
HAL Id: lirmm-01348053
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01348053

Submitted on 22 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quality-driven feature identification and documentation
from source code

Hamzeh Eyal-Salman, Abdelhak-Djamel Seriai, Mustafa Hammad

To cite this version:
Hamzeh Eyal-Salman, Abdelhak-Djamel Seriai, Mustafa Hammad. Quality-driven feature identifica-
tion and documentation from source code. Journal of Theoretical and Applied Information Technology,
2016, 84 (2), pp.183-195. �lirmm-01348053�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01348053
https://hal.archives-ouvertes.fr

Journal of Theoretical and Applied Information Technology
 20

th
 February 2016. Vol.84. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

183

QUALITY-DRIVEN FEATURE IDENTIFICATION AND

DOCUMENTATION FROM SOURCE CODE

1
 HAMZEH EYAL SALMAN,

 2
ABDELHAK-DJAMEL SERIAI,

3
Mustafa Hammad

1
Mutah University 61710, Mutah, Karak, Jordan

2
LIRMM, UMR 5506 CC477 161 rue Ada, Montpellier, France

E-mail:
1
hamzehmu@mutah.edu.jo,

2
seriai@lirmm.fr, hammad@mutah.edu.jo

ABSTRACT

Software companies develop a large number of software products cater to the needs of customers in

different domains. Each product offers a set of features to serve customers in a particular domain. Over the

time, the product features (resp. their implementations) should be improved, changed or removed to meet

new demands of customers. Identifying source code elements that implements each feature plays a pivot

role in such software maintenance tasks. In this article, we present an approach to support effective feature

identification and documentation from source code. The novelty of our approach is that we identify each

feature implementation based on a semantic-correctness model that can achieve satisfactory results

according to well-known evaluation metrics on the subject. We have implemented our approach and

conducted evaluation with a large case study. Our evaluation showed that our approach always achieves

promising results.

Keywords: Feature Identification, Feature Location, Feature Documentation, Source Code, Reuse, Re-

engineering, Quality, Clustering.

1. INTRODUCTION

 Software companies develop a large number of

software products cater to the needs of customers

in different domains. Each product offers a set of

features to serve customers in a particular domain.

A feature is a prominent or distinctive user-visible

aspect, quality or characteristic of a software system

or systems [1]. Over the time, the product features

(resp. their implementations) should be improved,

changed or removed to meet new demands of

customers. Moreover, software products should be

re-engineered to keep pace with technological

developments in the software industry. Associating

source code elements (e.g., classes, methods, etc.)

that corresponds to each feature plays a pivot role in

both software maintenance and re-engineering. This

is because no maintenance or re-engineering

activity can be completed performed without first

understanding and identifying functionalities

(features) provided by given source code [2]. Such

association is called as feature identification.

In the literature review, feature

identification is used interchangeably with other

concept called feature location [3][4]. However,

they are different concepts. The process of feature

location relies on an input provided by the user to

the feature location process. This input represents

information specific to the feature to be located and

a guide of the feature location process. In contrast,

the feature identification process works without

such user input. We make a clear distinction

between feature identification and location by

proposing the following definitions. Feature

location is a feature-driven process to locate a

feature's implementation based on input feature-

specific information. Feature identification is a

source code-driven process to identify code

elements potentially implement a feature based on

available source code information.

There is a large body of research on

feature location approaches [5]. The distinguishing

factor between these approaches is the type of

information (user input) that they use. This type

refers to dynamic, static and textual information.

However, the feature identification from source

code is seldom considered and the identification

process lacks semantic-correctness model to

measure the semantic-correctness of each feature's

implementation. Another important shortcoming is

that the feature’s implementation identified is not

documented (e.g., feature name).

Journal of Theoretical and Applied Information Technology
 20

th
 February 2016. Vol.84. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

184

In this article, we propose an approach

(called Feature Identification and Documentation,

FID for short) for identifying source code elements

that implement each feature. Our approach mainly

relies on Agglomerative Hierarchical Clustering

(AHC) to group source code elements into clusters

based on semantic-correctness model. Each cluster

represents a feature implementation. Then, the

name and purpose of the feature implemented by

such cluster are extracted.

We have implemented our approach and

conducted evaluation with a large case study called

ArgoUML. Our evaluation shows that our approach

gives promising results according to the most

widely used metrics in the domain (Precision,

Recall and F-measure).

The remainder of the article is structured

as follows. Section 2 reviews related work. Section

3 discusses our FID approach. Section 4 describes

our experimental results and evaluation. Section 5

discusses threats to the validity of our approach.

Finally, we conclude the article in Section 6.

2. RELATED WORK

In this section, we present the work that

relates to ours. The majority of existing approaches

are designed to support feature location while a few

approaches support feature identification.

2.1 Feature Location Approaches

As mentioned earlier, the distinguishing

factor between feature location approaches is the

type of information that they use: dynamic, static

and textual information. In the following, we

present feature location approaches according to

these types of information.

2.1.1 Dynamic-based feature location

approaches

Dynamic analysis refers to collecting

information from a system during runtime. For the

purpose of feature location, it is used to locate

feature implementations that can be called during

runtime by test scenarios [6][7]. Feature location

using dynamic analysis depends on the analysis of

execution traces. An execution trace is a sequence

of source code entities (classes, methods, etc.).

