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Antistrong digraphs ∗1

Jørgen Bang-Jensen† Stéphane Bessy‡ Bill Jackson§ Matthias Kriesell¶2

April 2, 20153

Abstract4

An antidirected trail in a digraph is a trail (a walk with no arc repeated) in which the arcs5

alternate between forward and backward arcs. An antidirected path is an antidirected trail where6

no vertex is repeated. We show that it is NP-complete to decide whether two vertices x, y in a7

digraph are connected by an antidirected path, while one can decide in linear time whether they8

are connected by an antidirected trail. A digraph D is antistrong if it contains an antidirected9

(x, y)-trail starting and ending with a forward arc for every choice of x, y ∈ V (D). We show that10

antistrong connectivity can be decided in linear time. We discuss relations between antistrong11

connectivity and other properties of a digraph and show that the arc-minimal antistrong spanning12

subgraphs of a digraph are the bases of a matroid on its arc-set. We show that one can determine13

in polynomial time the minimum number of new arcs whose addition to D makes the resulting14

digraph the arc-disjoint union of k antistrong digraphs. In particular, we determine the minimum15

number of new arcs which need to be added to a digraph to make it antistrong. We use results16

from matroid theory to characterize graphs which have an antistrong orientation and give a poly-17

nomial time algorithm for constructing such an orientation when it exists. This immediately gives18

analogous results for graphs which have a connected bipartite 2-detachment. Finally, we study19

arc-decompositions of antistrong digraphs and pose several problems and conjectures.20

21

Keywords: antidirected path, bipartite representation, matroid, detachment, anticonnected di-22

graph23

1 Introduction24

We refer the reader to [1] for notation and terminology not explicitly defined in this paper. An25

antidirected path in a digraph D is a path in which the arcs alternate between forward and backward26

arcs. The digraph D is said to be anticonnected if it contains an antidirected path between x and y27

for every pair of distinct vertices x, y of D. Anticonnected digraphs were studied in [4], where several28

properties such as antihamiltonian connectivity have been considered. We will show in Theorem 2.229

below that it is NP-complete to decide whether a given digraph contains an antidirected path between30

given vertices.31

Our main purpose is to introduce a related connectivity property based on the concept of a forward32

antidirected trail, i. e. a walk with no arc repeated which begins and ends with a forward arc and33

in which the arcs alternate between forward and backward arcs. A digraph D is antistrong if it34

has at least three vertices and contains a forward antidirected (x, y)-trail for every pair of distinct35

vertices x, y of D. We say that D is k-arc-antistrong if it has at least three vertices and contains k36

arc-disjoint forward antidirected (x, y)-trails for all distinct x, y ∈ V (D).37
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The paper is organized as follows. First we show that, from an algorithmic point of view, an-1

ticonnectivity is not an easy concept to work with, since deciding whether a digraph contains an2

anticonnected path between a given pair of vertices is NP-complete. Then we move to the main topic3

of the paper, antistrong connectivity, and show that this relaxed version of anticonnectivity is easy to4

check algorithmically. In fact, we show in Section 3 that there is a close relation between antistrong5

connectivity of a digraph D and its so called bipartite representation B(D), namely D is antistrong6

if and only if B(D) is connected. This allows us in Section 4 to find the minimum number of new7

arcs we need to add to a digraph which is not antistrong so that the resulting digraph is antistrong.8

Furthermore, using the bipartite representation we show in Section 5 that the arc-minimal antistrong9

spanning subdigraphs of a digraph D form the bases of a matroid on the arc-set of D. More generally,10

we show that the subsets of A which contain no closed antidirected trails are the independent sets11

of a matroid on A. In Section 6 we study the problem of deciding whether a given undirected graph12

has an antistrong orientation. We show how to reduce this problem to a matroid problem and give a13

characterization of those graphs that have an antistrong orientation. Our proof leads to a polynomial14

time algorithm which either finds an antistrong orientation of the given input graph G or produces a15

certificate which shows that G has no such orientation. In Section 7 we show that being orientable as16

an antistrong digraph can be expressed in terms of connected 2-detachments of graphs (every vertex v17

is replaced by two copies v′, v′′ and every original edge uv becomes an edge between precisely one of the18

4 possible pairs u′v′, u′v′′, u′′v′, u′′v′′) with the extra requirement that the 2-detachment is bipartite19

and contains no edge of the form u′v′ or u′′v′′. This imediately leads to a characterization of graphs20

having such a 2-detachment. Finally, in Section 8 we show that one can decide in polynomial time21

whether a given digraph D has a spanning antistrong subdigraph D′ so that D−A(D′) is connected in22

the underlying sense (while it is NP-hard to decide whether a given digraph contains a non-separating23

strong spanning subdigraph).24

We conclude the paper with some remarks and open problems.25

2 Anticonnectivity26

It was shown in [4] that every connected graph G has an anticonnected orientation. This can be seen27

by considering a breath first search tree rooted at some vertex r. Let {r} = L0, L1, L2, . . . , Lk be the28

distance classes of G. Orient all edges between r and L1 from r to these vertices, orient all edges29

between L1 ∪ L3 and L2 from L2 to L1 ∪ L3, orient all edges from L4 to L3 ∪ L5 etc. Finally, orient30

all the remaining, not yet oriented edges arbitrarily.31

We will show that it is NP-complete to decide if a digraph has an antidirected path between two32

given vertices. We need the following result which is not new, as it follows from a result in [8] on the33

vertex analogue, but we include a new and short proof for completeness.34

Theorem 2.1 It is NP-complete to decide for a given graph G = (V,E), two specified vertices x, y ∈ V35

and pairs of distinct edges P = {(e1, f1), (e2, f2), . . . , (ep, fp)}, all from E, whether G has an (x, y)-36

path which avoids at least one edge from each pair in P.37

Proof: We first slightly modify a very useful polynomial reduction, used in many papers such38

as [3], from 3-SAT to a simple path problem and then show how to extend this to a reduction from39

3-SAT to the problem above. For simplicity our proof uses multigraphs but it is easy to change to40

graphs.41

Let W [u, v, p, q] be the graph (the variable gadget) with vertices {u, v, y1, y2, . . . yp, z1, z2, . . . zq}42

and the edges of the two (u, v)-paths uy1y2 . . . ypv, uz1z2 . . . zqv.43

Let F be an instance of 3-SAT with variables x1, x2, . . . , xn and clauses C1, C2, . . . , Cm. The ordering44

of the clauses C1, C2, . . . , Cm induces an ordering of the occurrences of a variable x and its negation45

x in these. With each variable xi we associate a copy of W [ui, vi, pi + 1, qi + 1] where xi occurs pi46

times and xi occurs qi times in the clauses of F . Identify end vertices of these graphs by setting47

vi = ui+1 for i = 1, 2, . . . , n − 1. Let s = u1 and t = vn and denote by G′ the resulting graph. In48

G′ we respectively denote by yi,j and zi,j the vertices yj and zj in the copy of W associated with the49

variable xi.50

Next, for each clause Ci we associate this with 3 edges from G′ as follows: assume Ci contains variables51

xj , xk, xl (negated or not). If xj is not negated in Ci and this is the rth copy of xj (in the order of the52
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clauses that use xj), then we associate Ci with the edge yj,ryj,r+1 and if Ci contains xj and this is1

the kth occurrence of xj , then we associate Ci with the edge zj,kzj,k+1. We make similar associations2

for the other two literals of Ci. Thus for each clause Ci we now have a set Ei of three distinct edges3

ei,1, ei,2, ei,3 from G′ and Ei ∩ Ej = ∅ for i 6= j.4

Now it is easy to check that G′ has an (s, t)-path which avoids at least one edge from each of the sets5

