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On the Fixed Parameter Tractability of
Agreement-based Phylogenetic Distances

Magnus Bordewich, Celine Scornavacca,
Nihan Tokac and Mathias Weller

Abstract Three important and related measures for summarizing the dissim-
ilarity in phylogenetic trees are the minimum number of hybridization events 
required to fit two phylogenetic trees onto a single phylogenetic network (the 
hybridization number), the (rooted) subtree prune and regraft distance (the 
rSPR distance) and the tree bisection and reconnection distance (the TBR dis-
tance) between two phylogenetic trees. The respective problems of computing 
these measures are known to be NP-hard, but also fixed-parameter tractable 
in their respective natural parameters. This means that, while they are hard 
to compute in general, for cases in which a parameter (here the hybridiza-
tion number and rSPR/TBR distance, respectively) is small, the problem can 
be solved efficiently even for large input trees. Here, we present new analy-
ses showing that the use of the “cluster reduction” rule – already defined for 
the hybridization number and the rSPR distance and introduced here for the
TBR distance – can transform any O(f(p) · n)-time algorithm for any of these 
problems into an O(f(k) · n)-time one, where n is the number of leaves of the
phylogenetic trees, p is the natural parameter and k is a much stronger (that
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is, smaller) parameter: the minimum level of a phylogenetic network displaying
both trees.
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1 Introduction

Since Darwin first introduced the theory of evolution, one of the central goals
of evolutionary biology has been to try to construct an accurate ancestral
history of present day species. Reconstruction of phylogenetic trees has been
the principal tool to study the relationships between taxa, however it has long
been known that not all evolution can be represented by a tree. There are some
groups (for example including some subgroups of plants and fish) for which the
evolutionary history contains reticulation events, caused by processes including
hybridization, lateral gene transfer and recombination. For such groups of
species, it is appropriate to represent their ancestral history by phylogenetic
networks: single-rooted acyclic digraphs, where arcs represent lines of genetic
inheritance and vertices of in-degree at least two represent reticulation events.

One fundamental problem is to determine how much reticulation is re-
quired to explain the evolution of a given set of taxa: given a collection of
rooted phylogenetic trees on a set of taxa that correctly represent the tree-like
evolution of different parts of their genomes, what is the smallest number of
reticulation events needed to display the trees within a single phylogenetic
network (the Hybridization Number problem)?

This question, along with the closely related problems of determining the
minimum number of subtree prune and regraft, respectively tree bisection
and reconnection, operations required to transform one phylogenetic tree into
another (the rSPR Distance and TBR Distance problem, respectively)
has been considered in a number of papers [1, 2, 3, 5, 10, 12, 17, 18]. Key
theoretical developments have shown that each of these three problems is NP-
hard even in the restricted case that the input consists of two binary phylo-
genetic trees [4, 6, 12], but also that they are all fixed-parameter tractable
in their respective natural parameters [1, 4, 5]. In essence, this means that
there are efficient algorithms for computing the hybridization number and the
rSPR/TBR distance on two trees of large size, as long as there have not been
too many reticulations in the evolutionary history of the considered taxa. In
these theoretical analyses, an operation known as chain reduction is used to
prove fixed-parameter tractability, but this operation does not seem to help
the algorithms much in practice. On the other hand another operation, the
cluster reduction [3], which did not crop up in the theoretical analyses, greatly
speeds up the algorithms in practice. The cluster reduction for Hybridiza-
tion Number has been included in algorithms since the first parameterized
algorithms appeared [7], and recent work has shown the applicability of an
equivalent cluster reduction for rSPR Distance [16].



Here, we give a theoretical justification of why the cluster reduction for
Hybridization Number is so useful in practice by showing that the divide-
and-conquer approach that follows from it implies fixed-parameter tractability
where the parameter is not the total number of reticulations in the optimal
network displaying the two input trees, but instead the maximum number
of reticulations seen in any biconnected component of such a network. This
concept has been studied before as the level of the network (see for exam-
ple [14, 21]). In essence, this means that for large input trees, even when there
have been many reticulations, as long as not too many of the reticulations are
entangled with each other, the problem may still be solved efficiently. This is
what is expected to happen for real biological data, in part because reticu-
lation events such as hybridization events are less likely to happen between
genetically-distant species.

Actually, in this paper, we show something stronger: the use of the cluster
reduction can transform any O(f(p) · n)-time algorithm for any of the consid-
ered problems into an O(f(k) · n)-time algorithm, where n is the number of
leaves of the phylogenetic trees, p is the natural parameter and k is the min-
imum level of a phylogenetic network displaying both trees, which is a much
stronger (that is, smaller) parameter than p.

The fact that the cluster reduction implies fixed-parameter tractability
in the level for Hybridization Number was already implicitly present in
[15, 20]. Still, we think that it is worth proving explicitly and formally, and
extending the reasoning to rSPR Distance and TBR Distance, thus giving
hard evidence for the importance of implementing the cluster reduction in
available software.

In the next section, we give formal notation and definitions and we present
the main theorems of the paper. We prove fixed-parameter tractability of Hy-
bridization Number, rSPR Distance and TBR Distance with respect
to the level in Sections 3, 4, and 5, respectively.

2 Definitions and Statement of Results

The notation and terminology in this paper follows Semple and Steel [19],
unless explicitly stated otherwise. A directed graph (digraph) D is an ordered
pair (V,A) consisting of a non-empty set V of vertices and a set A ⊆ V ×V of
arcs. A digraph is acyclic (a DAG) if it has no directed cycles. The degree of
a vertex is the sum of its in- and out-degree. A vertex of degree zero is said to
be isolated, and a vertex of in-degree one and out-degree zero is called a leaf.
A vertex of in-degree zero is called a root.

A rooted binary phylogenetic network N = (D,φ) (on X) is an ordered pair
consisting of a DAG D with a unique root ρ, and a map φ such that

1. φ bijectively maps X to the set of leaves of D,
2. ρ has in-degree zero and out-degree two, and
3. all other vertices have degree three.