Usually, one or more feature-specific scenarios

are developed that invoke only the

implementation of the feature of interest. Then,

the scenarios are run and execution traces are

collected, recording information about the code

that was invoked. These traces are obtained by

instrumenting the system code. Using dynamic

analysis, the source code elements pertaining to a

feature can be determined in several ways.

Comparing the traces of the feature of interest to

other feature traces in order to find source code

elements that only is invoked in the feature-

specific traces[8][9]. Alternatively, the frequency

of execution parts of source code can be analyzed

to determine the implementation of a feature

[10][11]. For example, a method exercised multiple

times and in different situations by test scenarios

relevant to a feature is more likely to be relevant to

the feature being located than a method used less

often.

Feature location by using dynamic

analysis has some limitations. The test scenarios

used to collect traces may invoke some but not all

the code portions that are relevant to a given

feature; this means that some of the implementation

of that feature may not be located. Moreover, it

may be difficult to formulate a scenario that

invokes only the required feature, which leads to

obtain irrelevant source code elements.

Additionally, developing test scenarios involves

well-documented systems to understand the system

functionalities [5]. Such maintainers may not

always be available, especially in legacy system.

2.1.2 Static-based feature location

approaches

Feature location using static analysis refers

to the analysis of the source code to explore

structural information such as control or data flow

dependencies. Static feature location approaches

require not only dependence graphs, but also a set

of source code elements which serve as a starting

point for the analysis. This initial set is relevant to

features of interest and usually specified by

maintainers. The role of static analysis is to

determine other source code elements relevant to

the initial set using dependency graphs [12] [13]

[14] [15] [16] [17][4][18] [19].

Static approaches allow maintainers to be

very close to what they are searching for in the

source code, as they start from source code

elements (initial set) specific to a feature of interest.

However, these approaches often exceed what is

pertinent to a feature and are prone to returning

irrelevant code [5]. This is because following all

dependencies of a section of code that is relevant to

Journal of Theoretical and Applied Information Technology
 20

th
 February 2016. Vol.84. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

185

a feature may catch source code elements that are

irrelevant. In addition, static approaches need

maintainers who are familiar with the code in order

to determine the initial set.

2.1.3 Textual-Based feature location

approaches

 Textual information embedded in source

code comments and identifiers provides important

guidance about where features are implemented.

Feature location using textual analysis aims to

analyze this information to locate a feature's

implementation [20]. This analysis is performed by

three different ways: pattern matching (PM),

Natural Language Processing (NLP) and

Information Retrieval (IR).

PM usually needs a textual search inside a

given source code using a utility tool, such as grep

[21]. Maintainers formulate a query that describes a

feature to be located then they use a PM tool to

investigate lines of code that match the query. The

PM is not very precise due to the vocabulary

problem; the probability of choosing a query's

terms, using unfamiliar source code maintainers,

that match the source code vocabulary is relatively

low [22].

NLP-based feature location approaches

analyze the parts of the words (such as noun

phrases, verb phrases and prepositional phrases)

used in the source code [23]. They rely on the

assumption that verbs in object-oriented programs

correspond to methods, whereas nouns correspond

to objects. As an input for these approaches, the

user formulates a query describing the feature of

interest and then the content of the query is

decomposed into a set of pairs (verb, object). These

approaches work by finding methods and objects

inside the source code, which are similar to the

input verbs and objects, respectively [24][25][26].

NLP is more precise than pattern matching but

relatively expensive [5].

IR-based techniques, such as Latent

Semantic Indexing (LSI) and Vector Space Model

(VSM), are textual matching techniques to find

textual similarity between a query and given corpus

of textual documents. For the purpose of locating a

feature's implementation, a feature's description

represents the subject of a query while source code

documents represent corpus documents. A feature

description is a natural language description

consisting of short paragraph(s). A source code

document contains textual information of certain

granularity of source code, such as a method, a

class or a package. IR-based feature location

approaches find a code portion that is relevant to

the feature of interest by conducting a textual

matching between identifiers and comments of a

given source code portion and the description of the

feature to be located [27] [28] [29] [30] [31] [32]

[33][34][35]. IR lies between NLP and pattern

matching in terms of accuracy and complexity [5].

Regardless of the type of textual analysis

used (PM, NLP and IR), generally the quality of

these approaches mainly depends on the quality of

the source code naming conventions and the query.

2.2 Feature Identification Approaches

In the literature review, there are only

three approaches to support feature identification

from source code [36][37][38]. These approaches

are as follows.

In [36], Ziadi et al. propose an approach to

identify portions of source code elements that

potentially may implement features in a collection

of similar software products called product

variants. These products have common features and

differ in others. The authors exploit what product

variants have in common at the source code level

by performing several rounds of intersections

among source code elements of product variants. In

the first round, the source code elements shared

between all product variants are obtained. In the

next rounds, source code elements shared among

some product variants are obtained. The result of

each intersection may potentially represent feature

implementation(s).

According to Ziadi et al. approach, they

consider source code elements (packages, classes,

methods and attributes) that are shared across all

product variants as an implementation of a single

feature. However, this implementation may

correspond to more than one feature when all

product variants share two features or more.

Moreover, their approach does not distinguish the

implementation of features that always appear

together. Additionally, their approach was designed

only to work in case of having a set of similar

Journal of Theoretical and Applied Information Technology
 20

th
 February 2016. Vol.84. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

186

Figure 1: Overview of FID Process.

software products and cannot be applied to only

one software product.

