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Research Highlights (Required)

To create your highlights, please type the highlights against each \item command.

It should be short collection of bullet points that convey the core findings of the article. It should include 3 to 5 bullet points
(maximum 85 characters, including spaces, per bullet point.)

• two new datasets were created for the evaluation of plant varieties recognition

• an experimental study was conducted with today’s best performing techniques

• recognizing rice seeds variety appears to be feasible in controlled environment

• recognizing grape varieties from their leaves is still an open problem

• results show that convolutional neural networks perform the best on such problems
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ABSTRACT

This paper addresses the problem of categorizing plant images at the variety level, i.e. at a finer tax-
onomic grain than state-of-the-art studies usually working at the species level. It therefore introduces
two new evaluation datasets of agro-biodiversity interest, each being related to concrete scenarios on
large-scale plant resources. They have been chosen so as to involve very different acquisition pro-
tocols and visual patterns in order to evaluate if state-of-the-art image classification techniques can
generalize to such specific contexts and avoid the cost of building specific ad-hoc solutions. The first
one is a collection of 2 071 pictures of loose rice seeds built from 95 accessions kept in a bank of
seeds. The second one is a collection of 2 037 pictures of grape leaves taken in the fields and be-
longing to 34 varieties among the most commonly ones used in viticulture. Both datasets exhibit a
very low inter-class variability resulting in two challenging fine-grained classification tasks, even for
expert human operators. A baseline experimental study was conducted on the two datasets using the
two most effective families of classification techniques in the state-of-the-art, i.e. convolutional neural
networks on one side and fisher vectors-based discriminant models on the other side. It shows that the
achieved classification performance is very different between the two problems. It is actually pretty
bad for the grape leaves collection but much better in the case of the rice seeds collection for which the
acquisition protocol was much more constrained and the morphological variability more visible. The
conclusion is that automatically identifying plant varieties might already be feasible for some specific
scenarios and in controlled environments but that it is still an open problem in the general case.

c© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Sustainable development of agriculture as well as biodi-
versity conservation are strongly related to our knowledge
of the identity, geographic distribution and uses of plants.
Unfortunately, such basic information is often only partially
available for professional stakeholders, teachers, scientists
and citizens, and often incomplete for ecosystems that pos-
sess the highest plant diversity (such as Mediterranean and
tropical regions). One of the big challenge, expressed as the
taxonomic gap, is that identifying plants is usually impossible
for the general public, and also often a difficult task for
professionals such as farmers or foresters and even for the
botanists themselves. Using image-based identification and

∗∗Corresponding author: Tel.: +0033-467-149-772
e-mail: alexis.joly@inria.fr (Alexis Joly)