The vertices of in-degree two (and out-degree one) are called reticulation ver-
tices. We denote the set of leaf labels associated to a rooted binary phylogenetic
network N by L(N) (note that X = L(N)).

A rooted binary phylogenetic X-tree (or rooted binary phylogenetic tree on
X) is a rooted binary phylogenetic network on X without reticulation vertices.

The number of arcs we need to remove from a rooted phylogenetic net-
work N on X to obtain a rooted binary phylogenetic tree on X is denoted by
h(N) and referred to as the hybridization number of N . (Note that, for rooted
binary phylogenetic networks, h(N) coincides with the number of reticulation
vertices in N). A cut vertex (cut arc) is a vertex (an arc) whose removal discon-
nects the graph. A biconnected component is a maximal connected subgraph
that does not contain a cut vertex. The maximum h(B) in any biconnected
component B of N is called the level of the phylogenetic network N . For all
vertices v of N , let c(v) denote the subset of X consisting of the elements x
for which there is a directed path in N from v to φ(x). We call c(v) the cluster
corresponding to v. A subset C of X is a cluster of N if there is some vertex
v of N such that C = c(v) and C is non-trivial if C 6= X and |C| > 1.

Let T be a rooted binary phylogenetic X-tree with root ρ. We define the
size of the tree T to be |T | := |X| and abbreviate n := |X|. Let P be a set
of leaves of T . We denote the minimal rooted subtree of T that connects the
leaves of P by T (P ), and the root of T (P ) is the unique degree-two vertex
of T (P ) that is closest to the root of T in T . Furthermore, the restriction of
T to P (denoted T |P ) is the rooted binary phylogenetic tree that is obtained
from T (P ) by suppressing all non-root vertices of degree two. For a non-trivial
cluster C corresponding to a vertex v of T , we define the contraction of T with
respect to C (denoted by T↓C) as the result of contracting the subgraph rooted
at v in T onto v, removing all labels of C from X, and giving v a new label
(we use the label aC unless otherwise specified). Cutting an arc (u, v) of T
means deleting the arc (u, v) from T , producing disconnected subtrees Tu and
Tv, containing u and v, respectively, and then suppressing u if it has degree
two in Tu.

An unrooted binary phylogenetic network N on a set X is a graph G con-
taining only vertices of degree three or one, with a bijection φ mapping the
degree-one vertices of G to X. An unrooted binary phylogenetic X-tree (or
unrooted binary phylogenetic tree on X) is an unrooted binary phylogenetic
network on X that is connected and acyclic (a tree). All concepts, except
that of a cluster, defined in this section for rooted binary phylogenetic net-
works/trees can be easily adapted to the unrooted framework by disregarding
the root and considering the graph as undirected. In the unrooted framework,
we will use the word edge instead of arc. To avoid confusion, we defer the
definition of a cluster for unrooted trees to Section 5.

The Hybridization Number. Let T be a rooted binary phylogenetic X-tree and
let N = (D,φ) be a rooted phylogenetic network on X. We say that N displays
T if T can be obtained from a rooted subtree of N by suppressing degree-two
vertices. In other words, T can be obtained from N by first deleting a subset of



the arcs of D and then deleting isolated vertices and suppressing the non-root
degree-two vertices. For two rooted binary phylogenetic X-trees, T and T ′,
we define the hybridization number of T and T ′ as

h(T , T ′) := min{h(N) | N displays T and T ′}.

We also define the hybridization level of T and T ′ as the minimum k such
that there is a level-k rooted phylogenetic network, i.e. a rooted phylogenetic
network with level k, that displays T and T ′. The decision problem, Hy-
bridization Number, is formally stated as follows.

Hybridization Number
Input: Two rooted binary phylogenetic X-trees T and T ′, and l ∈ N.
Question: Is h(T , T ′) ≤ l?

We can now state our first theorem, whose proof is deferred to Section 3.

Theorem 1 Let T and T ′ be two rooted binary phylogenetic X-trees. Hy-
bridization Number is fixed-parameter tractable with respect to the hybridiza-
tion level of T and T ′.

Plugging in current results for Hybridization Number [22], Theorem 1 im-
plies the following.

Corollary 1 Let T and T ′ be two rooted binary phylogenetic X-trees. Hy-
bridization Number can be solved in time O(3.18k · n), where n is the size
of the leaf set of T and k is the hybridization level of T and T ′.

It was already known that Hybridization Number is fixed-parameter tractable
when parameterized by the hybridization number [5] but our result is stronger
as the hybridization level can be small, even 1, for pairs of trees for which the
hybridization number is arbitrarily large. On the other hand, it is clear that
the hybridization level never exceeds the hybridization number.

The rSPR Problem. Let T be a rooted binary phylogenetic X-tree. For the
upcoming definition of a rooted subtree prune and regraft operation, we regard
the root of T as a vertex labelled by a dummy taxon lρ at the end of a pendant
arc adjoined to the original root (for details see [4]. This is done to be able to
regraft above the original root). Now let e = (u, v) be an arc of T not incident
with the vertex labelled lρ. Let T ′ be the rooted binary phylogenetic X-tree
obtained from T by deleting e and then reconnecting v to the component Tu by:

(i) creating a new vertex u′ which subdivides an arc in Tu,
(ii) adding the arc (u′, v), and
(iii) contracting the degree-two vertex u.

We say that T ′ is obtained from T by one rooted subtree prune and regraft
(rSPR) operation. We define the rSPR distance between two rooted binary
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Fig. 1 An example of the rooted cluster reduction. Black vertices are the respective roots.

phylogenetic X-trees T1 and T2 to be the minimum number of rSPR opera-
tions that are required to transform T1 into T2. We denote this distance by
drSPR(T1, T2). The associated decision problem is the following.

rSPR Distance
Input: Two rooted binary phylogenetic X-trees T and T ′ and l ∈ N.
Question: Is drSPR(T , T ′) ≤ l?

Our second theorem is an analogue of Theorem 1 for rSPR Distance instead
of Hybridization Number. However, in order to define the required param-
eter, the rSPR level of two rooted binary phylogenetic X-trees, we need to
define a cluster reduction, following [5].