In [37], Al-Msie'Deen et al. propose an

approach similar to Ziadi et al.'s approach. Their

approach exploits common source code elements

across product variants to identify segments of

source code elements, which potentially may

implement features. They rely on Formal Concept

Analysis (FCA) for conducting several intersections

between source code elements of product variants

to identify these segments. Then, these segments

are further divided into sub-segments using LSI and

FCA. According to their approach, each sub-

segment represents a feature implementation.

However, it is not necessary that each sub-

segment represents an implementation of a single

feature because source code elements that are

shared between the implementation of two or more

features appear as a separated sub-segment. This

leads to identify features more than the features

actually provided by a given collection of product

variants, and hence missing source code elements

that are relevant to features that actually are

provided by this collection. Moreover, their

approach was designed to work only in case of

having a set of similar software products and

cannot be applied to only one software product.

In [38], Grant et al. relies on Independent

Component Analysis (ICA) to identify feature

implementations. ICA is a signal analysis

technique that decomposes input signals into

statistically independent components. According to

their approach, a term-document matrix is

constructed. In this matrix, rows correspond to

source code methods, columns represent terms

extracted from methods and cells contain the

frequency of a term in a method. Then, ICA factors

the matrix into two new matrices. The first matrix

holds independent signals which may be considered

as features. The second matrix stores information

about how each signal is relevant to a method.

Features are then mapped to methods which are

related in functionality. The limitations of their

approach are redundancy in the search results and

identifying only a few features.

3. THE PROPOSED FEATURE

IDENTIFICATION PROCESS

 In this section, we present step-by-step the

proposed feature identification process. According

to this process, we identify each feature

implementation with its name in three steps as

detailed in the following. These steps are designed

by considering that each feature is implemented by

a set of source code classes. This consideration

comes from the granularity level of source code

elements that implement features in large systems.

This level in such systems is a coarse-granularity

which refers to packages and classes.

Figure 1 presents an overview of our

feature identification process. This process takes as

input feature list (feature names) and source code.

There are three steps in our proposed process. This

first step aims to analyze the source code for

extracting source code information. In the second

step, we identify each feature implementation using

a clustering algorithm. Finally, we document (e.g.,

name and purpose) each feature implementation

identified.

Journal of Theoretical and Applied Information Technology
 20

th
 February 2016. Vol.84. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

187

3.1 Source Code Analysis

In this step, we analyze the input source code

to extract packages, classes and interdependencies

information among these classes which are used in

the remaining steps. These interdependencies

include:

­ Inheritance relationship: when a class

inherits attributes and methods from

another class.

­ Composition relationship: when a class is

used as a data type of attribute belonging

to another class.

­ Method call: when a method of one class

calls a method of another class.

­ Direct attribute access: when a class

accesses an attribute of another class.

­ Shared attribute access: when two classes

access the same attribute of another class.

For example, classes (A and B) accesses

the same attribute (AT) that belongs to the

class C.

To capture these interdependencies, we

statically analyze the source code through building

an abstract syntax tree (AST) [39]. This tree is

traversed to extract interdependencies mentioned

above.

3.2 Clustering

The main goal in our feature identification

process is to group together the source code classes

that contribute to implement the same feature into a

cluster. To achieve this goal, we propose the

following two types of clustering: Clustering Based

on Feature List and Clustering Based on Semantic-

Correctness.

3.2.1 Clustering based on feature list

Features represent domain concepts which

their implementations are provided in software

documentation, such as package diagram and class

diagram [40]. For example, in UML software tools,

such as ArgoUML, the implementation of domain

concepts are organized into folders according to

package names, such as activity, collaboration,

sequence, deployment and state (cf. Figure 2). Thus,

the features implementations are often organized

into packages which are represented as folders or

sub-folders. A package folder consists of many

Figure 2: Software Features by Package Names.

related classes corresponding to the related features.

For instance, in ArgoUML there is a feature called

state. By reference to the Figure 2, we can find a

folder package under title “state” and this term

occurs frequently within the names of classes of

that packages (e.g., FigBranchState, FigFinalState,

FigForkState).

In this type of clustering, we aim to

repackaging source code packages and sub-

packages according to the input feature names.

Repackaging refers to grouping together packages

and sub-packages (resp. their classes) which their

names include a feature name into a cluster. Such

cluster represents a part of the implementation of

that feature. Such clusters called feature clusters.

For other packages that their names do not include

feature names, we create a cluster for each class

belonging to these packages, such clusters called

singleton clusters. Both feature and singleton

clusters represent initial clusters for the next type of

clustering as shown below.

3.2.2 Clustering based on semantic-

correctness

In this type of clustering, we group the

initial clusters to identify each feature

implementation based on a measurement model of

semantic-correctness of a feature. This model

refines feature characteristics to measurable

metrics. Based on these metrics, we define a fitness

function to measure the semantic-correctness of a

feature. Then, we use a hierarchical clustering

Journal of Theoretical and Applied Information Technology
 20

th
 February 2016. Vol.84. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

188

Figure 3: Meta Model to Measure Software Characteristics in ISO-9126.

algorithm which uses this function to identify each

feature implementation.

3.2.2.1 Semantic-correctness of features

Semantic-correctness of a feature means

that each feature implementation is semantically

correct. In order to evaluate the feature semantic-

correctness, we use the refinement model given by

the norm ISO-9126 [41] (cf. Figure 3). According

to this model, we need to refine the semantic-

correctness characteristic into sub-characteristics.