collaborative data management tools is considered as one of
the most promising solution to help bridging the taxonomic gap
(Joly et al. (2014b); Caputo et al. (2013); Cai et al. (2007a);
Joly et al. (2014a); Spampinato et al. (2010); Kumar et al.
(2012)). For centuries, plants have actually been classified
according to their morphology, and then in many cases on
their visual appearance. With the recent advances in digital
devices/equipment, automatizing such classification process
thanks to computer vision techniques therefore appears as the
most straightforward solution.
The study of the visual appearance of plants is however much
less advanced when speaking about agricultural varieties
and genetic resources. Indeed, plants breeding has been
practiced since thousands of years by farmers, nurserymen
and others plant producers. Theses centuries of selection has
allowed to develop specific plant characteristics (from wilds
plants populations) for specific needs, such as better plant
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production, pest resistance, or water use efficiency. Due to
this work, humanity is now able to store, access and exchange
thousands of crops varieties or horticultural plants. Describing
and analysing the morphological, physiological or ecological
variations of the closely related varieties belonging to a single
original species is however much more difficult than studying
classical inter-species variations. This problem is increasingly
studied with the recent advances in plant genomic and the
availability of related data but it is usually not studied from the
perspective of image data and automatic visual analysis tools.
The emergence of automatized varieties identification tools
based on visual contents might be useful in many different use
cases such as (i) living or dry plant collections management
(for field conservatory, nursery plant production), (ii) control
of plant material transfer, (iii) field prospecting (with the aim
to well characterize the terroir of a plant production), etc.
However, categorizing plant images at the variety level is a
problem that is much harder than the more classically studied
problem of identifying plants at the species level. Working at
such a finer taxonomic grain is actually much more difficult
because of the very low inter-class variability and the fact that
the visual patterns to be used for discriminating the varieties
can be very specific and very different from a species to another
one. The real grand challenge is thus not to design ad-hoc
computer vision techniques for each use case but to evaluate in
what way generic image classification techniques can deal with
very different contexts and acquisition protocols set up by the
biologists themselves. In this paper, we therefore introduce two
image collections of agro-biodiversity interest with the aim to
evaluate the feasability of automated plant varieties recognition
from their visual appearance. They have been chosen so as to
involve very different acquisition protocols and visual patterns
in order to evaluate if state-of-the-art image classification
techniques can generalize to such specific contexts and avoid
the cost of building specific ad-hoc solutions. The acquisition
protocol of each collection was carefully designed jointly with
biologists and stakeholders so as to target innovative usage
scenarios within existing workflows. The produced image
datasets exhibit a very low inter-class variability resulting
in two challenging fine-grained classification tasks, even for
expert human operators (see section 3 and 4). As a second
contribution, we then present the results of an experimental
study that was conducted on the two datasets using the two
effective families of classification techniques for solving fine-
grained image classification problems, i.e. convolutional neural
networks on one side and fisher vectors-based discriminant
models on the other side (see section 6).
More generally, the scientific contribution of this paper lies
in two main points. First of all, the production of specific
visual training data and knowledge is now becoming one the
most central problem in computer vision. Image classification
has actually now been proved to be solved on large generalist
corpora, but there is still a gap before being able to recognize
the spectrum of millions or even billions of entities lying in the
long tail of data occurrences (i.e classes with very few or none
training samples available). Experimental studies such as the
one conducted in this paper provides some essential findings on

the genericity and transfer learning abilities of state-of-the-art
computer vision techniques in this regard. Secondly, the paper
proves for the first time that automatically identifying plant
varieties from their visual appearance is feasible for some
groups and usage scenarios and this opens the door to further
investigations in the domain.

2. Related works

Content-based image retrieval and computer vision ap-
proaches are considered as one of the most promising solutions
to help bridging the taxonomic gap, as discussed in Gaston
and O’Neill (2004); Cai et al. (2007b); Trifa et al. (2008);
Spampinato et al. (2012); Joly et al. (2014a). We therefore
see an increasing interest in this trans-disciplinary challenge
in the multimedia community (e.g. in Nilsback and Zisserman
(2008); Goëau et al. (2011b); Cerutti et al. (2011); Mouine
et al. (2012); Kebapci et al. (2011); Hsu et al. (2011). Some
recent studies have been done on closely related species (based
on leaves analysis such as bean species Larese et al. (2014),
or seed analysis such as in the studies of Acacia species
and sub-species Sivakumar et al. (2013), Diplotaxis species
Grillo et al. (2012), or pea varieties Smykalova et al. (2011)).
Orru et al. (2012) have meanwhile invested on the efficiency
evaluation of image analysis methods (for morpho-colorimetric
feature extraction) compare to molecular analysis on grape
variety seeds in the aim to discriminate taxonomical groups.
Nevertheless, most of the analysis actually realised are not
able to deal with an important number of varieties, such as
in our case. Beyond the raw identification performances
achievable by state-of-the-art computer vision algorithms,
recent visual search paradigms actually offer much more
efficient and interactive ways of browsing large flora than
standard field guides or online web catalogs (Ellison et al.
(2013)). Smartphone applications relying on such image-based
identification services are particularly promising for setting-up
massive ecological monitoring systems, involving thousands of
contributors at a very low cost.
A first step in this way has been achieved by the US consor-
tium behind LeafSnap1, an i-phone application allowing the
identification of 184 common american plant species based on
pictures of cut leaves on an uniform background (see Kumar
et al. (2012) for more details). Then, the French consortium
supporting Pl@ntNet (Joly et al. (2014a)) went one step beyond
by building an interactive image-based plant identification
application that is continuously enriched by the members of a
social network specialized in botany. Inspired by the principles
of citizen sciences and participatory sensing, this project
quickly met a large public with more than 300K downloads
of the mobile applications (Goëau et al. (2013a, 2014a)). A
related initiative is the plant identification evaluation task orga-
nized since 2011 in the context of the international evaluation
forum CLEF2 and that is based on the data collected within