Definition 1 (rooted cluster reduction) Let T and T ′ be rooted binary
phylogenetic X-trees and let C be a non-trivial cluster common to both T
and T ′. A cluster reduction is the operation of splitting (T , T ′) into the two
pairs of smaller trees (TC , T ′C), (Tρ, T ′ρ ) := (T |C, T ′|C), (T ↓C , T ′↓C). Note that
(TC , T ′C) is a pair of phylogenetic C-trees, and (Tρ, T ′ρ ) is a pair of phylogenetic
((X \C)∪{aC})-trees that contain the original roots of T and T ′ respectively.
See Fig. 1 for an example.

We now define a cluster sequence, which is essentially the result of applying
several cluster reductions to a pair of trees. Let T and T ′ be rooted binary
phylogenetic X-trees. Set T̂0 = T and T̂ ′0 = T ′. For a cluster sequence con-
sisting of t reductions, for i = 1, . . . , t let Ai be a non-trivial cluster common
to both T̂i−1 and T̂ ′i−1, and define Ti := T̂i−1|Ai and T ′i := T̂ ′|Ai, and also

T̂i := T̂i−1↓Ai and T̂ ′i := T̂ ′i−1↓Ai , where the newly created leaf in T̂i and T̂ ′i is



labelled by ai. Finally, we denote (T̂t, T̂ ′t ) as (Tρ, T ′ρ ), to emphasize that these
two trees contain the original roots of T and T ′. The result is a sequence of
pairs of trees (T1, T ′1 ), . . . , (Tt, T ′t ), (Tρ, T ′ρ ) which we call a cluster sequence.
Note that the leaf set of Ti and T ′i is Ai and the leaf set of Tρ and T ′ρ is
(X ∪⋃

i{ai}) \
⋃
iAi.

We say a cluster sequence is a full cluster reduction of T and T ′ if at each
step the cluster Ai is a minimal non-trivial common cluster and the trees Tρ
and T ′ρ contain no further non-trivial common clusters. Observe that the full
cluster reduction is unique, up to the ordering of pairs, since any non-trivial
common cluster of T and T ′ will at some point become minimal (once all
common subclusters have been reduced), and it will then itself be reduced. In
addition, no pair (Ti, T ′i ) in the full cluster reduction contains a non-trivial
common cluster.

For two rooted binary phylogenetic X-trees T and T ′, the rSPR level is
the maximum rSPR distance between a pair of trees in a full cluster reduction
of T and T ′, i.e. the maximum of drSPR(Ti, T ′i ) over i ∈ {1, . . . , t, ρ}. We may
now state the second theorem of the paper whose proof is deferred to Section 4.

Theorem 2 Let T and T ′ be two rooted binary phylogenetic X-trees. rSPR
Distance is fixed-parameter tractable with respect to the rSPR level of T and
T ′.

Note that, analogous to the hybridization number, the rSPR level of a pair
of trees is at most the rSPR distance between the trees, and may be much
smaller, even 1 for trees that have arbitrarily large rSPR distance. Plugging
in current results for rSPR Distance [9], Theorem 2 implies the following.

Corollary 2 Let T and T ′ be two rooted binary phylogenetic X-trees. rSPR
Distance can be solved in time O(2.344k · n), where n is the size of the leaf
set of T and k is the rSPR level of T and T ′.

The TBR Problem. Let T be an unrooted binary phylogenetic X-tree and
e = {u, v} be an edge of T such that neither u nor v is a leaf. Let T ′ be
the unrooted binary phylogenetic X-tree obtained from T by deleting e and
reconnecting the subtrees Tu and Tv by

(i) subdividing an edge of Tu with a new vertex w,
(ii) subdividing an edge of Tv with a new vertex z,
(iii) adding the edge {w, z}, and
(iv) suppressing any vertices of degree two.

The decision problem TBR Distance is formally stated as follows.

TBR Distance
Input: Two unrooted binary phylogenetic X-trees T and T ′ and l ∈ N.
Question: Is dTBR(T , T ′) ≤ l?



Note that the notions of displaying, hybridization number and hybridization
level of two unrooted trees are defined as in the rooted framework. Our third
theorem is an analogue of Theorem 1 for TBR Distance instead of Hy-
bridization Number.

Theorem 3 Let T and T ′ be two unrooted binary phylogenetic X-trees. TBR
Distance is fixed-parameter tractable with respect to the hybridization level
of T and T ′.

Plugging in current results for TBR Distance [8], Theorem 3 implies the
following.

Corollary 3 Let T and T ′ be two unrooted binary phylogenetic X-trees. TBR
Distance can be solved in time O(3k · n), where n is the size of the leaf set
of T and k is the hybridization level of T and T ′.

Note that the unrooted hybridization level is always smaller or equal to
the TBR distance, since the unrooted hybridization number equals the TBR
distance (see Theorem 6 in Section 5).

3 Proof of Theorem 1

The following lemma shows how the cluster reduction can be used as part of
a divide-and-conquer approach to computing the hybridization number.

Lemma 1 ([3]) Let T and T ′ be two rooted binary phylogenetic X-trees.
Suppose that C ⊂ X is a cluster of both T and T ′, where (TC , T ′C)and (Tρ, T ′ρ )
are the results of performing a cluster reduction of C on (T , T ′). Then,

h(T , T ′) = h(TC , T ′C) + h(Tρ, T ′ρ ).

A straightforward consequence of Lemma 1 is that if (T1, T ′1 ), · · · , (Tt, T ′t ),
(Tρ, T ′ρ ) is a cluster sequence of T and T ′, then

h(T , T ′) = h(T1, T ′1 ) + · · ·+ h(Tt, T ′t ) + h(Tρ, T ′ρ ).

Next, we show that the hybridization level of two rooted binary phylo-
genetic X-trees T and T ′ is equal to the maximum hybridization number
between a pair of trees in a full cluster reduction of T and T ′. Recall that,
for a rooted phylogenetic network N , its level is the maximum number of
reticulation vertices in any biconnected component of N .