This refinement is done by studying the semantic

which is associated with the feature concept. This

study is based on the most commonly admitted

definitions of the feature concept [42]. Based on

these studied definitions, we identify the following

semantic sub-characteristic of a feature: specificity

which means that a feature must provide a limited

number of closely related functionalities.

Then, according to norm ISO-9126, we

refine this sub-characteristic into feature properties.

These properties are feature cohesion and coupling.

Feature cohesion is the degree to which the

elements of a feature (e.g., classes, methods and

fields) depend on other elements of the same

feature while feature coupling is the degree to

which the elements of a feature depend on elements

outside the feature [43]. These two properties

indicate the level of proximity between the internal

elements of the feature implementation. Thus, they

determine if the internal elements of a feature

implementation work together to accomplish

closely related functionalities or if there are

independent elements providing different

functionalities. In order to measure the feature

properties, we use two metrics proposed by Apel et

al. [43]. Internal-ratio Feature Dependency to

measure feature cohesion and External-ratio

Feature Dependency to measure feature coupling.

Internal-ratio Feature Dependency

(IFD) measures the number of internal

dependencies in relation to the total number of

potentially possible internal dependencies of a

feature implementation:

Function intdep(F) returns all

interdependencies among elements of a feature

implementation F; |elems(F)|
2
 is the maximum

possible number of interdependencies among

elements of a feature implementation F. The

intuition behind this measure is that the elements of

a cohesive feature depend on many other elements

of the same feature. So, for a feature F with three

elements each depending on all elements of F

(including self-references), we have IFD (F) = 1,

which indicates that F is maximally cohesive.

Conversely, for a feature F with three elements,

none depending on any other element of F, we have

IFD (F) = 0, which indicates that F is not cohesive.

External-ratio Feature Dependency

(EFD) measures the number of interdependencies

in relation to the total number of actual

dependencies (internal and external) of a feature

implementation:

Function dep (F) returns all dependencies

of elements of a feature implementation F. If F

depends only on itself, we have EFD (F) = 1,

which indicates that F is tightly coupled (i.e., the

elements of F use each other). Conversely, if a

feature F depends only on elements outside the

feature, we have EFD (F) = 0, which indicates that

F is loosely coupled.

The linear combination of IFD and EFD

represents our fitness function (Spe(F)) (see

Equation 3). The links previously established

between the feature’s characteristic, sub-

characteristic, properties and metrics are

summarized in Figure 4.

Journal of Theoretical and Applied Information Technology
 20

th
 February 2016. Vol.84. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

189

Figure 4: The Refinement Model for Semantic-Correctness of a Feature Implementation.

3.2.2.2 Hierarchical clustering algorithm

As each feature implementation consists of

a set of classes, it is necessary to group together

these classes that belong to the same feature

implementation. This association must be based on

a number of criteria to maximize the value of the

fitness function of these groups. In addition to the

fitness function, it is necessary to define an

algorithm which allows us to identify groups of

classes. Among the possible algorithms, we use a

clustering algorithm. This kind of algorithm is used

for grouping elements using a similarity function.

This makes it suitable for our problem because the

fitness function defined previously will play the

role of a similarity function.

Clustering, in general, is a division of

objects into groups of similar objects. Each group,

called cluster, consists of objects that are similar

among themselves and dissimilar to objects of other

clusters. Clustering approaches are classified into

hierarchical or non-hierarchical [44]. Hierarchical

clustering algorithms are further categorized into

agglomerative (bottom-up) and divisive (top-

down). An Agglomerative Hierarchical Clustering

(AHC) starts with one-object (singleton) clusters

and recursively merges two or more appropriate

clusters. A divisive clustering involves a series of

successive divisions.

Our approach uses an AHC algorithm (cf.

Algorithm 1) for grouping the initial clusters

(produced previously in Step 2.1). The strength of

the relationship between these clusters is used as a

basis for clustering them (Line 3). This strength is

measured using our fitness function (Spc()). The

Algorithm 1proceeds through a series of successive

binary mergers (agglomerations), initially of

individual entities (the initial clusters) and later of

clusters formed during the previous stages (Lines 4-

7). The clusters having the highest relationship

strengths are grouped first. The process continues

until we get a single cluster. We obtain from this

single cluster a dendrogram (Line 9). This

dendrogram contains all candidate feature

implementations. The presented algorithm uses the

closestClusters() function to determine which two

clusters will be merged in the next step. This

function returns the most similar pair of clusters

(the two clusters that maximize the value of the

fitness function).

Journal of Theoretical and Applied Information Technology
 20

th
 February 2016. Vol.84. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

190

Figure 5 shows an example of dendrogram

tree. At the lowest level, each initial cluster is in its

Figure 5: An Example of a Dendrogram Tree.

own cluster. At the highest level, all clusters belong

to the same cluster. The internal nodes represent

new clusters formed by merging the clusters that

appear as their children (left and right nodes) in the

tree.

In order to obtain each feature

implementation, we have to select nodes among the

hierarchy resulting from the dendrogram tree. This

selection is done by an algorithm based on a depth-

first search (cf. Algorithm 2).

