B. Allen and M. Steel, Subtree Transfer Operations and Their Induced Metrics on Evolutionary Trees, Annals of Combinatorics, vol.5, issue.1, pp.1-1510, 2001.
DOI : 10.1007/s00026-001-8006-8

S. Arnborg, J. Lagergren, and D. Seese, Easy problems for tree-decomposable graphs, Journal of Algorithms, vol.12, issue.2, pp.308-340, 1991.
DOI : 10.1016/0196-6774(91)90006-K

M. Baroni, S. Grünewald, V. Moulton, and C. Semple, Bounding the Number of Hybridisation Events for a Consistent Evolutionary History, Journal of Mathematical Biology, vol.8, issue.2, pp.171-182, 2005.
DOI : 10.1007/s00285-005-0315-9

H. L. Bodlaender, A tourist guide through treewidth, Acta cybernetica, vol.11, issue.12, p.1, 1994.

H. L. Bodlaender, A Linear-Time Algorithm for Finding Tree-Decompositions of Small Treewidth, SIAM Journal on Computing, vol.25, issue.6, pp.1305-1317, 1996.
DOI : 10.1137/S0097539793251219

H. L. Bodlaender and A. M. Koster, Treewidth computations I. Upper bounds, Information and Computation, vol.208, issue.3, pp.259-275, 2010.
DOI : 10.1016/j.ic.2009.03.008

M. Bordewich and C. Semple, On the Computational Complexity of the Rooted Subtree Prune and Regraft Distance, Annals of Combinatorics, vol.8, issue.4, pp.409-423, 2004.
DOI : 10.1007/s00026-004-0229-z

M. Bordewich and C. Semple, Computing the Hybridization Number of Two Phylogenetic Trees Is Fixed-Parameter Tractable, IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol.4, issue.3, pp.458-466, 2007.
DOI : 10.1109/tcbb.2007.1019

M. Bordewich and C. Semple, Computing the minimum number of hybridization events for a consistent evolutionary history, Discrete Applied Mathematics, vol.155, issue.8, pp.914-928, 2007.
DOI : 10.1016/j.dam.2006.08.008

D. Bryant, The Splits in the Neighborhood of a Tree, Annals of Combinatorics, vol.8, issue.1, pp.1-11, 2004.
DOI : 10.1007/s00026-004-0200-z

D. Bryant and J. Lagergren, Compatibility of unrooted phylogenetic trees is FPT, Theoretical Computer Science, vol.351, issue.3, pp.296-302, 2006.
DOI : 10.1016/j.tcs.2005.10.033

D. Bryant and M. Steel, Extension Operations on Sets of Leaf-Labeled Trees, Advances in Applied Mathematics, vol.16, issue.4, pp.425-453, 1995.
DOI : 10.1006/aama.1995.1020

O. P. Buneman, The recovery of trees from measures of dissimilarity, Mathematics in the archaeological and historical sciences, 1971.

J. Chen, J. Fan, and S. Sze, Parameterized and approximation algorithms for maximum agreement forest in multifurcating trees, Theoretical Computer Science, vol.562, pp.496-512, 2015.
DOI : 10.1016/j.tcs.2014.10.031

D. G. Corneil and U. Rotics, On the Relationship Between Clique-Width and Treewidth, SIAM Journal on Computing, vol.34, issue.4, pp.825-427, 2005.
DOI : 10.1137/S0097539701385351

B. Courcelle, The monadic second-order logic of graphs. I. Recognizable sets of finite graphs, Information and Computation, vol.85, issue.1, pp.12-75, 1990.
DOI : 10.1016/0890-5401(90)90043-H

URL : https://hal.archives-ouvertes.fr/hal-00353765

B. Courcelle, J. A. Makowsky, and U. Rotics, Linear time solvable optimization problems on graphs of bounded clique-width, Theory of Computing Systems, pp.125-15010, 2000.

B. Courcelle and S. Olariu, Upper bounds to the clique width of graphs, Discrete Applied Mathematics, vol.101, issue.1-3, pp.77-11410, 2000.
DOI : 10.1016/S0166-218X(99)00184-5

R. G. Downey and M. R. Fellows, Fundamentals of parameterized complexity, 2013.
DOI : 10.1007/978-1-4471-5559-1

M. Fischer and S. Kelk, On the maximum parsimony distance between phylogenetic trees Annals of Combinatorics, 2014. preliminary version arXiv preprint

W. Fitch, Toward Defining the Course of Evolution: Minimum Change for a Specific Tree Topology, Systematic Biology, vol.20, issue.4, pp.406-416, 1971.
DOI : 10.1093/sysbio/20.4.406

A. Grigoriev, S. Kelk, and N. Leki´cleki´c, On Low Treewidth Graphs and Supertrees, Journal of Graph Algorithms and Applications, vol.19, issue.1, pp.325-243, 2015.
DOI : 10.7155/jgaa.00361

D. H. Huson, R. Rupp, and C. Scornavacca, Phylogenetic networks: Concepts , Algorithms and Applications, pp.10-1017, 2010.
DOI : 10.1017/CBO9780511974076

D. H. Huson and C. Scornavacca, A Survey of Combinatorial Methods for Phylogenetic Networks, Genome Biology and Evolution, vol.3, issue.0, pp.23-35, 2011.
DOI : 10.1093/gbe/evq077

D. H. Huson and C. Scornavacca, Dendroscope 3: An Interactive Tool for Rooted Phylogenetic Trees and Networks, Systematic Biology, vol.61, issue.6
DOI : 10.1093/sysbio/sys062

S. Kelk and M. Fischer, On the complexity of computing mp distance between binary phylogenetic trees. arXiv preprint arXiv, pp.1412-4076, 2014.

S. Kelk, L. Van-iersel, and C. Scornavacca, Phylogenetic incongruence through the lens of Monadic Second Order logic, Journal of Graph Algorithms and Applications, vol.20, issue.2, 2015.
DOI : 10.7155/jgaa.00390

URL : https://hal.archives-ouvertes.fr/lirmm-01348425

N. Robertson and P. D. Seymour, Graph minors. II. Algorithmic aspects of tree-width, Journal of Algorithms, vol.7, issue.3, pp.309-32210, 1986.
DOI : 10.1016/0196-6774(86)90023-4

C. Scornavacca, L. Van-iersel, S. Kelk, and D. Bryant, The agreement problem for unrooted phylogenetic trees is FPT, Journal of Graph Algorithms and Applications, vol.18, issue.3, pp.385-392, 2014.
DOI : 10.7155/jgaa.00327

C. Whidden, R. G. Beiko, and N. Zeh, Fixed-Parameter Algorithms for Maximum Agreement Forests, SIAM Journal on Computing, vol.42, issue.4, pp.1431-146610, 2013.
DOI : 10.1137/110845045

C. Whidden, N. Zeh, and R. G. Beiko, Supertrees Based on the Subtree Prune-and-Regraft Distance, Systematic Biology, vol.63, issue.4, pp.566-581, 2014.
DOI : 10.1093/sysbio/syu023