Lemma 2 Let T and T ′ be two rooted binary phylogenetic X-trees and let
(T1, T ′1 ), . . . , (Tt, T ′t ), (Tρ, T ′ρ ) be a full cluster reduction of T and T ′. Then,
the hybridization level of T and T ′ equals

max
i∈{1,...,t,ρ}

h(Ti, T ′i ).



Proof For each i ∈ {1, . . . , t}, let Ni be a rooted phylogenetic network display-
ing Ti and T ′i with hybridization number h(Ti, T ′i ) and let Ai and ai denote
the set of leaves of Ti and the new leaf created to represent the cluster Ai in
the ith cluster reduction, respectively. We may now rebuild a rooted phylo-
genetic network N displaying T and T ′ from the smaller rooted phylogenetic
networks Ni as follows. We start with N = Nρ. While N contains a leaf v
labelled ai for some i, we replace v by a pendant copy of Ni in N . Since each
arc incident with such a leaf is a cut arc of the resulting rooted phylogenetic
network N , each biconnected component of N is a subnetwork of Ni for some
i ∈ {1, . . . , t, ρ}. Thus, N displays T and T ′ and the level of N is at most the
maximum of h(Ti, T ′i ) over i ∈ {1, . . . , t, ρ}, hence the hybridization level of T
and T ′ is at most the maximum of h(Ti, T ′i ) over i ∈ {1, . . . , t, ρ}.

Conversely, let N be any rooted phylogenetic network displaying T and T ′
and let k denote its level. Let the vertex set of N be V and the root be ρ. We
will construct a cluster sequence for T and T ′. Each cut arc (u, v) of N gives
rise to a cluster c(v) which is a common cluster to T and T ′. A cut arc (u, v)
of N is trivial if v is a leaf of N , and it is a minimal non-trivial cut arc if there
is no other non-trivial cut arc (w, x) of N such that there is a directed path
from v to w in N . We obtain a cluster sequence for T and T ′ by iteratively:

– selecting v in V at the head of a minimal non-trivial cut arc of N , which
gives rise to c(v), a minimal non-trivial common cluster of T and T ′;

– performing the cluster reduction of T and T ′ by c(v) replacing the cluster
with a new vertex cv, and

– replacing the subnetwork below the cut edge with a single pendant leaf cv
in N

Note that the deleted subnetwork is either a subtree (in fact, due to minimality,
just a pair of leaves with a common parent, which is known as a cherry)
or a biconnected component of N with pendant leaves, since otherwise, we
could choose a smaller common cluster. Since the level of the network is k,
this subnetwork of N is a phylogenetic network on c(v) containing at most
k hybridization vertices and displaying T |c(v) and T ′|c(v). Hence the cluster
pair in the cluster reduction has hybridization number at most k. We repeat
this process until N has no further cut arcs, obtaining a cluster sequence
(T1, T ′1 ), ..., (Tt, T ′t ), (Tρ, T ′ρ ) for T and T ′. Every cluster pair (Ti, T ′i ) from the
cluster sequence has hybridization number at most k. It remains to consider
the final pair (Tρ, T ′ρ ). Since in the end N had no (non-trivial) cut arcs, either
N was reduced to a cherry or N was a biconnected component with pendant
leaves, and again we deduce that h(Tρ, T ′ρ ) ≤ k. Thus if T and T ′ can be
displayed on a level-k phylogenetic network, then there is a cluster sequence
for T and T ′ such that the maximum hybridization number between a pair of
trees in the cluster reduction is at most k.

It remains to show that the maximum hybridization number between a
pair of trees in the full cluster reduction is therefore also at most k. We will
make use of the fact that if a cluster reduction is not a reduction by a minimal
non-trivial common cluster, then it can be broken down into a series of cluster



reductions each of which is by a minimal non-trivial common cluster. To see
this consider a cluster reduction of T and T ′ by a common cluster A and
suppose it is not a minimal non-trivial common cluster. Then, there is a subset
A1 ⊂ A such that A1 is a minimal non-trivial common cluster. We first reduce
by A1, obtaining (TA1

, T ′A1
), (Tρ, T ′ρ ), where there is a leaf a1 in Tρ and T ′ρ

replacing the cluster A1. We may then reduce by the common cluster A ∪
{a1} \ A1 of Tρ and T ′ρ . This has broken the cluster reduction by A into a
minimal cluster reduction by A1 and a cluster reduction by a proper subset
of A. By repeating this process until the remaining reduction is itself by a
minimal non-trivial common cluster, we iteratively break down the cluster
reduction by A into a sequence of cluster reductions, each of which is by a
minimal non-trivial common cluster.

So we first form a full cluster reduction from (T1, T ′1 ), ..., (Tt, T ′t ), (Tρ, T ′ρ )
by following the same sequence of cluster reductions used to create the cluster
sequence, but at each step where we would reduce T and T ′ by a common clus-
ter A, we instead reduce by a sequence of minimal non-trivial common clusters,
as described above, whose union contains all the elements of A. Finally, once
we have finished breaking down the cluster reductions in the original cluster
sequence, we continue to perform cluster reductions on Tρ and T ′ρ by any re-
maining minimal common clusters until none remain. The result is a full cluster
reduction (T̂1, T̂ ′1 ), ..., (T̂s, T̂ ′s ), (T̂ρ, T̂ ′ρ ) such that each pair (Ti, T ′i ) of the orig-

inal cluster sequence corresponds to a subsequence (T̂j , T̂ ′j ), . . . , (T̂q, T̂ ′q ) of the

full cluster reduction, in the sense that (T̂j , T̂ ′j ), . . . , (T̂q, T̂ ′q ) is itself a cluster
reduction of (Ti, T ′i ). Then, by Lemma 1,

h(Ti, T ′i ) =
∑
j≤l≤q

h(T̂l, T̂ ′l ) ≥ max
j≤l≤q

h(T̂l, T̂ ′l ),

implying
k ≥ max

i∈{1,...,t,ρ}
h(Ti, T ′i ) ≥ max

j∈{1,...,s,ρ}
h(T̂j , T̂ ′j ),

and, since this holds for every phylogenetic network N displaying T and T ′,
whatever the level of N , the lemma follows. ut

From Lemmas 1 and 2 it follows that there is a network displaying T and
T ′ minimizing the hybridization level that also minimizes the hybridization
number.