Algorithm 2 is a simple algorithm to select

nodes representing feature implementations. The

algorithm traverses the dendrogram tree starting

from the root node. In each while loop, the

traversed nodes are sorted in ascending order

according to the value of the fitness function of

each node (Line 4). Then, the node that has the

lowest fitness function value (i.e., the relationship

strengths between its left and right nodes is the

lowest) is firstly exploded to its left and right nodes

(Lines 5-9). The loops continue until reaching the

number of traversed nodes (stored in

traversedNodes stack) are equal to the number of

features. As a result, the presented algorithm

returns a set of nodes so that each one represents a

feature implementation.

3.3 Documenting Feature Implementations

Identified

In case of having a large number of

features, we need to document each feature

implementation identified in order to link this

implementation with its feature name (as input).

Moreover, a feature implementation can be

efficiently reused if its documentation (e.g., main

purpose, name, etc.) is available. Thus, the need to

document the feature implementation identified is

necessary.

To achieve above mentioned goal, we use

a heuristic to document each feature

implementation identified. We based ourselves on

the following observation: in many object-oriented

languages, class names are a sequence of nouns

concatenated using a CamelCase convention (i.e.,

CollaborationDiagramPropPanelFactory,

DeploymentDiagramGraphModel, etc). The first

word of a class name denotes to the main purpose

of the class; the other words denote to a

complementary purpose of the class. According to

the previous assertion, our heuristic documents

each feature implementation in three steps [45]:

extracting and decomposing class names from

feature implementation, weighting words and

constructing the feature name.

3.3.1 Extracting and decomposing class

names

In this step, class names are split into

tokens according to the CamelCase convention. In

this convention the uppercase case letters and

underscore are used as delimiters for splitting. For

Journal of Theoretical and Applied Information Technology
 20

th
 February 2016. Vol.84. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

191

example:CollaborationDiagramPropPanelFactory

is split into Collaboration, Diagram, Prop, Panel

and Factory. However, we may encounter single

case class name (such as, DBNAME and

maxvalues), abbreviations and acronyms. To handle

such name compositions, we rely on an algorithm

proposed by Warintarawej et al. [40].

3.3.2 Weighting words

In this step, a weight is assigned to each

token extracted from class names. A large weight is

assigned to the first token of a class name. A

medium weight is assigned to the second token of a

class name. Finally, a small token is assigned to

other tokens. For a given token (t), the weight is

calculated as follows:

Where:

­ N1: number of appearance of the token(t)

as the first token of a class name.

­ N2: number of appearance of the token(t)

as the second token of a class name.

­ N3: number of appearance of the token(t)

as the third token of a class name.

3.3.3 Constructing the feature name

In this step, a feature name is constructed

based on the strongest weighted tokens. The first

word of the feature name is the strongest weighted

token. The second word of the feature name is the

second strongest weighted token and so on. The

number of words used in the feature name is

specified by the user. When many tokens have the

same weight, all the possible combinations are

given to the user and he can select the appropriate

one.

4. EXPERIMENTAL EVALUATION

 In this section, we present an experimental

evaluation of our feature identification and

documentation process (FID) to demonstrate its

feasibility.

4.1 Case Study

We have applied FID to a large case study

called ArgoUML. It is a JAVA open-source which

is used to design all standard UML diagrams, such

as, the Class diagram, the State diagram, the

Activity diagram, etc. We use ArgoUML because its

features are well-documented and each feature

implementation can be extracted from the system

for evaluation. This allows us to investigate the

scalability of FID and the quality of FID results.

ArgoUML supports eight complex

features. The first feature is cognitive support

which provides information that helps designers to

detect and to solve problems in their models. Other

features are Class Diagram, State Diagram,

Activity Diagram, Collaboration Diagram,

Sequence Diagram, Deployment Diagram and

UseCase Diagram. These features provide to

support their respective UML diagrams.

In order to establish the ground truth links

between ArgoUML's features and their

implementing source code classes for evaluation

purpose, we relied on the work proposed by Marcus

et al. [46]. In this work, each feature

implementation is annotated using conditional

compilation directives (e.g., #if defined

(COGNITIVE)). Insertion such pre-processor

directives in the source code allows us to delimit

each feature implementation in ArgoUML.

ArgoUML's implementation has about 120

KLOC. From those lines, 37 KLOC were annotated

as responsible for the implementation of the

aforementioned features. Such numbers refer to that

ArgoUML is an appropriate case study for

scalability. Table 1 and Table 2 present source code

statistic information for ArgoUML and its features.

4.2 Evaluation Metrics

We use three metrics to evaluate the

effectiveness of our approach: Precision, Recall

and F-measure. These metrics are well-known in

our domain [5].

For a given feature, Precision is the

percentage of relevant source code classes retrieved

to the total number of retrieved classes. The

Precision values take a range in [0, 1]. If the

Journal of Theoretical and Applied Information Technology
 20

th
 February 2016. Vol.84. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

192

Precision value is 1, this means that all the

retrieved classes are relevant but also this does not

mean that all relevant classes are retrieved (false-

negative classes). Equation 5 represents the

Precision metric equation.

For a given feature, Recall is the

percentage of relevant classes retrieved to the total

number of relevant classes. The Recall values take

a range in [0, 1]. If the Recall value is 1, this means

that all relevant classes are retrieved. However, this

does not mean that all retrieved classes are relevant

(false-positive classes). Equation 6 represents the

Recall metric equation.

