ vt ′ . As v is a join node,

p(v) = p(vt) + p(vt ′) > 4
3k, which is impossible. �

Claim 3. t is either a forget node or a join node.

Proof of Claim 3. By definition of t , the value p(t) is different from the value(s) taken by p over the child(ren) of t . This can
only occur in the cases of a join node or a forget node. �

We now present a (tw(G) + 1)-separation triple (V1, S, V2) of G with the required properties.

Case 1: t is a forget node with t ′ as child.
Let S = Vt ′ , V1 = Ht ′ , and V2 = V(G) \ (V1 ∪ S).

Case 2: t is a join node with t1, t2 as children.
As 2

3k < p(t) = p(t1) + p(t2) (Remark 3), there is i ∈ {1, 2} such that p(ti) > k
3 . Let S = Vti , V1 = Hti , and

V2 = V(G) \ (V1 ∪ S).
In both cases, we have:

(i) 1
3k 6 packv

θr
(G[V1]) 6 2

3k by definition of V1 and t;
(ii) (V1, S, V2) is a partition of V(G);

(iii) there is no edge between a vertex in V1 and a vertex of V2 (intuitively, S separates V1 and V2); and
(iv) |S| 6 tw(G) + 1, because S is a bag of an optimal tree decomposition of G.

In the case where t is a forget node, the inequality 1
3k 6 packv

θr
(G[V1]) of (i) holds because p(t ′) > p(t)−1 > 2

3k−1 > k
3

(cf. Remark 3). To see why (iii) is true, assume by contradiction that there are two vertices u ∈ V1 and v ∈ V2 such that
{u, v} ∈ E(G). Let s0 ∈ V(T ) be the child of t such that S = Vs0 (cf. the two different cases above). By definition of V1 there
is a vertex s1 ∈ V(T ) of T in descT (s0) whose bag Vs1 contains u. By definition of V2, the vertex v does not belong to the bag
Vs0 nor to a bag of a descendant of s0. Let s2 be a vertex of T containing u and which is, according to the previous remark, not
the bag of a descendant of s0 nor s0.

As (T , V) is a tree decomposition of G and {u, v} ∈ E(G), we have the following:

• there is a vertex s ∈ V(T ) whose bag contains both u and v;
• the subgraph of T induced by vertices whose bags contain u (respectively v) is connected.

Consequently there is a path in T from s1 to s (respectively from s2 to s) each bag of which contains u (respectively v). As s
is on the (only) path of T linking s1 to s2, one of u, v belongs to the bag Vs. But this contradicts the fact that (V1, S, V2) is a
partition of V(G).

We conclude that (V1, S, V2) is a (tw(G) + 1)-separation triple of Gwith the required properties. �

A function h : R → R is said to be superadditive if for every x and every y in its domain, f (x) + f (y) 6 f (x + y).

Lemma 6 (Adapted from Lemma 5.4 in [2]). Let hr be a superadditive function such that for every graph G and every positive
integers r and k, if tw(G) > hr(k) then G>m(k + 1) · θr . For every graph G and every positive integer k, if packv

θr
(G) = k then

we have

covervθr (G) 6 3 · hr(k) log(k + 1).

Proof. We proceed by induction on k.

Base case k = 0: Clear.

Induction step k > 0: We assume that the lemma holds for every positive integer k′ < k. Let G be a graph such that
packv

θr
(G) = k. First, remark that tw(G) < hr(k), otherwise by definition of hr we would have packv

θr
(G) > k. Thus,

by Lemma 5 G contains a hr(k)-separation triple (V1, S, V2) such that k/3 6 packv
θr
(G[V1]) 6 2k/3. This implies that

k1, k2 6 ⌊2k/3⌋, where ki = packv
θr
(G[Vi]) for every i ∈ {1, 2}. Also we have k1 +k2 6 k as G1 and G2 are two vertex-disjoint

subgraphs of G.
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The triple (V1, S, V2) is a partition of V(G), so the following holds:

covervθr (G) 6 covervθr (G[V1]) + covervθr (G[V2]) + |S|

6 covervθr (G[V1]) + covervθr (G[V2]) + hr(k)

6 3 · hr(k1) log(k1 + 1) + 3 · hr(k2) log(k2 + 1) + hr(k) (induction hyp.).