E1, E2, . . . , Em if and only if F is satisfiable. Indeed, the (s, t)-path goes through the ‘z-vertices’ of6

the copy of W associated with xi if and only if xi is set to true to satisfy F .7

Let us go back to the original problem. Let H be the multigraph consisting of vertices c0, c1, . . . , cm8

and three edges (denoted fi,1, fi,2, fi,3) from ci−1 to ci for i ∈ {1, . . . ,m}. Let G denote the multigraph9

we obtain from G′ and H by identifying t and c0. Let x = s and y = cm. Finally, form three disjoint10

pairs of arcs (ei,1, fi,1), (ei,2, fi,2), (ei,3, fi,3) between Ei and {fi,1, fi,2, fi,3} for every i ∈ {1 . . .m}.11

By the observations above it is easy to check that G has an (x, y)-path which avoids at least one arc12

from each of the forbidden pairs if and only if F is satisfiable. �13

14

Theorem 2.2 It is NP-complete to decide whether a given digraph contains an antidirected path15

between given vertices x, y.16

Proof: The following proof is due to Anders Yeo (private communication, April 2014). Let17

G = (V,E) be a graph with two specified vertices x, y ∈ V and pairs of distinct edges P =18

{(e1, f1), (e2, f2), . . . , (ep, fp)}, all from E. We will show how to construct a digraph DG with specified19

vertices s, t such that DG contains an antidirected (s, t)-path if and only if G has an (x, y)-path which20

avoids at least one edge from each pair in P. Since the construction can be done in polynomial time21

this and Theorem 2.1 will imply the result.22

Let k be the maximum number of pairs in P involving the same edge from E. Let P be an23

antidirected path of length 2k + 2 which starts with a forward arc (and hence ends with a backward24

arc). Now construct DG as follows: start from G and first replace every edge uv with a private copy25

Puv of P (no internal vertices are common to two such paths). Then for each pair (ei, fi) ∈ P we26

identify one sink of Pei with one source of Pfi so that the resulting vertex has in- and out-degree 2.27

By the choice of the length of P we can identify in pairs, i. e. no three vertices will be identified. Note28

that all the original vertices of G will be sources in DG. The remaining (new vertices) will be called29

internal vertices.30

Finally let s = x and t = y. We claim that DG has an antidirected (s, t)-path if and only31

if G has an (x, y)-path which uses at most one edge from each of the pairs in P. Suppose first32

that xx1x2 . . . xr−1xry is a path in G which uses at most one edge from each of the pairs in P.33

Then Pxx1Px1x2 . . . Pxr−1xrPxry is an antidirected (s, t)-path in DG (no vertex is repeated since the34

identifications above where only done for paths corresponding to pairs in P). Conversely, suppose35

DG contains an antidirected (s, t)-path Q. By the way we identified vertex pairs according to P, the36

internal vertices have in- and out-degree at most 2, and if an internal vertex is on two paths Pei , Pfi37

then it has both its in-neighbours on Pei and both its out-neighbours on Pfi . This implies that Q will38

either completely traverse a path Pei or not touch any internal vertex of that path. Hence it cannot39

traverse both Pei and Pfi if (ei, fi) ∈ P, and it follows that if we delete all internal vertices of Q and40

add back the edges of G corresponding to each of the traversed paths, we obtain an (x, y)-path in G41

that uses at most one edge from each pair in P. �42

43

3 Properties of antistrong digraphs44

For every digraph D we can associate an undirected bipartite graph which contains all the information45

we need to study antistrong connectivity. The bipartite representation [1, Page 19] of a digraph46

D = (V,A) is the bipartite graph B(D) = (V ′ ∪ V ′′, E), where V ′ = {v′|v ∈ V }, V ′′ = {v′′|v ∈ V }47

and E = {v′w′′|vw ∈ A}.48

Proposition 3.1 Let D = (V,A) be a digraph with |V | ≥ 3. The following are equivalent.49
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(a) D is antistrong1

(b) B(D) is connected.2

(c) For every choice of distinct vertices x, y, the digraph D contains both an antidirected (x, y)-trail3

Tx,y of even length starting on a forward arc and an antidirected (x, y)-trail T̄x,y of even length4

starting on a backward arc.5

Proof: Suppose (a) holds. Then, following the edges corresponding to the arcs of a forward6

antidirected (x, y)-trail, B(D) contains an (x′, y′′)-path for every pair of distinct vertices x, y ∈ V .7

Now, if x and y are distinct vertices of D, we choose a third vertex z in D (z 6= x and z 6= y),8

and the union of an (x′, z′′)-path and a (z′′, y′)-path contains an (x′, y′)-path in B(D). Similarly we9

obtain an (x′′, y′′)-path in B(D) for every pair of distinct vertices x, y ∈ V . Finally, for any x ∈ V ,10

an (x′, x′′)-path in B(D) can be found in the union of an (x′, y′)-path and a (y′, x′′)-path, where y11

is a vertex of D distinct from x. Hence (a) ⇒ (b) holds. Conversely, (b) ⇒ (a) holds, since any12

(x′, y′′)-path in B(D) corresponds to a forward antidirected (x, y)-path in D which starts and ends13

with a forward arc.14

Now to prove (b) ⇒ (c), it suffices to remark that Tx,y and T̄x,y correspond to an (x′, y′)-path and15

an (x′′, y′′)-path in B(D), respectively. Finally, to see that (c) ⇒ (b) holds, it suffices to show that16

if (c) holds, then B(D) contains an (x′, y′′)-path for all x, y ∈ V (possibly equal). This follows by17

considering a neighbour z′′ of x′ and a (z′′, y′′)-path in B(D). �18

19

Proposition 3.1 implies the next two results.20

Corollary 3.2 One can check in linear time whether a digraph is antistrong.21

Corollary 3.3 No bipartite digraph is antistrong.22

Recall that a digraph is k-strong if it has at least k+1 vertices and it remains strong after deletion23

of any set of at most k−1 vertices. The digraph obtained from three disjoint independent sets X,Y, Z24

each of size k by adding all arcs from X to Y , from Y to Z, and from Z to X is k-strong. However,25

B(D) has three connected components. This shows that no condition on the strong connectivity will26

guarantee that a digraph is antistrong.27

28

Recall that D is k-arc-antistrong if it contains k arc-disjoint forward antidirected (x, y)-trails for29

every ordered pair of distinct vertices x, y. We can check in time O(mk) whether a digraph has k30

arc-disjoint forward antidirected (x, y)-trails for given vertices x, y, because they correspond to edge-31

disjoint (x′, y′′)-paths in B(D) whose existence can be checked by using flows, see e.g. [1, Section 5.5].32

So we can check in polynomial time if a digraph is k-arc-antistrong.33

Theorem 3.4 If D is 2k-arc-antistrong, then it contains k arc-disjoint antistrong spanning subdi-34

graphs.35

Proof: Since D is 2k-arc-antistrong, B(D) is 2k-edge-connected. We can now use Nash-Williams’ the-36

orem (see [1, Theorem 9.4.2] for instance) to deduce that B(D) has k edge-disjoint spanning trees.37

Proposition 3.1 now gives the required set of k arc-disjoint antistrong spanning subdigraphs of D. �38

39

Theorem 3.5 There exists a polynomial time algorithm which for a given digraph D and a natural40

number k either returns k arc-disjoint spanning antistrong subdigraphs of D or correctly answers that41

no such set exists.42

Proof: This follows from the fact that such subdigraphs exist if and only if B(D) has k edge-43

disjoint spanning trees, and the existence of such trees can be checked via Edmonds’ algorithm for44

matroid partition [5]. �45

46

The corresponding problem for containing two arc-disjoint strong spanning subdigraphs is NP-47

complete (see e.g. [1, Theorem 13.10.1]).48
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Theorem 3.6 It is NP-complete to decide whether a digraph D contains two spanning strong subdi-1

graphs D1, D2 which are arc-disjoint.2

4 Antistrong connectivity augmentation3

Note that every complete digraph on at least 3 vertices is antistrong. Hence it is natural to ask for4

the minimum number of new arcs one has to add to a digraph in order to make it antistrong.5