F-measure is the harmonic mean of Precision and

Recall. It is computed as follows:

The F-measure values take a range in [0,

1]. If F-measure value is 0, it means that no

relevant classes have been retrieved. If F-measure

value is 1, it means that all relevant classes are

retrieved and only them. Moreover, the harmonic

mean (F-measure) gives a high value only when

both Recall and Precision are high. Therefore, a

high value of F-measure can be interpreted as an

attempt to find the best possible compromise

between Recall and Precision.

4.3 Results and Effectiveness

Table 3 presents experiment results of

Precision, Recall and F-measure on ArgoUML. The

first column refers to each feature implementation

identified. The last column shows the name that is

assigned by our approach to each feature

implementation. For example, the implementation

(Imp.) of Collaboration feature is documented as a

feature name called Figure Diagram Collaboration.

For Precision metric, our approach

achieves (100%) Precision for identifying all

feature implementations except Cognitive's Imp.

which has 88% Precision. These high Precision

values are due to the fact that each feature

implementation in ArgoUML is cohesive. This

means that each feature implementation maximize

the value of the fitness function. Consequently, our

approach deals with such cohesive implementation

as an implementation of one feature and only for

that feature. Regarding to the Precision value

(88%) of Cognitive's Imp., we think that this is due

to Cognitive feature (resp. its implementation) has a

crosscutting behavior through all other features

(resp. their implementations). This means that the

elements of Cognitive's implementation are loosely

coupled which causes our approach to retrieve

some irrelevant classes for Cognitive feature.

According to Recall metric, the proposed

approach has high Recall values. They take a range

[91% - 100%] for most of the features, Class

Diagram, Activity Diagram, Sequence Diagram,

Deployment Diagram and UseCase Diagram while

Collaboration's Imp. and State's Imp. have 57% and

73% Recall respectively. The reason that hinders

our approach achieving 100% for all feature

implementations identified is that we do not

consider overlapping among feature

implementations (shared source code classes among

feature implementations). This is because our

approach relies on a clustering algorithm that does

not allow building overlapped clusters. When such

overlapped classes are used as an interface (not core

feature implementation) to link all feature

Journal of Theoretical and Applied Information Technology
 20

th
 February 2016. Vol.84. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

193

implementations together, we can consider such

minor degrade in Recall values are not significant.

F-measure values shown in Table 3 are

high where these values take a range in [73% -

100%]. These values confirm that our approach

gives a good compromise between Precision and

Recall. This is attributed to the fact that our

approach achieves high Precision and Recall values

for each feature implementation identified.

The last column in Table 3 shows the

feature name extracted from each feature

implementation according to our approach. Each

feature name consists of three terms. This number

of terms can be increased or decreased based on the

human expert need. It is important to note that by

using only three terms, we can associate each

feature implementation identified with its correct

feature name in ArgoUML. For example, the

Class's Imp. is associated with Class feature

because the name (Figure Class diagram) extracted

from the Class's Imp. includes the term “Class”.

Also, this is true for other feature except Cognitive.

The name (Critics To Go) assigned to Cognitive's

Imp. does not include the “Cognitive” term but it

includes the term “Critics” which refers to

Cognitive feature according to ArgoUML

documents.

5. THREATS TO VALIDITY

 We identify two issues that constitute

limitations of our study and impact the results.

­ Our approach uses agglomerative

hierarchical clustering to group source

classes into non-overlapping clusters so

that each resulting cluster represents a

feature implementation. However, feature

implementations can be interleaved (there

are shared classes between feature

implementations). Such interleaving may

impact the results slightly.

­ In our approach, we rely on quality metrics

which consist of feature cohesion and

coupling to design our fitness function.

This function is used to guide the

hierarchical clustering to find a feature

implementation which maximizes the

fitness value. However, feature

implementations that need to be identified

may have low cohesion and coupling,

especially in ad-hoc implementation. This

may impact the results.

6. CONCLUSIONS AND PERSPECTIVES

 In this article, we presented an approach

called FID for automatically supporting feature

identification and documentation from source code.

Our approach mainly relied on agglomerative

hierarchical clustering to group source code classes

into clusters based on semantic-correctness model.

Also, we documented each feature implementation

by automatically generating its name using some

heuristics based on well accepted code convention.

In our experimental evaluation using a large case

study called ArgoUML, we showed that our

approach always achieves promising results

according to the widely used metrics in our domain:

Precision, Recall and F-measure.

In the future, we are interested to

investigate textual information embedded in source

code (e.g., identifier names) as a complementary

part of our fitness function. This is because such

information conveys domain concepts (feature)

software.

REFERENCES

[1] K. C. Kang, S. G. Cohen, J. A. Hess, W. E.

Novak, and A. S. Peterson, “Feature-oriented

domain analysis (foda) feasibility study,”

1990.

[2] B. Dit, M. Revelle, M. Gethers, and D.

Poshyvanyk, “Feature location in source code:

a taxonomy and survey,” Journal of Evolution

and Process, vol. 25, no. 1, 2013, pp. 53–95.

[3] G. Antoniol and Y.-G. Gueheneuc, “Feature

identification: a novel approach and a case

study,” in Software Maintenance, 2005.

ICSM’05. Proceedings of the 21st IEEE

International Conference on, Sept 2005, pp.

357–366.

[4] M. Trifu, “Using dataflow information for

concern identification in object-oriented

software systems,” in Proceedings of the 2008

12th European Conference on Software

Maintenance and Reengineering, ser. CSMR

’08. Washington, DC, USA: IEEE Computer

Society, 2008, pp. 193–202.