Lemma 3 Let T and T ′ be two rooted binary phylogenetic X-trees. A full
cluster reduction of T and T ′ can be computed in time O(n), where n is the
size of the leaf set of T .

Proof We start by applying the algorithm in [11] to T , which preprocesses T in
time O(n) and creates a data structure that returns the least common ancestor
(LCA) of any two specific vertices of T in O(1) time. Then, we compute, for
each vertex x of T , the number l(x) of leaves below it in O(n) total time. We
do the same for T ′. Finally, for each vertex x of T , we store the vertex x′ of



T ′ with x′ := LCAT ′(c(x)) as m(x). Since, assuming the children of x are y
and z, we have m(x) = LCAT ′(m(y),m(z)), this can be done in O(n) time
via a post-order traversal of T ′ using the precomputed data structure. Then,
a cluster reduction of T and T ′ can be found as follows:

1 i← 1;
2 for x in a post-order traversal of T do
3 if l(x) ≥ 2, l(x) = l(m(x)) and x is not the root of T then
4 Ai ← c(x);
5 (Ti, T ′i )← (TAi , T ′Ai);
6 reduce Ai to a single leaf ai in both T and T ′;
7 i← i+ 1;

8 (Tρ, T ′ρ )← (T , T ′);
The overall worst-case running time of this algorithm is O(n); indeed, al-

though there are O(n) iterations of the outer loop, each one involving reducing
a cluster Ai of size O(n) in line 6, the sum of the sizes of the clusters is at
most O(n), and so the amortized running-time of this line is O(1). ut

We are now in a position to prove Theorem 1 and Corollary 1.

Proof of Theorem 1 and Corollary 1 Let the two rooted binary phyloge-
netic X-trees T and T ′ and the integer l be an instance of Hybridization
Number. Let |X| = n, and let k be the hybridization level of T and T ′. We
may first compute a full cluster reduction (T1, T ′1 ), ..., (Tt, T ′t ), (Tρ, T ′ρ ) of T
and T ′ in time O(n) by Lemma 3. We then apply the algorithm of [22] to each
pair (Ti, T ′i ) to obtain h(Ti, T ′i ) in time O(3.18h(Ti,T

′
i ) · |Ti|). By Lemma 2,

h(Ti, T ′i ) ≤ k, and clearly
∑
i |Ti| = O(n), hence we may compute h(T , T ′) =

h(T1, T ′1 ) + ...+h(Tt, T ′t ) +h(Tρ, T ′ρ ) in time O(3.18k ·n). By a comparison of
h(T , T ′) and l we may answer the decision problem in the same time bound,
and hence Hybridization Number is fixed parameter tractable when pa-
rameterized by the hybridization level of T and T ′. ut

4 Proof of Theorem 2

Recall that, for solving instances of rSPR Distance with two rooted binary
phylogenetic X-trees T and T ′, we add to each of them a vertex labelled
by a dummy taxon lρ at the end of a pendant edge adjoined to the original
root. Given such an “augmented” tree T and a label x, let T |lρ→x denote the
result of removing the vertex labelled lρ and replacing the label x by lρ. In
the following, we make use of the concept of rooted agreement forests: Given
two rooted binary phylogenetic X-trees T and T ′, a leaf-labelled forest F is
called a rooted agreement forest of T and T ′ if F can be obtained from T and
T ′, respectively, by a series of edge cuts as defined in Section 2. We say that a
rooted agreement forest is root-isolating if it contains the singleton tree that
consists of the leaf labelled lρ. A rooted agreement forest for a cluster sequence



(T1, T ′1 ), ..., (Tt, T ′t ), (Tρ, T ′ρ ) of two rooted binary phylogenetic X-trees T and
T ′, is a leaf-labelled forest F on X ∪ {a1, . . . , at} which can be obtained from
the forests {T1, ..., Tt, Tρ} and {T ′1 , ..., T ′t , T ′ρ} by a series of edge cuts.

For the proof of Theorem 2, we need to define the concept of cluster hierar-
chy : the cluster hierarchy for a full cluster sequence (T1, T ′1 ), ..., (Tt, T ′t ), (Tρ, T ′ρ )
of two rooted binary phylogenetic X-trees T and T ′ is defined as the directed
tree with a vertex for each component (Ti, T ′i ) of the cluster sequence, and a
directed edge from vertex (Ti, T ′i ) to vertex (Tj , T ′j ) if a leaf labelled by aj is
present in T ′i . Then, by starting with (Tρ, T ′ρ ) as the root of the tree, and using
a breadth-first search, since t < n we have the following:

Observation 1 The cluster hierarchy for a full cluster sequence can be com-
puted in time O(n), where n is the size of the leaf set of T .

For the proof of Theorem 2, we will also make use of the Minimum-Weight
Forest Algorithm of Linz and Semple [16], which establishes the correctness
of the use of a cluster reduction in a divide-and-conquer approach for com-
puting the rSPR distance. In particular, they offer the following theorem and
algorithm.

Theorem 4 (Theorem 2.2 of [16]) Let T and T ′ be two rooted binary
phylogenetic X-trees. Let (T1, T ′1 ), ..., (Tt, T ′t ), (Tρ, T ′ρ ) be a cluster sequence for
T and T ′. Let G be a rooted agreement forest for this sequence of minimum
weight w(G). Then drSPR(T , T ′) = w(G)− 1.

Algorithm Minimum-Weight Forest [16]
Input: A cluster sequence (T1, T ′1 ), ..., (Tt, T ′t ), (Tρ, T ′ρ ) of two rooted binary
phylogenetic X-trees T and T ′, along with its cluster hierarchy.
Output: The minimum weight of a rooted agreement forest for this sequence.