Theorem 4.1 There exists a polynomial time algorithm for finding, for a given digraph D = (V,A)6

on at least 3 vertices, a minimum cardinality set of new arcs F such that the digraph D′ = (V,A∪̇F )7

is antistrong.8

Proof: Let D be a digraph on n ≥ 3 vertices which is not antistrong. By Proposition 3.1, its bipartite9

representation B(D) is not connected. First observe that in the bipartite representation each new arc10

added to D will correspond to an arc from a vertex u′ of V ′ to a vertex v′′ ∈ V ′′ such that u 6= v11

back in V . So we are looking for the minimum number of new edges of type u′v′′ with u 6= v whose12

addition to B(D) makes it connected while preserving the bipartition V ′, V ′′. Note that, as long as13

n ≥ 3, in which case B(D) has at least 6 vertices, we can always obtain a connected graph by adding14

edges that are legal according to the definition above. So the number of edges we need is exactly the15

number of connected components of B(D) minus one.116

To find an optimal augmentation we add all missing edges between V ′ and V ′′ to B(D), except for17

those of the form v′v′′ and give the new edges cost 1, while all original edges get cost 0. Now find a18

minimum weight spanning tree in the resulting weighted complete bipartite graph. The edges of cost19

1 correspond to an optimal augmenting set back in D. �20

21

The complexity of the analogous question for k-arc-antistrong connectivity is open.22

23

Problem 4.2 Given a digraph D and a natural number k, can we find in polynomial time a minimum24

cardinality set of new arcs whose addition to D results in a digraph D′ which is k-arc-antistrong?25

Problem 4.2 is easily seen to be equivalent to the following problem on edge-connectivity augmen-26

tation of bipartite graphs.27

Problem 4.3 Given a natural number k and a bipartite graph B = (X,Y,E) with |X| = |Y | = p28

which admits a perfect matching M in its bipartite complement, find a minimum cardinality set of new29

edges F such that F ∩M = ∅ and B + F is k-edge-connected and bipartite with the same bipartition30

as B.31

Theorem 4.1 can be extended to find the minimum number of new arcs whose addition to D gives a32

digraph with k arc-disjoint antistrong spanning subdigraphs D1, . . . , Dk, provided that V (D) is large33

enough to allow the existence of k such subdigraphs. Note that since each Di needs at least 2n − 134

arcs and we do not allow parallel arcs, we need n to be large enough, in particular we must have35

n ≥ 2k + 1.36

Theorem 4.4 There exists a polynomial time algorithm for determining, for a given digraph D on37

at least 3 vertices, whether one can add some edges to D such that the resulting digraph is simple38

(no parallel arcs) and has k arc-disjoint antistrong spanning subdigraphs. In the case when such a39

set exists, the algorithm will return a minimum cardinality set of arcs A′ such that D′ = (V,A ∪ A′)40

contains k arc-disjoint antistrong spanning subdigraphs.41

Proof: This follows from the fact that the minimum set of new arcs is exactly the minimum number42

of new edges, not of the form v′v′′ that we have to add to B(D) such that the resulting bipartite43

graph is simple and has k edge-disjoint spanning trees. This number can be found using matroid44

1This number is also equal to (2n− 1)− r(A) where r is the rank function of the matroid M(D) which we define in
Section 5.
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techniques as follows. Add all missing edges from V ′ to V ′′ and give those of the form v′v′′ very1

large cost (larger than 2nk) and the other new edges cost 1. Now, if the resulting complete bipartite2

digraph Kn,n has k-edge-disjoint spanning trees of total cost less than 2nk, then the set of new edges3

added will form a minimum augmenting set and otherwise no solution exists. Recall from matroid4

theory that k edge-disjoint spanning trees in Kn,n correspond to k edge-disjoint bases in the cycle5

matroid M(Kn,n) of Kn,n which again corresponds to an independent set of size k(2n − 1) in the6

union M =
∨k
i=1M(Kn,n). This means that we can solve the problem by finding a minimum cost7

base B of M and then either return the arcs which correspond to edges of cost 1 in B or decide that8

no solution exists when the cost of B is more than 2kn. We leave the details to the reader. �9

10

5 A matroid for antistrong connectivity11

Having seen the equivalence between antistrong connectivity of digraph D on n vertices and connec-12

tivity of its bipartite representation B(D) (see Proposition 3.1), and recalling from matroid theory13

that B(D) is connected if and only if the cycle matroid M(B(D)) has rank |V (B(D))|−1, it is natural14

to ask how antistrong connectivity can be expressed as a matroid property on D itself.15

For F ⊆ A, we denote by h(F ) and t(F ) the numbers of vertices that are heads, respectively tails,16

of one or more arcs in F .17

Recall that the independent sets of the cycle matroid M(G) of a graph G = (V,E) are those
subsets I ⊆ E for which we have |I ′| ≤ ν(I ′) − 1 for all ∅ 6= I ′ ⊆ I, where ν(I ′) is the number of
end vertices of the edges in I ′. Inspired by this we define set I of arcs in a digraph D = (V,A) to be
independent if

|I ′| ≤ h(I ′) + t(I ′)− 1 for all ∅ 6= I ′ ⊆ I, (1)

A set S ⊆ A is dependent if it is not independent.18

Proposition 5.1 Let D = (V,A) be a digraph. A subset I ⊆ A is independent if and only if the19

corresponding edge set I in B(D) forms a forest. Every inclusion-minimal dependent set S ⊆ A20

corresponds to a cycle in B(D) and conversely.21

Proof: Suppose I ⊆ A is independent and consider the corresponding edge set Ĩ in B(D). If Ĩ is22

not a forest, then some subset Ĩ ′ ⊆ Ĩ will be a cycle C in B(D) with p vertices in each of V ′, V ′′ for23

some p ≥ 2. The set Ĩ ′ corresponds to a set I ′ ⊆ I with h(I ′) + t(I ′) − 1 = p + p − 1 < 2p = |I ′|,24

contradicting that I is independent. The other direction follows from the fact that every forest F in25

B(D) spans at least |E(F )| + 1 vertices in B(D) and every subset of a forest is again a forest. The26

last claim follows from the fact that every minimal set of edges which does not form a forest in B(D)27

forms a cycle in B(D). �28

29

The previous proposition implies that a set of arcs of a digraph is dependent if and only if it30

contains a closed trail of even length consisting of alternating forward and backward arcs. We will31

refer to such a trail as a closed antidirected trail, or CAT for short.32

Theorem 5.2 Let D = (V,A) be a digraph and I be the family of all independent sets of arcs in D.33

Then M(D) = (A, I) is a graphic matroid with rank equal to the size of a largest collection of arcs34

containing no closed alternating trail.35

Proof: It follows immediately from Proposition 5.1 that a set I belongs to I if and only if the36

corresponding edge set Ĩ is independent in the cycle matroid on B(D). �37

38

Theorem 5.3 A digraph D is antistrong if and only if M(B(D)) has rank 2|V | − 1.39

Proof: The rank of M(B(D)) equals the size of a largest acyclic set of edges in B(D). This has size40

2|V | − 1 precisely when B(D) has a spanning tree H. Back in D, the arcs corresponding to E(H)41

contain antidirected forward trails between any pair of distinct vertices. �42

43
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6 Antistrong orientations of graphs1