[5] D. Bogdan, R. Meghan, G. Malcom, and P.

Denys, “Feature location in source code: a

taxonomy and survey,” Journal of Evolution

and Process, vol. 25, no. 1, 2013, pp. 53–95.

Journal of Theoretical and Applied Information Technology
 20

th
 February 2016. Vol.84. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

194

[6] R. Koschke and J. Quante, “On dynamic feature

location,” in Proceedings of the 20
th

IEEE/ACM international Conference on

Automated software engineering, ser. ASE

’05, New York, NY, USA, 2005, pp. 86–95.

[7] F. Asadi, M. Penta, G. Antoniol, and Y.-G.

Gueheneuc, “A heuristic-based approach to

identify concepts in execution traces,” in

Proceedings of the 2010 14th European

Conference on Software Maintenance and

Reengineering, ser. CSMR ’10, Washington,

DC, USA, 2010, pp. 31–40.

[8] T. Eisenbarth, R. Koschke, and D. Simon,

“Locating features in source code,” IEEE

Trans. Softw. Eng., vol. 29, no. 3, 2003, pp.

210–224.

[9] N. Wilde and M. C. Scully, “Software

reconnaissance: mapping program features to

code,” Journal of Software Maintenance:

Research and Practice, vol. 7, no. 1, 1995, pp.

49–62.

[10] A. D. Eisenberg and K. De Volder, “Dynamic

feature traces: Finding features in unfamiliar

code,” in Proceedings of the 21st IEEE

International Conference on Software

Maintenance, ser. ICSM ’05, Washington,

DC, USA, 2005, pp. 337–346.

[11] H. Safyallah and K. Sartipi, “Dynamic analysis

of software systems using execution pattern

mining.” in ICPC. IEEE Computer Society,

2006, pp. 84–88.

[12] C. Kunrong and R. Vclav, “Case study of

feature location using dependence graph,” in

In Proceedings of the 8th International

Workshop on Program Comprehension. IEEE

Computer Society, 2000, pp. 241–249.

[13] J. Buckner, J. Buchta, M. Petrenko, and V.

Rajlich, “Jripples: A tool for program

comprehension during incremental change,”

in Proceedings of the 13th International

Workshop on Program Comprehension, ser.

IWPC ’05. Washington, DC, USA: IEEE

Computer Society, 2005, pp. 149–152.

[14] M. P. Robillard and G. C. Murphy, “Concern

graphs: finding and describing concerns using

structural program dependencies,” in

Proceedings of the 24th International

Conference on Software Engineering, ser.

ICSE ’02. New York, NY, USA: ACM, 2002,

pp. 406–416.

[15] M. Robillard and G. C. Murphy, “Representing

concerns in source code,” ACM Transactions

on Software Engineering and Methodology,

vol. 16, no. 1, pp. 2007, 1–38.

[16] M. P. Robillard, “Automatic generation of

suggestions for program investigation,”

SIGSOFT Softw. Eng. Notes, vol. 30, no. 5,

Sep. 2005, pp. 11–20.

[17] Z. M. Saul, V. Filkov, P. Devanbu, and C. Bird,

“Recommending random walks,” in

Proceedings of the the 6th Joint Meeting of

the European Software Engineering

Conference and the ACM SIGSOFT

Symposium on The Foundations of Software

Engineering, ser. ESEC-FSE ’07. New York,

NY, USA: ACM, 2007, pp. 15–24.

[18] A. El Kharraz, P. Valtchev, and H. Mili,

“Concept analysis as a framework for mining

functional features from legacy code,” ser.

ICFCA’10. Springer-Verlag, 2010, pp. 267–

282.

[19] M. Marin, A. V. Deursen, and L. Moonen,

“Identifying crosscutting concerns using fan-

in analysis,” ACM Trans. Softw. Eng.

Methodol., vol. 17, no. 1, Dec. 2007, pp. 3:1–

3:37.

[20] T. Savage, M. Revelle, and D. Poshyvanyk,

“Flat3: feature location and textual tracing

tool.” in ICSE’2. ACM, 2010, pp. 255–258.

[21] M. Petrenko, V. Rajlich, and R. Vanciu, “Partial

domain comprehension in software evolution

and maintenance,” in The 16th IEEE Int’l

Conf. on Program Comprehension. IEEE,

June 2008, pp. 13–22.

[22] G. W. Furnas, T. K. Landauer, L. M. Gomez,

and S. T. Dumais, “The vocabulary problem

in human-system communication,” Commun.

ACM, vol. 30, no. 11, 1987, pp. 964–971.

[23] D. Shepherd, L. Pollock, and K. Vijay-Shanker,

“Towards supporting on-demand virtual

remodularization using program graphs,” in

Proceedings of the 5th International

Conference on Aspect-oriented Software

Development, ser. AOSD ’06, New York,

NY, USA, 2006, pp. 3–14.

[24] S. L. Abebe and P. Tonella, “Natural language

parsing of program element names for

concept extraction,” in Proceedings of the

2010 IEEE 18th International Conference on

Program Comprehension, ser. ICPC ’10.

Washington, DC, USA: IEEE Computer

Society, 2010, pp. 156–159.

[25] M. Petrenko, V. Rajlich, and R. Vanciu, “Partial

domain comprehension in software evolution

and maintenance,” in The 16th IEEE Int’l

Conf. on Program Comprehension. IEEE,

June 2008, pp. 13–22.

