S. E. Brenner and M. Levitt, Expectations from structural genomics, Protein Science, vol.284, issue.7, pp.197-200, 2000.
DOI : 10.1110/ps.9.1.197

J. M. Chandonia and S. Brenner, Update on the Pfam5000 Strategy for Selection of Structural Genomics Targets, 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, pp.751-755, 2005.
DOI : 10.1109/IEMBS.2005.1616523

J. M. Chandonia and S. E. Brenner, Implications of structural genomics target selection strategies: Pfam5000, whole genome, and random approaches, Proteins: Structure, Function, and Bioinformatics, vol.13, issue.Suppl 7, pp.166-17920298, 2005.
DOI : 10.1002/prot.20298

A. E. Todd, R. L. Marsden, J. M. Thornton, and C. A. Orengo, Progress of Structural Genomics Initiatives: An Analysis of Solved Target Structures, Journal of Molecular Biology, vol.348, issue.5, pp.1235-1260, 2005.
DOI : 10.1016/j.jmb.2005.03.037

J. M. Chandonia and S. E. Brenner, The Impact of Structural Genomics: Expectations and Outcomes, Science, vol.311, issue.5759, pp.347-351, 2006.
DOI : 10.1126/science.1121018

J. Liu, G. T. Montelione, and B. Rost, Novel leverage of structural genomics, Nature Biotechnology, vol.279, issue.8, pp.849-851, 2007.
DOI : 10.1038/nbt0807-849

D. H. Shin, Structure-based inference of molecular functions of proteins of unknown function from Berkeley Structural Genomics Center, Journal of Structural and Functional Genomics, vol.286, issue.2-3, pp.99-105, 2007.
DOI : 10.1007/s10969-007-9025-4

R. Nair, Structural genomics is the largest contributor of novel structural leverage, Journal of Structural and Functional Genomics, vol.5, issue.Suppl 8, pp.181-191, 2009.
DOI : 10.1007/s10969-008-9055-6

A. Andreeva and A. G. Murzin, Structural classification of proteins and structural genomics: new insights into protein folding and evolution, Acta Crystallographica Section F Structural Biology and Crystallization Communications, vol.66, issue.10, pp.1190-1197, 2010.
DOI : 10.1107/S1744309110007177

K. Khafizov, C. Madrid-aliste, S. C. Almo, and A. Fiser, Trends in structural coverage of the protein universe and the impact of the Protein Structure Initiative, Proceedings of the National Academy of Sciences, vol.111, issue.10, pp.3733-3738, 2014.
DOI : 10.1073/pnas.1321614111

R. D. Finn, Pfam: the protein families database, Nucleic Acids Research, vol.42, issue.D1, pp.222-230, 2014.
DOI : 10.1093/nar/gkt1223

URL : https://hal.archives-ouvertes.fr/hal-01294685

J. Mistry, E. Kloppmann, B. Rost, and M. Punta, An estimated 5% of new protein structures solved today represent a new Pfam family, Acta Crystallographica Section D Biological Crystallography, vol.353, issue.11, pp.2186-2193, 2013.
DOI : 10.1107/S0907444913027157/ba5211sup1.xlsx

I. Sillitoe, New functional families (FunFams) in CATH to improve the mapping of conserved functional sites to 3D structures, Nucleic Acids Research, vol.41, issue.D1, pp.490-498, 2013.
DOI : 10.1093/nar/gks1211

N. K. Fox, S. E. Brenner, and J. M. Chandonia, SCOPe: Structural Classification of Proteins???extended, integrating SCOP and ASTRAL data and classification of new structures, Nucleic Acids Research, vol.42, issue.D1, pp.304-309, 2014.
DOI : 10.1093/nar/gkt1240

J. Qin, A human gut microbial gene catalogue established by metagenomic sequencing, Nature, vol.13, issue.7285, pp.59-65, 2010.
DOI : 10.1038/nature08821

URL : https://hal.archives-ouvertes.fr/cea-00908974

S. Yooseph, The Sorcerer II Global Ocean Sampling Expedition: Expanding the Universe of Protein Families, PLoS Biology, vol.17, issue.3, p.50016, 2007.
DOI : 10.1371/journal.pbio.0050016.sd001

A. Godzik, Metagenomics and the protein universe, Current Opinion in Structural Biology, vol.21, issue.3, pp.398-403, 2011.
DOI : 10.1016/j.sbi.2011.03.010

C. Rinke, Insights into the phylogeny and coding potential of microbial dark matter, Nature, vol.45, issue.7459, pp.431-437, 2013.
DOI : 10.1093/bib/bbs031

K. C. Wrighton, Fermentation, Hydrogen, and Sulfur Metabolism in Multiple Uncultivated Bacterial Phyla, Science, vol.337, issue.6102, pp.1661-1665, 2012.
DOI : 10.1126/science.1224041

P. J. Turnbaugh, The Human Microbiome Project, Nature, vol.112, issue.7164, pp.804-810, 2007.
DOI : 10.1038/nature06244

D. Wu, A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea, Nature, vol.246, issue.7276, pp.1056-1060, 2009.
DOI : 10.1038/nature08656

A. L. Cuff, Extending CATH: increasing coverage of the protein structure universe and linking structure with function, Nucleic Acids Research, vol.39, issue.Database, pp.420-426, 2011.
DOI : 10.1093/nar/gkq1001

S. R. Eddy, Accelerated Profile HMM Searches, PLoS Computational Biology, vol.21, issue.10, 2011.
DOI : 10.1371/journal.pcbi.1002195.g006

C. Yeats, Gene3D: comprehensive structural and functional annotation of genomes, Nucleic Acids Research, vol.36, issue.Database, pp.414-418, 2008.
DOI : 10.1093/nar/gkm1019

R. Linding, Protein Disorder Prediction, Structure, vol.11, issue.11, pp.1453-1459, 2003.
DOI : 10.1016/j.str.2003.10.002

A. Krogh, B. Larsson, G. Von-heijne, and E. L. Sonnhammer, Predicting transmembrane protein topology with a hidden markov model: application to complete genomes11Edited by F. Cohen, Journal of Molecular Biology, vol.305, issue.3, pp.567-5804315, 2000.
DOI : 10.1006/jmbi.2000.4315

M. Remmert, A. Biegert, A. Hauser, and J. Soding, HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment, Nature Methods, vol.11, issue.2, pp.173-175, 2012.
DOI : 10.1006/jmbi.1993.1626

T. A. De-beer, K. Berka, J. M. Thornton, and R. A. Laskowski, PDBsum additions, Nucleic Acids Research, vol.42, issue.D1, pp.292-296, 2014.
DOI : 10.1093/nar/gkt940

Y. Zhang and J. Skolnick, TM-align: a protein structure alignment algorithm based on the TM-score, Nucleic Acids Research, vol.33, issue.7, pp.2302-2309, 2005.
DOI : 10.1093/nar/gki524

J. Xu and Y. Zhang, How significant is a protein structure similarity with TM-score = 0.5?, Bioinformatics, vol.26, issue.7, pp.889-895, 2010.
DOI : 10.1093/bioinformatics/btq066