Recall that, by Robbins’ theorem (see e.g. [1, Theorem 1.6.1]) a graph G has a strongly connected2

orientation if and only if G is 2-edge-connected. For antistrong orientations we have the following3

consequence of Proposition 3.1 which implies that there is no lower bound to the (edge-) connectivity4

which guarantees an antistrong orientation of a graph.5

Proposition 6.1 No bipartite graph can be oriented as an antistrong digraph.6

The purpose of this section is to characterize graphs which can be oriented as antistrong digraphs.7

Theorem 6.2 Suppose G = (V,E) and |E| = 2|V | − 1. Then G has an antistrong orientation if and8

only if9

|E(H)| ≤ 2|V (H)| − 1 for all nonempty subgraphs H of G, and (2)

|E(H)| ≤ 2|V (H)| − 2 for all nonempty bipartite subgraphs H of G. (3)

We derive Theorem 6.2 from the following characterization of graphs which can be oriented as10

digraphs with no closed antidirected trail (CAT).11

Theorem 6.3 A graph G = (V,E) has an orientation with no CAT if and only if G satisfies (2) and12

(3). In particular no n vertex graph with at least 2n edges and no n vertex bipartite graph with at13

least 2n− 1 edges admits a CAT-free orientation.14

It is not hard to see that Theorem 6.3 implies Theorem 6.2. Assume that Theorem 6.3 holds and15

consider a graph G = (V,E) with |E| = 2|V | − 1. Suppose that G has an antistrong orientation D.16

Then B(D) is connected by Proposition 3.1. As B(D) has 2|V | − 1 = |V (B(D))| − 1 edges it is a17

tree. So D is a CAT-free orientation of G and, by Theorem 6.3, conditions (2) and (3) hold for G.18

Conversely, if (2) and (3) hold for G, then G has a CAT-free orientation by Theorem 6.3, and we can19

deduce as above that this orientation is also an antistrong orientation of G.20

21

We next show that (2) and (3) are necessary conditions for a CAT-free orientation. For the ne-22

cessity of (2), suppose that some nonempty subgraph H has |E(H)| ≥ 2|V (H)| and that D is any23

orientation of G. Then B(D) has at least 2|V (H)| edges between V (H)′ and V (H)′′, implying that24

it contains a cycle. Hence D is not CAT-free. The necessity of (3) can be seen as follows. Suppose25

H is a bipartite subgraph on 2|V (H)| − 1 edges and let ~H be an arbitrary orientation of H. Since26

no bipartite graph has an antistrong orientation it follows that B( ~H) is not connected, and, as it has27

2|V (H)| − 1 = |V (B( ~H))| − 1 edges, it contains a cycle. This corresponds to a CAT in ~H.28

29

Most of the remainder of this section is devoted to a proof of sufficiency in Theorem 6.3. We30

first show that, for an arbitrary graph G′ = (V ′, E′), the edge sets of all subgraphs G of G′ which31

satisfy (2) and (3) are the independent sets of a matroid on E′. We then show that this matroid is32

the matroid union of the cycle matroid and the ‘even bicircular matroid’ of G′ (defined below). This33

allows us to partition the edge-set of a graph G which satisfies (2) and (3) into a forest and an ‘odd34

pseudoforest’. We then use this partition to define a CAT-free orientation of G. We first recall some35

results from matroid theory. We refer a reader unfamiliar with submodular functions and matroids36

to [7].37

Suppose E is a set and f : 2E → Z is a submodular, nondecreasing set function which is nonnegative
on 2E \{∅}. Edmonds [6], see [7, Theorem 13.4.2], showed that f induces a matroid Mf on E in which
S ⊆ E is independent if |S′| ≤ f(S′) for all ∅ 6= S′ ⊆ S. The rank of a subset S ⊆ E in Mf is given
by the min-max formula

rf (S) = min
P

{∣∣∣∣∣S \ ⋃
T∈P

T

∣∣∣∣∣+
∑
T∈P

f(T )

}
, (4)

where the minimum is taken over all subpartitions P of S (where a subpartition of S is a collection38

of pairwise disjoint nonempty subsets of S). Note that the matroid M(D) defined in the previous39

section is induced on the arc-set of the digraph D by the set function h+ t− 1.40
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Given a graph G = (V,E) and S ⊆ E let G[S] be the subgraph induced by S i.e. the subgraph1

of G with edge-set S and vertex-set all vertices incident to S. Let ν, β : 2E → Z by putting ν(S) equal2

to the number of vertices incident to S, and β(S) equal to the number of bipartite components of3

G[S]. It is well known that ν is submodular, nondecreasing, and nonnegative on 2E and that Mν−1(G)4

is the cycle matroid of G. The function ν − β is also known to be submodular, nondecreasing, and5

nonnegative on 2E and hence induces a matroid Mν−β(G) on E which we call the even bicircular6

matroid of G, see for example [11]. The independent sets of Mν−β(G) are the edge sets of the odd7

pseudoforests of G, i. e. subgraphs in which each connected component contains at most one cycle,8

and if such a cycle exists then it is odd.9

The above mentioned properties of ν and ν−β imply that 2ν−1−β is submodular, nondecreasing,10

and nonnegative on 2E \ {∅}. We will show that the independent sets in M2ν−1−β(G) are the edge11

sets of the subgraphs which satisfy (2) and (3).12

Lemma 6.4 Let G = (V,E) be a graph and I = {I ⊆ E : G[I] satisfies (2) and (3)}. Then I is the13

family of independent sets of the matroid M2ν−1−β(G). In addition, the rank of a subset S ⊆ E in14

this matroid is r2ν−1−β(S) = minP
{
|S \

⋃
T∈P T |+

∑
T∈P (2ν(T )− 1− β(T ))

}
where the minimum15

is taken over all subpartitions P of S.16

Proof. We first suppose that some S ⊆ E is not independent in M2ν−1−β(G). Then we may choose17

a nonempty S′ ⊆ S with |S′| > 2ν(S′)− 1− β(S′), and subject to this condition, such that |S′| is as18

small as possible. The minimality of S′ implies that H = G[S′] is connected. So β(S′) = 1 if and only19

if H is bipartite (and 0 otherwise) and we may now deduce that that H ⊆ G[S] fails to satisfy (2) or20

(3).21

We next suppose that G[S] fails to satisfy (2) or (3) for some S ⊆ E. Then there exists a nonempty22

subgraph H of G[S] such that either |E(H)| > 2|V (H)|−1, or H is bipartite and |E(H)| > 2|V (H)|−2.23

Then S′ = E(H) satisfies |S′| > 2ν(S′)− 1− β(S′) so S is not independent in M2ν−1−β(G).24

The expression for the rank function of M2ν−1−β(G) follows immediately from (4). �25

26

The matroid union of two matroids M1 = (E, I1) and M2 = (E, I2) on the same ground27

set E is the matroid M1 ∨ M2 = (E, I) where I = {I1 ∪ I2 : I1 ∈ I1 and I1 ∈ I1}. Suppose28

f1, f2 : E → Z are submodular, nondecreasing, and nonnegative on 2E \{∅}. Then f1 +f2 will also be29

submodular, nondecreasing, and nonnegative on 2E \ {∅} and hence will induce the matroid Mf1+f2 .30

Every independent set in Mf1 ∨Mf2 is independent in Mf1+f2 , but the converse does not hold in31

general. Katoh and Tanigawa [9, Lemma 2.2] have shown that the equality Mf1+f2 = Mf1 ∨Mf2 does32

hold whenever the minimum in formula (4) for the ranks rf1(S) and rf2(S) is attained for the same33

subpartition of S, for all S ⊂ E. This allows us to deduce34

Lemma 6.5 For any graph G = (V,E), we have M2ν−1−β(G) = Mν−1(G) ∨Mν−β(G).35

Proof. This follows from the above mentioned result of Katoh and Tanigawa, and the facts that36

rν−1(S) =
∑
T∈P(ν(T )− 1) and rν−β(S) =

∑
T∈P(ν(T )− β(T )) where P is the partition of S given37

by the connected components of G[S] (since rν−1(S) and rν−β(S) are equal to the number of edges38

in a maximum forest and a maximum odd pseudoforest, respectively, in G[S]). �39

40

Lemma 6.4 and Lemma 6.5 immediately give the following.41

Lemma 6.6 Let G = (V,E) be a graph. Then G satisfies (2) and (3) if and only if E can be42

partitioned into a forest and an odd pseudoforest.43

We provide an alternative graph theoretic proof of this lemma in the Appendix.44

45

We next show that every graph whose edge set can can be partitioned into a spanning tree and an46

odd pseudoforest has a CAT-free orientation.47
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Figure 1: A CAT-free orientation of the union of a spanning tree T and a spanning pseudoforest P ;
T governs the bipartition X,Y (white/grey), its edges are drawn outside (or on) the disk spanned by
the vertices. The edges of P are embedded in the interior of that disk, the root vertex is the encircled
topmost one, the precious edge is the dashed one.