Without needing to give a precise definition of a minimum-weight rooted
agreement forest for a cluster sequence (for details see [16]), it suffices to note
that if we start with two rooted binary phylogenetic X-trees T and T ′, first
compute a full cluster reduction and its cluster hierarchy, and then apply the
Minimum-Weight Forest algorithm, our output is one more than the rSPR
distance between T and T ′. It remains to bound the running time of this
approach. To do so, we need the following lemma:

Lemma 4 Let T and T ′ be rooted binary phylogenetic X-trees and let x ∈
X. Then, there is a root-isolating rooted maximum-agreement forest F for T
and T ′ if and only if drSPR(T , T ′) = drSPR(T |lρ→x, T ′|lρ→x) + 1.

Proof Let T∗ := T |lρ→x and T ′∗ := T ′|lρ→x.
“⇒”: Let F be a root-isolating rooted maximum-agreement forest for T

and T ′ and let Tρ be the tree in F that consists of the singleton labelled lρ.
Then, drSPR(T , T ′) = |F|. Let F ′ be the result of removing Tρ from F and
relabelling the leaf labelled x by lρ. Clearly, F ′ is a rooted agreement forest
for T∗ and T ′∗ and, thus, drSPR(T∗, T ′∗ ) ≤ |F ′| = |F| − 1. To show that F ′



maximizes agreement, assume towards a contradiction that there is a rooted
agreement forest F∗ for T∗ and T ′∗ with |F∗| < |F ′|. Then, relabelling the leaf
labelled lρ by x in F∗ and adding Tρ to F∗ yields a rooted agreement forest
for T and T ′ with |F∗|+ 1 < |F| components, contradicting optimality of F .

“⇐”: Let drSPR(T , T ′) = drSPR(T∗, T ′∗ ) + 1. We construct a root-isolating
rooted maximum-agreement forest F for T and T ′. To this end, let F∗ be a
rooted maximum-agreement forest for T∗ and T ′∗ and let F be the result of
relabelling the leaf labelled lρ by x in F∗ and adding a singleton tree whose only
vertex is labelled lρ. Then, |F| = |F∗|+ 1 = drSPR(T∗, T ′∗ ) + 1 = drSPR(T , T ′).
Thus, F is a root-isolating rooted maximum-agreement forest for T and T ′.

ut

We have now all the building blocks to prove the main results of this section.

Proof of Theorem 2 and Corollary 2. Let the two rooted binary phyloge-
netic X-trees T and T ′ and the integer l be an instance of rSPR Distance.
Let |X| = n, and let k be the rSPR level of T and T ′. We may first com-
pute a full cluster reduction (T1, T ′1 ), ..., (Tt, T ′t ), (Tρ, T ′ρ ) of T and T ′ and its
cluster hierarchy in time O(n) by Lemma 3 and Observation 1. We then ap-
ply the algorithm of [16] to obtain drSPR(T , T ′). The time-consuming step in
this algorithm is finding a maximum-agreement forest for each pair Ti, T ′i (if
possible a root-isolating one). These may be found, using Lemma 4, in time
O(2.344drSPR(Ti,T ′

i )·|Ti|) by the approach of [9]. By definition, drSPR(Ti, T ′i ) ≤ k
and, clearly, |Ti| ∈ O(n). Hence, the whole algorithm runs in time O(2.344k ·n).
By a comparison of drSPR(T , T ′) and l we may answer the decision problem in
the same time bound, and hence rSPR Distance is fixed parameter tractable
when parameterized by the rSPR level of T and T ′. ut

Note that the hybridization number of two trees is always bigger than their
rSPR distance [2], and so Lemma 2 and Corollary 2 imply the following:

Corollary 4 Let T and T ′ be two rooted binary phylogenetic X-trees. rSPR
Distance can be solved in time O(2.344k · n), where n is the size of the leaf
set of T and k is the hybridization level of T and T ′.

Note also that the authors of [22] claim to have an algorithm to solve
rSPR Distance in O(2drSPR(T ,T ′) · n) [23]. If this is true, the running time
in Corollaries 2 and 4 will reduce to O(2k · n).

5 Proof of Theorem 3

In this section, we consider unrooted binary phylogenetic X-trees. Note that
each edge e of any phylogenetic X-tree uniquely partitions X into nonempty
sets C and C := X \ C such that all paths between a leaf labelled with an
element of C and a leaf labelled with an element of C contain e. A set C for
which such an edge exists in T is called a cluster of T . A cluster is called
trivial if |C| = 1 or |C| = 1. Given an unrooted binary phylogenetic X-tree



T and a nontrivial cluster C of T , let T |C denote the minimal subtree of T
containing each leaf whose label is in C (analogous to the rooted case) and
denote by T ↓C the unrooted phylogenetic tree where T |C has been replaced
by a leaf labelled by aC . An unrooted agreement forest (uAF) for two unrooted
phylogenetic X-trees is the unrooted version of a rooted agreement forest: it
is a leaf-labelled forest F that can be obtained from T and T ′, respectively,
by a series of edge deletions, deletions of unlabeled leaves, and suppressions
of degree-two vertices. A uAF of minimal cardinality is called an unrooted
maximum-agreement forest (uMAF). F is said to isolate some x ∈ X if F
contains a singleton tree consisting of the leaf labelled x (denoted by {x} ∈ F).
Finally, we denote the number of trees in F by |F|.

In the following, we describe a cluster reduction for unrooted binary phy-
logenetic trees, slightly different from the rooted case.

Definition 2 (unrooted cluster reduction) Let T and T ′ be unrooted
binary phylogenetic trees and let C be a non-trivial cluster common to both
T and T ′ (note that C is also a common cluster of T and T ′). A cluster
reduction is the operation of splitting (T , T ′) into the two pairs of smaller trees
(TC , T ′C), (TC , T ′C) := (T ↓C , T ′↓C), (T ↓C , T ′↓C). See Fig. 2 for an example.