If k = 1, then k1 = k1 = 0 and we have covervθr (G) 6 hr(k) 6 3 · hr(k) log(k + 1). We may now assume k > 2. Observe that
in this case, as ki 6

 2
3k


, we get ki + 1 6 3

4 (k + 1) for every i ∈ {1, 2}.

covervθr (G) 6 3 · (hr(k1) + hr(k2)) log

3(k + 1)

4


+ hr(k)

6 3 · hr(k) log

3(k + 1)

4


+ hr(k) (superadditivity of hr )

6 3 · hr(k) log(k + 1) − 3 · log(4/3)hr(k) + hr(k)
6 3 · hr(k) log(k + 1).

This concludes the proof. �

Corollary 1. Let fr be the vertex-Erdős–Pósa gap of θr . Then we have

• fr(k) = O(kr2 polylog kr);
• fr(k) = O(k3r polylog kr).

These estimations follow from Lemmas 3, 4 and 6.

The following lemma shows how to translate a vertex-Erdős–Pósa gap into an edge-Erdős–Pósa gap in the case of θr .
The main idea of the proof is that if the considered graph has small maximum degree, a small edge-hitting set can be
constructed from a small vertex-hitting set. On the other hand, a big maximum degree forces a large packing of θr -models.

Lemma 7. If fr is the vertex-Erdős–Pósa gap of θr , then the edge-Erdős–Pósa gap of θr is less than 2kr · fr(k).

Proof. Let G be a graph, let r > 2 be an integer and let fr is the vertex-Erdős–Pósa gap of θr .
We want to prove that if G contains less than k edge-disjoint models of θr , then it has a θr -edge-hitting set of size less

than 2kr · fr(k).
According to Remark 1, we can assume that G is biconnected. If it is not the case, we consider its biconnected components

separately (if it has no biconnected component then the lemma is trivial).
First, remark ∆(G) < 2kr , otherwise by Lemma 2 Gwould contain at least k edge-disjoint θr -models.
Notice that if G does not contain k edge-disjoint θr -models, it does not contain k vertex-disjoint θr -models either.

Consequently, there is a set X ⊆ V(G)meeting every θr model of G and such that |X | 6 fr(k). Let us consider the set Y ⊆ E(G)
of edges incident to vertices of X , i.e. Y = {{u, v} ∈ E(G), u ∈ X}. Remark that as ∆(G) < 2kr , we have |Y | 6 2kr · fr(k).
Now, assume that there is a θr -model in G not having edges in Y . None of its vertices is in X , which is contradictory. So Y is
a θr -edge hitting set of the required size. This concludes the proof. �

Corollary 2. An edge-gap of O(k3r3) for θr can be derived from Proposition 2.

Proof of Theorem 1. It follows from the application of Lemma 7 to the estimations of the vertex-Erdős–Pósa gap of θr given
in Corollary 1.

4. Further research

The main question, initiated in this paper, is whether for every planar graph J , the class M(J) satisfies this edge variant
of the Erdős–Pósa property. As for the vertex version, it is easy to see that the planarity of J is necessary. For instance, if
J = K5, consider as graph G an n-vertex toroidal wall, which is a 3-regular graph embeddable in the torus that contains K5 as
a minor. One can check that G does not contain two edge-disjoint models of K5, but Ω(

√
n) edges of G are needed in order

to hit all its K5-models.
Moreover, a second question is: when this property holds, does it hold with a polynomial gap for all graphs? Also, finding

lower bounds on this gap for specific graphs is another interesting and complementary question. Let us mention that, as it
is the case for the vertex version (see [5,8]), for any non-acyclic planar graph J for which the edge variant of the Erdős–Pósa
property holds for M(J), we have that fM(J)(k) = Ω(k log k). Indeed, let G be an n-vertex cubic graph with treewidth Ω(n)
and girthΩ(log n) (such graphs are well-known to exist). Since J is planar, the treewidth of any graph excluding J as aminor
is bounded by a constant [18], hence any set of edges of G meeting all models of J has size Ω(n) (as the removal of an edge
may decrease the treewidth by at most two). On the other hand, since J contains a cycle and the girth of G is Ω(log n), any
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model of J inG containsΩ(log n) edges (assuming that J does not have isolated vertices), and thereforeG containsO(n/ log n)
edge-disjoint models of J (here we have used that the degree of G is bounded), easily implying that fM(J)(k) = Ω(k log k).
In particular, it holds that fM(θr )(k) = Ω(k log k) for any r > 2, so a first avenue for further work in this direction is to
optimize the gap function fM(θr )(k) given in Theorem 1.

Finally, when the graphs G (in which the packings or coverings are taken) are restricted to classes of bounded degree, the
proof of Lemma 7 can easily be adapted to prove that the bound of the vertex version also holds for the edge version.
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