Theorem 6.7 Let G be the edge-disjoint union of a spanning tree T and an odd pseudoforest P .21

Then G has a CAT-free orientation. In addition, such an orientation can be constructed in linear2

time given T and P .3

Proof: Let X,Y be the unique (up to renaming the two sets) bipartition of T and orient all edges4

of T from Y to X. If P has no edges we are done since there are no cycles in G. Let P1, . . . , Pk be5

the connected components of P . We shall show that we can orient the edges of P1, . . . , Pk in such a6

way that none of the resulting arcs of these (now oriented) pseudoforests ~P1, . . . , ~Pk can belong to a7

closed antidirected trail. Clearly this will imply the lemma. For each Pi we choose a root vertex ri of8

Pi as follows. If Pi is a tree then we choose ri to be an arbitrary vertex of Pi. If Pi contains an odd9

cycle Ci then we choose ri to be a vertex of Ci such that ri has at least one neighbour si ∈ Ci which10

belongs to the same set in the bipartition (X,Y ) as ri (this is possible since Ci is odd). We will refer11

to the edge risi as a precious edge of Pi. Put Ti = Pi − risi if Pi contains a cycle and otherwise12

put Ti = Pi.13

We orient the edges of Ti as follows. Every edge of Pi with one end in X and the other in Y is14

oriented from X to Y . Every edge uv of Ti with u, v ∈ X is oriented towards ri in Ti (so if v is closer15

to ri than u in Ti we orient the edge from u to v and otherwise we orient it from v to u, see Figure 1).16

Every edge pq of Ti with p, q ∈ Y is oriented away from ri in Ti. Finally, if Pi contains a precious17

edge risi, then we orient risi from ri to si if ri, si ∈ X, and from si to ri if ri, si ∈ Y . Let D denote18

the resulting orientation of G. The digraph D can be constructed in linear time if we traverse each19

tree Ti by a breath first search rooted at ri.20

We use induction on |E(P )| to show that D is CAT-free. As noted above, this is true for the base21

case when E(P ) = ∅. Suppose that E(P ) 6= ∅ and choose an edge uv in some Pi according to the22

following criteria. If Pi is not a cycle then choose v to be a vertex of degree one in Pi distinct from23

ri and u to be the neighbour of v in Pi. If Pi is an odd cycle then choose v = ri and u = si. We will24

show that uv belongs to no CAT in D. By symmetry, we may suppose that v ∈ X.25

2Note that G may have parallel edges, but no more than two copies of any edge, in which case one copy is in T and
the other in P
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We first consider the case when v is a vertex of degree one in Pi. Below d+(v), d−(v) denote the1

out-degree, respectively, the in-degree of the vertex v. We have two possible subcases:2

• u ∈ Y . Since v ∈ X, we oriented uv from v to u. All the other edges incident to v belong to T3

and were oriented towards v. Then d+(v) = 1 and the arc vu cannot be part of a CAT.4

• u ∈ X. Since v ∈ X, we oriented uv from v to u (as u is closer to ri than v in Ti). As previously5

we have d+(v) = 1 and the arc vu cannot be part of a CAT.6

Since D − uv is CAT-free by induction, D is also CAT-free.7

We next consider the case when Pi is an odd circuit, v = ri and u = si. Let ti be the neighbour8

of ri in Pi distinct from si. We again have two possible subcases:9

• ti ∈ X. Since ri ∈ X, we oriented the edge tiri from ti to ri. Then d+(ri) = 1, and the arc risi10

cannot be part of a CAT.11

• ti ∈ Y . Let qi be the neighbour of si in Pi which is distinct from ri. The choice of ri implies12

that qi ∈ Y , and hence that siqi is oriented from si to qi. Then d+(si) = 1, and the arc risi13

cannot be part of a CAT.14

Since D − risi is CAT-free by induction, D is also CAT-free. �15

16

Proof of Theorem 6.3 (sufficiency): Let G = (V,E) be a graph satisfying (2) and (3). By17

Lemma 6.6, E can be partitioned into a forest F and an odd pseudoforest P . By adding a suitable18

set of edges to G, we may assume that |E| = 2|V | − 1. (This follows by considering the matroid19

M2ν−1−β(2Kn) on the edge set of the graph 2Kn with vertex set V in which all pairs of vertices20

are joined by two parallel edges. It is easy to check that 2Kn has an edge-disjoint forest and odd21

pseudoforest with a total of 2|V | − 1 edges. Thus the rank of M2ν−1−β(2Kn) is 2|V | − 1. Since E is22

an independent set in M2ν−1−β(2Kn), it can be extended to an independent set with 2|V | − 1 edges.)23

The fact that |E| = 2|V | − 1 implies that F is a spanning tree of G. We can now apply Theorem 6.724

to deduce that G has a CAT-free orientation. �25

26

We have seen that Theorem 6.3 implies Theorem 6.2, and hence that a graph G = (V,E) has an27

antistrong orientation if and only if the rank of M2ν−1−β(G) is equal to 2|V | − 1. We can now apply28

the rank formula (4) to characterize graphs which admit an antistrong orientation.29

Theorem 6.8 A graph G = (V,E) has an antistrong orientation if and only if

e(Q) ≥ |Q| − 1 + b(Q) (5)

for all partitions Q of V , where e(Q) denotes the number of edges of G between the different parts of30

Q and b(Q) the number of parts of Q which induce bipartite subgraphs of G.31

Proof: Suppose that G has no antistrong orientation. Then the rank of M2ν−1−β(G) is less than
2|V | − 1 so there exists a subpartition P of E such that

α(P) :=

∣∣∣∣∣E \ ⋃
T∈P

T

∣∣∣∣∣+
∑
T∈P

(2ν(T )− 1− β(T )) < 2|V | − 1. (6)

We may assume that P has been chosen such that:32

(i) α(P) is as small as possible;33

(ii) subject to (i), |P| is as small as possible;34

(iii) subject to (i) and (ii), |
⋃
T∈P T | is as large as possible.35
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Let P = {E1, E2, . . . , Et} and let Hi = (Vi, Ei) be the subgraph of G induced by Ei for all 1 ≤ i ≤ t.1

We will show that Hi is a (vertex-)induced connected subgraph of G and that Vi∩Vj = ∅ for all i 6= j.2

First, suppose that Hi is disconnected for some 1 ≤ i ≤ t. Then we have Hi = H ′i ∪H ′′i for some
subgraphs H ′i = (V ′i , E