[26] M. W¨ursch, G. Ghezzi, G. Reif, and H. C. Gall,

“Supporting developers with natural language

Journal of Theoretical and Applied Information Technology
 20

th
 February 2016. Vol.84. No.2

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

195

queries,” in Proceedings of the 32Nd

ACM/IEEE International Conference on

Software Engineering - Volume 1, ser. ICSE

’10. New York, NY, USA: ACM, 2010, pp.

165–174.

[27] A. D. Lucia, F. Fasano, R. Oliveto, and G.

Tortora, “Recovering traceability links in

software artifact management systems using

information retrieval methods,” ACM Trans.

Softw. Eng. Methodol., vol. 16, no. 4, 2007.

[28] G. Antoniol, G. Canfora, G. Casazza, A. De

Lucia, and E. Merlo, “Recovering traceability

links between code and documentation,”

IEEE Trans. Softw. Eng., vol. 28, no. 10,

Oct. 2002, pp. 970–983.

[29] G. Gay, S. Haiduc, A. Marcus, and T. Menzies,

“On the use of relevance feedback in ir-based

concept location.” in ICSM. IEEE, 2009, pp.

351–360.

[30] A. Marcus and J. I. Maletic, “Recovering

documentation-to-source-code traceability

links using latent semantic indexing.” in

ICSE. IEEE Computer Society, 2003, pp.

125–137.

[31] A. Kuhn, S. Ducasse, and T. G´ırba, “Semantic

clustering: Identifying topics in source code,”

Inf. Softw. Technol., vol. 49, no. 3, , Mar.

2007, pp. 230–243.

[32] A. D. Lucia, R. Oliveto, and G. Tortora, “Ir-

based traceability recovery processes: An

empirical comparison of ”one-shot” and

incremental processes,” in Proceedings of the

2008 23rd IEEE/ACM International

Conference on Automated Software

Engineering, ser. ASE ’08, Washington, DC,

USA, 2008, pp. 39–48.

[33] M. Hammad, “Identifying related commits from

software repositories,” International Journal

of Computer Applications in Technology, vol.

51, no. 3, 2015, pp. 212–218.

[34] A. De Lucia, R. Oliveto, and G. Tortora,

“Adams re-trace: Traceability link recovery

via latent semantic indexing,” in Proceedings

of the 30th International Conference on

Software Engineering, ser. ICSE ’08. New

York, NY, USA: ACM, 2008, pp. 839–842.

[35] H. Eyal-Salman, A.-D. Seriai, and C. Dony,

“Feature-to-code traceability in a collection of

software variants: Combining formal concept

analysis and information retrieval,” ser.

IRI’13. California, USA: IEEE Computer

Society, 2013, pp. 209–216.

[36] T. Ziadi, L. Frias, M. A. A. da Silva, and M.

Ziane, “Feature identification from the source

code of product variants,” in Proceedings of

the 15th European Conference on Software

Maintenance and Reengineering, F. R. MENS

T., CLEVE A., Ed. Los Alamitos, CA, USA:

IEEE, 2012, pp. 417–422.

[37] R. Al-Msie’Deen, A. Seriai, M. Huchard, C.

Urtado, S. Vauttier, and H. Eyal Salman,

“Mining features from the object-oriented

source code of a collection of software

variants using formal concept analysis and

latent semantic indexing,” in The 25th

International Conference on Software

Engineering and Knowledge Engineering.

Knowledge Systems Institute Graduate

School, 2013, p. 8-18

[38] S. Grant, J. R. Cordy, and D. B. Skillicorn,

“Automated concept location using

independent component analysis.” in WCRE.

IEEE Computer Society, 2008, pp. 138–142.

[39] B. Fluri, M. Wuersch, M. PInzger, and H. Gall,

“Change distilling: Tree differencing for fine-

grained source code change extraction,” IEEE

Trans. Softw. Eng., vol. 33, no. 11, 2007, pp.

725–743.

[40] P. Warintarawej, M. Huchard, M. Lafourcade,

A. Laurent, and P. Pompidor, “Software

understanding: Automatic classification of

software identifiers,” Intelligent Data

Analysis, vol. 18, no. 6, 2014.

[41] ISO, “Software engineering - product quality,

ISO/IEC 9126-1,” International Organization

for Standardization, Tech. Rep., 2001.

[42] M. Acher, “Managing Multiple Feature Models:

Foundations, Language, and Applications,”

Ph.D. dissertation, University of Nice Sophia

Antipolis, Nice, France, sep 2011.

[43] S. Apel and D. Beyer, “Feature cohesion in

software product lines: an exploratory study,”

ser. ICSE ’11. ACM, 2011, pp. 421–430.

[44] P. Berkhin, “A survey of clustering data mining

techniques,” Grouping Multidimensional

Data, 2006, pp. 25–71.

[45] S. Kebir, A.-D. Seriai, S. Chardigny, and A.

Chaoui, “Quality-centric approach for

software component identification from

object-oriented code,” ser. WICSA-ECSA

’12. Washington, DC, USA: IEEE Computer

Society, 2012, pp. 181–190.

[46] M. V. Couto, M. T. Valente, and E. Figueiredo,

“Extracting software product lines: A case

study using conditional compilation,” in

Proceedings of the 2011 15th European

Conference on Software Maintenance and

Reengineering, ser. CSMR ’11. Washington,

DC, USA: IEEE Computer Society, 2011, pp.

191–200.