Analogously to the rooted case, we call the result (T1, T ′1 ), . . . , (Tt, T ′t ) of
repeatedly applying the cluster reduction to two unrooted binary phylogenetic
trees T and T ′ a cluster sequence for T and T ′ and such a sequence is called
full if each cluster reduction leading to the sequence reduces a minimal non-
trivial common cluster and the trees Tt and T ′t contain no further non-trivial
common clusters. Again, the full cluster reduction is unique, up to the ordering
of pairs and no pair (Ti, T ′i ) in the full cluster reduction contains a non-trivial
common cluster.

Note that an unrooted cluster sequence can be computed as described in
Lemma 3 by previously rooting the two trees on the same leaf.

The following results are fundamental for proving that TBR Distance is
FPT in the hybridization level.

Theorem 5 ([1]) Let T and T ′ be two unrooted binary phylogenetic X-trees.
Let F be a uMAF for T and T ′. Then dTBR(T , T ′) = |F| − 1.

Theorem 6 ([13]) Let T and T ′ be unrooted binary phylogenetic X-trees.
Then h(T , T ′) = dTBR(T , T ′).

Note that the concepts of hybridization number and level refer to the undi-
rected versions. The following observation is straightforward.

Observation 2 A forest F = {F1, . . . , Fk} is a uAF of T and T ′ if and only if

1. each tree of F is displayed by both T and T ′,
2. all labels of T and T ′ occur in F , and
3. the subtrees T (L(F1)), . . . , T (L(Fk)) and T ′(L(F1)), . . . , T ′(L(Fk)) are all

vertex disjoint.
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Fig. 2 An example of an unrooted cluster reduction. The common cluster is C =
{a1, a2, a3, a4}.

The following two lemmas constitute a portation of Lemma 4 and Lemma 1
to unrooted binary phylogenetic trees.

Lemma 5 Let T and T ′ be unrooted binary phylogenetic X-trees and let x ∈
X. If there is a uMAF F for T and T ′ that isolates x, then

dTBR(T , T ′) = dTBR(T |(X − x), T ′|(X − x)) + 1

and, otherwise,

dTBR(T , T ′) = dTBR(T |(X − x), T ′|(X − x)).

Proof Let F ′ be a uMAF for T |(X − x) and T ′|(X − x).
First, suppose that there is a uMAF F for T and T ′ that isolates x. Then,

F can be turned into a uAF for T |(X − x) and T ′|(X − x) by deleting the
singleton tree containing x and F ′ can be turned into a uAF for T and T ′ by
adding a singleton tree containing a vertex labelled x. Thus, |F| = |F ′|+ 1.

Next, suppose that there is no uMAF for T and T ′ that isolates x and
let F be a uMAF for T and T ′. Since adding a singleton tree containing a



vertex labelled x to F ′ yields a uAF for T and T ′ that isolates x, we have
|F| < |F ′| + 1. However, since removing x from the tree of F that contains
x yields a uAF for T |(X − x) and T ′|(X − x), we also have |F| ≥ |F ′|. Thus,
|F| = |F ′|. The lemma follows by Theorem 5. ut

Lemma 6 Let T and T ′ be unrooted binary phylogenetic X-trees and let C be
a nontrivial cluster of T and T ′. If there is a uMAF for T ↓C and T ′↓C that
isolates the leaf labelled aC , then

dTBR(T , T ′) = dTBR(T ↓C , T ′↓C) + dTBR(T |C, T ′|C),

and, otherwise,

dTBR(T , T ′) = dTBR(T ↓C , T ′↓C) + dTBR(T ↓C , T ′↓C).

Proof First off, suppose that there is a uMAF for T ↓C and T ′↓C that isolates
the leaf labelled aC .

“≤”: Let FC be a uMAF for T |C and T ′|C. Let FC be analogous for C.
Let F ′ := FC ] FC . Then, all trees of F ′ are displayed by T and T ′ and by
Observation 2, F ′ is a uAF for T and T ′. Thus,

dTBR(T , T ′) ≤ |F ′| − 1

= |FC |+ |FC | − 1

Theorem 5
= dTBR(T |C, T ′|C) + dTBR(T |C, T ′|C) + 1

Lemma 5
= dTBR(T ↓C , T ′↓C) + dTBR(T |C, T ′|C)

“≥”: Let F be a uMAF for T and T ′. Let F(C) denote the set containing
exactly the trees of F that contain only leaves labelled by elements of C. Let
F(C) be defined analogously for C.

Case 1: F = F(C)]F(C). Then, |uMAF(T |C, T ′|C)| = |F(C)| since, oth-
erwise, exchanging F(C) for a uMAF of T |C and T ′|C in F yields a uAF that is
smaller than F , contradicting optimality of F . Likewise, |uMAF(T |C, T ′|C)| =
|F(C)|. Then,

dTBR(T , T ′) = |F| − 1 = |F(C)|+ |F(C)| − 1

Theorem 5
= dTBR(T |C, T ′|C) + dTBR(T |C, T ′|C) + 1

Lemma 5
= dTBR(T ↓C , T ′↓C) + dTBR(T |C, T ′|C)

Case 2: There is a tree H in F containing a leaf labelled x ∈ C and a leaf
labelled y ∈ C (note that only one of such “mixed” trees can be present in F ;
indeed, since C is a cluster of both trees, the existence of two such trees will
contradict Condition 3 of Observation 2). Then, F = F(C) ] F(C) ] {H}.
Let H↓C denote the result of contracting all edges of H that are on a path
between two leaves with labels of C in H and labelling the vertex on which
they are all contracted with C. Let H↓C be analogous for C. Then, all labels
of C and the special label aC occur in F1 := F(C) ] {H↓C} and all its trees



are displayed by T ↓C and T ′↓C . Thus, by Observation 2, F1 is a uAF for T ↓C
and T ′↓C . Likewise, F(C) ] {H↓C} is a uAF for T ↓C and T ′↓C . Thus,

dTBR(T , T ′) = |F| − 1 = |F(C) ] F(C) ] {H}| − 1

= |F(C) ] {H↓C}|+ |F(C) ] {H↓C}| − 2

≥ dTBR(T ↓C , T ′↓C) + dTBR(T ↓C , T ′↓C)

≥ dTBR(T ↓C , T ′↓C) + dTBR(T |C, T ′|C)

Next, suppose that there is no uMAF for T ↓C and T ′↓C that isolates the
leaf labelled aC .