′
i) and H ′′i = (V ′′i , E

′′
i ) with V ′i ∩ V ′′i = ∅. Let P ′ = (P \ {Ei}) ∪ {E′i, E′′i }. We

have
2ν(Ei)− 1− β(Ei) > 2ν(E′i)− 1− β(E′i) + 2ν(E′′i )− 1− β(E′′i )

since, ν(Ei) = ν(E′i) + ν(E′′i ) and β(Ei) = β(E′i) + β(E′′i ). This implies that α(P ′) < α(P) and3

contradicts (i). Hence Hi is connected and β(Ei) ∈ {0, 1} for all 1 ≤ i ≤ t.4

Next, suppose that Vi ∩ Vj 6= ∅ for some 1 ≤ i < j ≤ t. Let P ′ = (P \ {Ei, Ej}) ∪ {Ei ∪ Ej}. We
have

2ν(Ei)− 1− β(Ei) + 2ν(Ej)− 1− β(Ej) ≥ 2ν(Ei ∪ Ej)− 1− β(Ei ∪ Ej)

since, if |Vi ∩ Vj | = 1, then ν(Ei) + ν(Ej) = ν(Ei ∪ Ej) + 1 and β(Ei) + β(Ej) ≤ β(Ei ∪ Ej) + 1,5

and, if |Vi ∩ Vj | ≥ 2, then ν(Ei) + ν(Ej) ≥ ν(Ei ∪ Ej) + 2 and β(E1) + β(Ej) ≤ 2. This implies that6

α(P ′) ≤ α(P). Since |P ′| < |P| this contradicts (i) or (ii). Hence Vi ∩ Vj = ∅ for all i 6= j.7

Finally, suppose that Hi 6= G[Vi]. Then some e ∈ E \
⋃
T∈P T has both end vertices in Ei.8

Let E′i = Ei + e and P ′ = P − Ei + E′i. This implies that α(P ′) ≤ α(P). Since |P ′| = |P| and9

|
⋃
T∈P′ T | > |

⋃
T∈P T |, this contradicts (i) or (iii). Hence Hi = G[Vi].10

Let Q be the partition of V obtained from {V1, V2, . . . , Vt} by adding the remaining vertices of G11

as singletons. Then
∣∣E \⋃T∈P T ∣∣ = e(Q) and

∑
T∈P (2ν(T )− 1− β(T )) = 2|V | − |Q| − b(Q). We12

can now use (6) to deduce that e(Q) < |Q| − 1 + b(Q).13

Suppose, on the other hand, that e(Q) < |Q|− 1 + b(Q) for some partition Q = {V1, V2, . . . , Vs} of
V . Let G[Vi] = (Vi, Ei) for 1 ≤ i ≤ s and P = {Ei : Ei 6= ∅, 1 ≤ i ≤ s}. Then

∣∣E \⋃T∈P T ∣∣ = e(Q)
and ∑

T∈P
(2ν(T )− 1− β(T )) = 2|V | − |Q| − b(Q)−

∑
T∈P

(β(T )− β∗(T )) ≤ 2|V | − |Q| − b(Q),

where β∗(T ) = min{β(T ), 1}. A straightforward calculation now gives∣∣∣∣∣E \ ⋃
T∈P

T

∣∣∣∣∣+
∑
T∈P

(2ν(T )− 1− β(T )) < 2|V | − 1

and hence G has no antistrong orientation. �14

15

16

Corollary 6.9 Every 4-edge-connected nonbipartite graph has an antistrong orientation.17

Proof: Suppose G = (V,E) is 4-edge-connected and not bipartite and let Q be a partition of V . If18

Q = {V } then e(Q) = 0 = |Q|−1+ b(Q) since G is not bipartite, and if Q 6= {V } then e(Q) ≥ 2|Q| ≥19

|Q|− 1 + b(Q) since G is 4-edge-connected. Hence G has an antistrong orientation by Theorem 6.8. �20

21

Corollary 6.10 Every nonbipartite graph with three edge-disjoint spanning trees has an antistrong22

orientation.23

Proof: We give two proofs of this corollary.24

Suppose G = (V,E) is a nonbipartite graph with three edge-disjoint spanning trees and let Q25

be a partition of V . If Q = {V } then e(Q) = 0 = |Q| − 1 + b(Q) since G is not bipartite, and if26

Q 6= {V } then e(Q) ≥ 3(|Q| − 1) since G has three edge-disjoint spanning trees. Since |Q| ≥ 2,27

2(|Q| − 1) ≥ |Q| ≥ b(Q) and e(Q) ≥ |Q| − 1 + b(Q). Hence G has an antistrong orientation by28

Theorem 6.8.29

We could also remark that if T1, T2 and T3 denote three edge-disjoint spanning trees of G, then30

there exists e ∈ G such that T1 + e is not bipartite. Then depending if e ∈ T2 or not, {T1 + e, T3} or31
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{T1 + e, T2} is an edge-disjoint pair of a spanning odd pseudo-tree and a spanning tree of G. Let H1

denote this subgraph of G. Then using Theorem 6.7, H has a CAT-free orientation which is also an2

antistrong orientation of H since |E(H)| = 2|V (H)| − 1. So G has also an antistrong orientation. �3

4

Corollary 6.10 is tight in the sense that there exist graphs with many edge-disjoint trees, two5

spanning and the others missing just three vertices, which have no antistrong orientation. Consider6

the graph G obtained by identifying one vertex of a complete bipartite graph Kk,k and a complete7

graph K4. Then G has no antistrong orientation. Indeed, consider the partition Q of V (G) into8

four parts: the copy of Kk,k, and one part for each remaining vertex of K4. We have e(Q) = 6 <9

|Q| − 1 + b(Q) = 4− 1 + 4 and then G has no antistrong orientation by Theorem 6.8.10

Since M2ν−1−β(G) = Mν−1(G) ∨Mν−β(G), we can use Edmonds’ matroid partition algorithm [5]11

to determine the rank of M2ν−1−β(G) in polynomial time, and hence determine whether G has an12

antistrong orientation. Moreover, when such an orientation exists, we can use Edmonds’ algorithm13

to construct an edge-disjoint spanning tree and pseudoforest with a total of 2|V | − 1 edges, and then14

use the construction from the proof of Theorem 6.7 to obtain the desired antistrong orientation in15

polynomial time. This gives16

Corollary 6.11 There exists a polynomial time algorithm which finds, for a given input graph G,17

either an antistrong orientation D of G, or a certificate, in terms of a subpartition P which violates18

(5), that G has no such orientation.19

7 Connected bipartite 2-detachments of graphs20

We now show a connection between antistrong orientations of a graph G and so-called detachments21

of G. We need only the special case of 2-detachments (see e.g. [10] for results on detachments).22

A 2-detachment of a graph G = (V,E) is any graph H = (V ′ ∪ V ′′, E′) which can be obtain23

from G by replacing every vertex v ∈ V with two new vertices v′, v′′ and then for each original edge24

uv adding precisely one of the four edges u′v′, u′v′′, u′′v′, u′′v′′ to E′.25

Lemma 7.1 A graph G = (V,E) has an antistrong orientation if and only if G has a 2-detachment26

H = (V ′∪V ′′, E′) which is connected and bipartite with bipartition V ′, V ′′ (we call such a 2-detachment27

good).28

Proof: Suppose G has a good 2-detachment H = (V ′ ∪ V ′′, E′). Then there are no edges of the form29

u′v′ and no edges of the form u′′v′′. Hence the orientation D that we get by orienting the edges of30

the form u′v′′ from u to v will be an antistrong orientation of G by Proposition 3.1. Conversely, if D31

is an antistrong orientation of G, then B(D) is a good 2-detachment of G. �32

33

We can now use Theorem 6.8 and the subsequent remark to deduce the following.34

Theorem 7.2 A graph G = (V,E) has a good 2-detachment if and only if

e(Q) ≥ |Q| − 1 + b(Q) (7)

for all partitions Q of V . Furthermore, there exists a polynomial time algorithm which returns such a35

2-detachment when it exists and otherwise returns a certificate, in terms of a partition violating (7),36

that no such detachment exists.37

8 Non-separating antistrong spanning subdigraphs38

While there are polynomial time algorithms for checking the existence of two edge-disjoint spanning39

trees [5], or two arc-disjoint branchings (spanning out-trees) in a digraph (see e.g. [1, Corollary 9.3.2]),40

checking whether we can delete a strong spanning subdigraph and still have a connected digraph is41

difficult. Let UG(D) denote the underlying undirected graph of a digraph D.42
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Theorem 8.1 [3] It is NP-complete to decide whether a given digraph D contains a spanning strong1

subdigraph H such that UG(D −A(H)) is connected.2

If we replace “strong” by “antistrong” above, the problem becomes solvable in polynomial time.3

Theorem 8.2 We can decide in polynomial time for a given digraph D = (V,A) on n vertices whether4

D contains a spanning antistrong subdigraph H = (V,A′) such that UG(D −A′) is connected.5

Proof: We may assume that D is antistrong, since this can be checked in linear time by verifying6

that B(D) is connected. Let M1 = (A, I) be the cycle matroid of of the underlying graph UG(D) of7

D and let M2 = M(D) = (A, I(D)) be the matroid from Section 5 whose bases are the antistrong sets8

consisting of 2n− 1 arcs. Let M = M1 ∨M2 be the union of the matroids M1,M2, that is, a set X of9

arcs is independent in M if and only we can partition X into X1, X2 such that Xi is independent in10

Mi. For each of the matroids M1,M2 we can check in polynomial time whether a given subset X of11

arcs is independent in M1 and M2 (for M1 we need to check that there is no cycle in UG(D)[X] and12

for M2 we need to check that there is no cycle in the subgraph of B(D)[EX ] induced by the edges EX13

corresponding to X in B(D)). Thus it follows from Edmonds’ algorithm for matroid partitioning [5]14

that we can find a base of M in polynomial time using the independence oracles of M1,M2. The15

desired digraph H exists if and only if the size of a base in M is (2n− 1) + (n− 1) = 3n− 2. �16

17

A similar proof gives the following.18

Theorem 8.3 We can decide in polynomial time whether a digraph D contains k + ` arc-disjoint19

spanning subdigraphs D1, . . . , Dk+` such that D1, . . . , Dk are antistrong and UG(Dk+1), . . . , UG(Dk+`)20

are connected.21

9 Remarks and open problems22

We saw in Theorem 3.6 that it is NP-complete to decide whether a given digraph contains two arc-23

disjoint spanning strong subdigraphs. We would be interested to know what happens if we modify24

the problem as follows.25

Question 9.1 Can we decide in polynomial time whether D contains arc-disjoint spanning subdi-26

graphs D1, D2 such that D1 is antistrong and D2 is strongly connected?27

Inspired by Theorem 8.2 it is natural to ask the following intermediate question.28

Question 9.2 Can we decide in polynomial time whether D contains arc-disjoint spanning subdi-29

graphs D1, D2 such that D1 is antistrong and UG(D2) is 2-edge-connected?30

The following conjecture was raised in [2].31

Conjecture 9.3 [2] There exists a natural number k such that every k-arc-strong digraph has arc-32

disjoint strong spanning subdigraphs D1, D2.33

Perhaps the following special case may be easier to study.34

Conjecture 9.4 There exists a natural number k such that every digraph D which is both k-arc-strong35

and k-arc-antistrong has arc-disjoint strong spanning subdigraphs D1, D2.36

*
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A Appendix: a graph theoretical proof of Lemma 6.61

In this appendix, we give a graph theoretical proof of Lemma 6.6, recalled below.2

3

Lemma 6.6 Let G = (V,E) be a graph. Then G satisfies

|E(H)| ≤ 2|V (H)| − 1 for all nonempty subgraphs H of G, and (2)

|E(H)| ≤ 2|V (H)| − 2 for all nonempty bipartite subgraphs H of G (3)

if and only if E can be partitioned into a forest and an odd pseudoforest.4

5

Proof: Recall that a pseudoforest is a graph in which each connected component contains at6

most one cycle, and it is called odd if it does not contain even cycles. A theorem due to Whiteley [12]7

(see also [7] p.367 for a short proof based on Edmonds’ branching theorem) asserts that a graph8

satisfies condition (2) if and only if its edge set can be partitioned into a forest and a pseudoforest.9

So let us denote by a 2-decomposition of a graph G = (V,E) a pair (Gb, Gr) of spanning subgraphs10

Gb = (V,Eb) and Gr = (V,Er) such that {Eb, Er} is a partition of E and Gb is a forest of G and Gr11

is a pseudoforest of G. We will call any sub-structure — edge, component, subgraph etc. — of Gr or12

of Gb red or black, respectively, and for a subgraph H of G we denote by Hr and Hb the subgraph13

of H induced by its red or black edges, respectively.14

Without loss of generality we may assume that G is connected, and that Gb is a spanning tree of G15

(otherwise we could move edges from Gr to Gb to make Gb connected). The canonical bipartition of16

a 2-decomposition (Gb, Gr) of a connected graph G is the unique bipartition given by any 2-colouring17

of Gb. Moreover, an edge of Gr which does not cross this bipartition is called (as previously) a18

precious edge in (Gb, Gr). A 2-decomposition of a 2-decomposable graph is nice if every red cycle19

contains at least one precious edge.20

First we establish the next claim.21

Claim 1 A connected graph which has a 2-decomposition admits a nice 2-decomposition if and only22

if (3) holds.23

Proof: First observe that for any subgraph H of G with at least one black edge, we have |E(H)| =24

|E(Hb)| + |E(Hr)| ≤ (|V (Hb)| − 1) + |V (Hr)| = 2|V (H)| − 1. For any red subgraph H with at least25

one edge, we get |E(H)| = |E(Hr)| ≤ |V (Hr)| ≤ 2|V (H)| − 2. In particular (2) holds for every26

2-decomposable graph.27

The necessity is quite clear. Indeed, consider a nice 2-decomposition (Gb, Gr) of G and assume28

that (3) does not hold. Thus there exists H a bipartite subgraph of G with |E(H)| = 2|V (H)|− 1. So29

equality holds in the previous computation and we have |E(Hb)| = |V (Hb)|−1 and |E(Hr)| = |V (Hr)|.30

In particular Hb is a spanning tree of H and Hr contains at least one cycle C. As (Gb, Gr) is nice,31

C contains a precious edge xy. As Hb is connected, there exists a black path P from x to y and P32

has even length because x and y belong to the same part of the canonical bipartition of (Gb, Gr). So33

P ∪ xy forms an odd cycle of H, a contradiction.34

Now let us prove the sufficiency. Let (Gb, Gr) be a 2-decomposition of G. A red component R35

of the decomposition is bad if it is not a tree and its (hence unique) cycle does not contain any36

precious edges. If we remove from a bad component R all its precious edges, we obtain several37

connected components, one of which contains the cycle of R. We call this component the core of R38

and denote it by c(R). For convenience we use c(R) below to denote both a vertex set and the red39

subgraph induced by these vertices. Note that G[c(R)] is bipartite as c(R) contains no precious edge.40