“≤”: First, note that if there is a uMAF for T ↓C and T ′↓C that isolates
the leaf labelled aC , the first part of our proof implies that

dTBR(T , T ′) = dTBR(T |C, T ′|C) + dTBR(T ↓C , T ′↓C)

≤ dTBR(T ↓C , T ′↓C) + dTBR(T ↓C , T ′↓C).

Now, let consider the case where there is no uMAF for T ↓C and T ′↓C
(respectively T ↓C and T ′↓C) that isolates the leaf labelled aC (respectively
labelled aC). Let FC be a uMAF for T ↓C and T ′↓C and let HC denote the
tree of FC containing the label aC . Let FC and HC be analogous for C.
Let H be the result of joining HC and HC by identifying the leaves labelled
aC and aC , respectively and suppressing this degree-two vertex. Let F ′ :=
(FC \ {HC}) ] (FC \ {HC}) ] {H}. Then, H is displayed by T and T ′ and,
thus, all trees of F ′ are displayed by T and T ′. Moreover, it is easy to see that
T (H) is vertex disjoint with the other trees in the forest, and the same holds
for T ′(H). Then, by Observation 2, F ′ is a uAF for T and T ′. Thus,

dTBR(T , T ′) ≤ |F ′| − 1

= |FC \ {HC}|+ |FC \ {HC}|+ |{H}| − 1

= |FC |+ |FC | − 2

= dTBR(T |C, T ′|C) + dTBR(T |C, T ′|C)

Lemma 5
= dTBR(T ↓C , T ′↓C) + dTBR(T ↓C , T ′↓C)

“≥”: Let F be a uMAF for T and T ′. Let F(C) denote the set containing
exactly the trees of F that contain only leaves labelled by elements of C. Let
F(C) be defined analogously for C.

Case 1: F = F(C)]F(C). Then, |uMAF(T |C, T ′|C)| = |F(C)| since, oth-
erwise, exchanging F(C) for a uMAF of T |C and T ′|C in F yields a uAF that is
smaller than F , contradicting optimality of F . Likewise, |uMAF(T |C, T ′|C)| =
|F(C)|. Let F ′(C) be a uMAF for T ↓C and T ′↓C and note that, by Lemma 5
|F ′(C)| = |F(C)|. Further, let F ′(C) be a uMAF for T ↓C and T ′↓C and note
that |F ′(C)| ≤ |F(C)|+ 1. Then,

dTBR(T , T ′) = |F| − 1 = |F(C)|+ |F(C)| − 1

≥ |F ′(C)|+ |F ′(C)| − 2

= dTBR(T ↓C , T ′↓C) + dTBR(T ↓C , T ′↓C)



Case 2: There is a tree H in F containing a leaf labelled x ∈ C and a leaf
labelled y ∈ C. This is completely analogous to Case 2 above. ut

It is worth mentioning that, in the two cases of Lemma 6, the TBR dis-
tances differ by exactly one, that is, dTBR(T |C, T ′|C) ≤ dTBR(T ↓C , T ′↓C) ≤
dTBR(T |C, T ′|C) + 1, Lemma 6 implies that, if there is a uMAF for T ↓C and
T ′↓C that isolates the leaf labelled aC and a uMAF for T ↓C and T ′↓C that
isolates the leaf labelled aC , then, when gluing the forests of the subtrees back
together to form a uMAF F for T and T ′, then we have a tree that does not
contain any labelled leaf. Thus, an optimal uMAF has size |F|−1. This means
that, to minimize the size of a forest for T and T ′, we need to favor the forests
isolating the dummy taxa. Then, we have the following:

Corollary 5 Let T and T ′ be unrooted binary phylogenetic X-trees. Let (T1, T ′1 ),
. . . , (Tt, T ′t ) be a cluster sequence of T and T ′. Let F be a maximum-agreement
forest of T and T ′. For i ∈ {1, . . . , t}, let Fi be a maximum-agreement forest
for Ti and T ′i such that r := |{C : {aC}, {aC} ∈

⊎
i Fi}| is maximal. Then,

dTBR(T , T ′) = (
∑
i |Fi|)− t− r.

Corollary 5 is a drop-in replacement for Theorem 2.2 in [16] and lets us use
the entire cluster-sequence-based machinery of [16] for unrooted phylogenetic
trees. Thus, a slight modification of the Minimum-Weight Forest algorithm
of [16] (solving the TBR Distance instead of the rSPR Distance and using
the unrooted cluster reduction instead of the rooted one) leads right to the
following theorem:

Theorem 7 Let T and T ′ be two unrooted binary phylogenetic X-trees and
let (T1, T ′1 ), . . . , (Tt, T ′t ) be a full cluster reduction of T and T ′. Then, the
hybridization level of T and T ′ equals

max
i∈{1,...,t}

dTBR(Ti, T ′i ).

Proof First, from Lemma 6, we have that

max
i∈{1,...,t}

dTBR(Ti, T ′i ) = max
i∈{1,...,t}

h(Ti, T ′i ).

The fact that maxi∈{1,...,t} h(Ti, T ′i ) equals the hybridization level of T and T ′
can be proven similarly to Lemma 2, and we do not repeat the proof here. ut

Thanks to Theorem 7, Theorem 3 and Corollary 3 can be proven simi-
larly to Theorem 2 and Corollary 2, since TBR Distance can be solved in
O(3k · n), where k is the TBR distance of T and T ′ [8].

6 Conclusion

In this paper, we have shown better bounds for the running time of algorithms
computing the hybridization number and the rSPR/TBR distance between two



phylogenetic trees using cluster reductions. We have thus given an explanation
for the curious divergence between theoretical results and observed running
time of algorithms using cluster reductions.

A deeper biological question that warrants further research is: why does
real biological data partition so effectively under the cluster reduction? In
other words, why are observed networks of low hybridization level?
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