A sequence of the decomposition (Gb, Gr) is a list R = (c(R1), . . . , c(Ri)) of the cores of its bad red41

components in decreasing order of cardinality.42

Among all the 2-decompositions of G, we choose one whose sequences R = (c(R1), . . . , c(Ri))43

satisfy44

(a) i is minimal, and45

(b) subject to (a), |c(Ri)| is minimal.46

We will prove that this 2-decomposition (Gb, Gr) is nice, that is, R = ∅. Assume that it is not the47

case and consider {X1, . . . , Xp} the black components of G[c(Ri)] (that is, the connected components48
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of Gb[c(Ri)]). If p = 1, then G[c(Ri)] is connected in black, and as Gr[c(Ri)] is unicyclic, the bipartite1

graph G[c(Ri)] violates (3), a contradiction. So we must have p ≥ 2. Now denote by W1, . . . ,Wq2

the connected components of Gb \ c(Ri) and construct a graph T ′ on {X1, . . . , Xp,W1, . . . ,Wq} by3

connecting two vertices of T ′ if there exists an edge in Gb between the corresponding components. In4

other words, we contract the (connected) vertex sets X1, . . . , Xp,W1, . . . ,Wq in Gb to single vertices.5

So T ′ is a tree. Finally we consider T the minimal subtree of T ′ containing {X1, . . . , Xp}. By definition6

the leaves of T are in {X1, . . . , Xp} and as p ≥ 2, T has at least two such leaves. So we consider a leaf7

Xk of T which does not contain entirely the red cycle of Ri (this could occur even without violating8

(3) if Xk is not connected in red for instance). We denote by Wk′ the only neighbour of Xk in T .9

Now, we specify two edges, one black and one red in order to ‘change their color’ and obtain a con-10

tradiction. First denote by uv the unique black edge between Xk and Wk′ . We suppose that u ∈ Xk11

and v ∈ Wk′ (so v /∈ c(Ri)). Now we look at a 1-orientation of c(Ri) (this is an orientation of c(Ri)12

in which every vertex has out-degree at most 1) and consider a maximal oriented red path leaving u13

with all its vertices in Xk. As Xk does not contain entirely the red cycle of Ri, this path ends at a ver-14

tex x ∈ Xk which has a unique red out-neighbour y ∈ Xk′′ for some k′′ 6= k. We select this red edge xy.15

16

Notice that the unique black path from x to y contains the edge uv. Indeed the unique path from17

Xk to Xk′′ in T corresponds to the unique black path P from Xk to Xk′′ in G. As Xk is a leaf of18

T , the first edge of P is uv and as Xk and Xk′′ are respectively connected in black, the unique black19

path from x to y contains P and so it contains the edge uv. This implies that (Gb + xy)− uv is also20

a spanning tree of G. Moreover, its bipartition is the same as the bipartition of Gb. Indeed as xy is21

an edge lying inside the core of Ri, it is not precious and Gb + xy is still bipartite and has the same22

bipartition as Gb. Removing uv does not affect the bipartition (because (Gb +xy)−uv is connected).23

To conclude, we focus on the red part of the new 2-decomposition ((Gb+xy)−uv, (Gr+uv)−xy).24

By construction, the component X of Gr − xy containing u (and also x) is a red tree. Remark that25

X = Ri if and only if xy is an edge of the cycle of Ri. If v does not belong to Ri, then by adding26

uv we attached X to another red component in (Gr + uv)− xy). As X contains at least one vertex,27

namely u, |c(Ri)| has decreased, a contradiction to (b) in the choice of (Gb, Gr) (or to (a) if X = Ri).28

If v belongs to Ri but v does not belong to X (in this case we have X 6= Ri), then v ∈ Ri \ c(Ri)29

and by adding uv we attached X to a vertex of Ri \ c(Ri). Once again, |c(Ri)| has decreased, a30

contradiction to (b) in the choice of (Gb, Gr). Finally if v belongs to X then adding uv produces a31

new red unicyclic component. However as the red path in Gr from v to u starts in Ri \ c(Ri) and32

ends in c(Ri), it contains a precious edge. So that newly created red unicyclic component is not bad,33

and |c(Ri)| has decreased. Hence, again, we either contradict (b), or (a) if X = Ri. contradicting (a). �34

35

Now to finish the proof, we will show how to go from a nice 2-decomposition of a connected graph36

to a decomposition into a spanning tree and an odd pseudoforest (i.e. a pseudoforest in which every37

cycle has odd length). Let G = (V,E) be a connected graph which admits a nice 2-decomposition and38

consider a nice 2-decomposition (Gb, Gr) of G with a minimum number of even red cycles. We will39

show by contradiction that this decomposition has no even red cycle. Assume it is not the case and40

denote by C1, . . . , Cl the even red cycles of Gr. In each of these, select a precious edge ei = xiyi and41

let X = {x1, y1, x2, y2, . . . , xl, yl}. Exchanging two edges between Gb and Gr will modify the structure42

of Gb, and some previously selected precious edges could become not precious any more. To avoid43

this we will find a vertex u with the following property44

45

P : There exists a component B of Gb \ u such that one of the following hold:46

• B ∩X contains only one element and this is not in the same component of Gr as u (Case A).47

• (B ∪ {u})∩X contains exactly two elements and they are the end vertices of some ei (Case B).48

First assume we have found such a vertex u and let us see how to conclude, depending of which49

the two cases A or B we are in.50

51

Case A. Denote by xi the only element of B ∩X and by Bi the red component of Gr containing xi.52

As u does not belong to Bi, we can find an edge vw along the black path in Gb from u to xi such53

that w and xi are in the same component of Gb − vw, w belongs to Bi and v does not belong to Bi.54
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So we exchange the colors of vw and xiyi. The graph Bi − xiyi is a tree and when we add vw to Gr1

we connect this tree to another component of Gr. The component of Gb − vw containing v is a tree2

containing all the vertices of X except xi. So the precious edges ej with j 6= i are still precious edges,3

and this is also the case in (Gb − vw) + xiyi which is a spanning tree of G. So, we reduce the number4

of even red cycle of the nice 2-decomposition (Gb, Gr), a contradiction.5

6

Case B. Denote by xi and yi the two elements of (B ∪ {u}) ∩X and also by Bi the red component7

of Gr containing the precious edge xiyi. If the black path P in Gb between xi and yi is not totally8

contained in Bi then we can select a vertex u′ not belonging to Bi along this path and end up in the9

previous case with u replaced by u′. So P is totally contained in Bi. Then, as P +xiyi is an odd cycle10

(because xiyi is precious), we can find along P two consecutive vertices vw which are in the same part11

of the bipartition induced by the bipartite graph Gr[Bi]. So we exchange xiyi and vw. As previously12

Gb + xiyi − vw is a spanning tree of G such that all the edges ej with j 6= i are still precious and vw13

is also precious. The graph Gr − xiyi + vw is now a pseudoforest, and we have reduced the number14

of even red cycles of the nice 2-decomposition (Gb, Gr), a contradiction.15

Finally, let us see how to find a vertex u in G which has property P. Consider T ′ the minimal16

subtree of Gb containing all the vertices of the set X. In particular all the leaves of T ′ are elements17

of X. Then build the tree T from T ′ by replacing iteratively each vertex of degree 2 in T ′ and not18

belonging to X by an edge linking its two neighbours in T ′. The vertices of T are now vertices of X19

or have degree at least three in T . Assume first that a leaf f of T has its neighbour f ′ in X. Denote20

by B the component of Gb \ f ′ containing f . By construction f is the unique element of B ∩X. We21

select u = f ′. If f and f ′ are in different components of Gr then we are in Case A, otherwise we are22

in Case B.23

So we can assume that all the leaves of T are neighbours of vertices of T which are not in X and have24

degree at least three in T . Consider now a leaf f ′ of the tree obtained from T by removing its leaves.25

Denote by L the set of neighbours of f ′ in T which are leaves of T . If |L| = 2 and L consists of the26

end vertices of some ei then we choose u = f ′ and are in Case B. Otherwise, let Bi be the component27

of Gr containing f ′ and consider a vertex f of L not belonging to Bi (this exists as |Bi ∩ X| = 2).28

Then we choose u = f ′ and B to be the component of Gb \ f ′ containing f and we are in Case A. �29

30
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