1http://leafsnap.com/
2http://www.clef-initiative.eu/
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Pl@ntNet. In 2011, 2012 and 2013 respectively 8, 11 and 12
international research groups participated to this large collab-
orative evaluation by benchmarking their images-based plant
identification systems (see Goëau et al. (2011a, 2012, 2013b)
for more details). The data used during these 3 first years can
be accessed online3. Contrary to previous evaluations reported
in the literature, the key objective was to build a realistic task
very close to real-world conditions (different users, areas,
periods of the year, important species number, etc.). The
2014th and 2015th edition of the task were organized within a
newly created lab of CLEF called LifeCLEF4 and dedicated
to the identification of living organisms in general (with an
audio-based bird identification task and a video-based fish
identification task in addition to the image-base identification
task). Details of the participants and the methods used in the
runs are synthesised in the overview working notes of the task
(Goëau et al. (2014b, 2015)).

From a computer vision and technological perspective,
our work is more generally related to image classification.
Most popular methods for this problem are typically based
on the pooling of local visual features into global image
representations and the use of powerful classifiers in the
resulting high-dimensional embedded space such as linear
support vector machines (Lazebnik et al. (2006); Perronnin
et al. (2010)). The Bag-of-word representation (BoW) notably
remains a key concept although the raw initial scheme of
(Sivic and Zisserman (2003)) is now outperformed by several
alternative new schemes (Lazebnik et al. (2006); Jiang et al.
(2007); Perronnin and Dance (2007); van Gemert et al. (2010);
Jégou et al. (2012)). Its principle is to first train a so called
visual vocabulary thanks to an unsupervised clustering algo-
rithm computed on a given training set of local features. The
produced partition is then used to quantize the visual features
of a given new image into visual words that are aggregated
within a single high-dimensional histogram. Partial geometry
can be embedded in the image representation by using the
Spatial Pyramid Matching scheme of (Lazebnik et al. (2006)).
As it relies on vector quantization, the BoW representation is
however affected by quantization errors. Very similar visual
features might be split across distinct clusters whereas more
dissimilar ones might be affected to the same visual word. This
results in both mismatches and potentially irrelevant matches.
To alleviate this problem, several improvements have been
proposed in the literature. The first one consists in expanding
the assignment of a given local feature to its nearest visual
words (Jiang et al. (2007); Philbin et al. (2008); van Gemert
et al. (2010); Jégou et al. (2012)). This allows reducing the
number of mismatches without degrading much the encoding
time. Other researchers have investigated alternative ways to
avoid the vector quantization step, using sparse coding (Yang
et al. (2009)) or locality-constrained linear coding (Wang
et al. (2010)). Such methods optimize the affectation of a
given local feature to a few number of visual words thanks to

3http://publish.plantnet-project.org/project/plantclef
4www.lifeclef.org

sparsity or locality constraints on the global representation.
Another alternative is to use aggregation-based models such
as the improved Fisher Vector of Perronnin and Dance (2007)
or the VLAD encoding scheme (Jégou et al. (2012)). Such
methods do not only encode the number of occurrences of
each visual word but also encode additional information
about the distribution of the descriptors by aggregating the
component-wise differences. When used with discriminative
linear classifiers, such high-dimensional representations benefit
of both generative and discrimination approaches leading to
state-of-the-art classification performances on fine-grained
classification benchmarks (Gosselin et al. (2014)).
A radically different approach to image classification is the
use of deep convolutional neural networks. Rather than
extracting the features according to hand-tuned or psycho-
vision oriented filters, such methods directly work on the
image signal. The weights learned by the first convolutional
layers allows to automatically build relevant image filters
whereas the intermediate layers are in charge of pooling these
raw responses into high-level visual patterns. The last fully
connected layers work more traditionally as any discriminative
classifier on the image representation resulting from the
previous layers. Deep convolutional neural networks have
been recently proved to achieve better results on large-scale
image classification datasets such as ImageNet (Krizhevsky
et al. (2012)) and do attract more and more interest in the
computer and multimedia vision communities. A known
drawback of Deep Convolutional Neural Networks is however
that they require a lot of training data mainly because of the
huge number of parameters to be learned. Their performances
on fine-grained classification are consequently more contro-
versial and they are still often outperformed by local features
based approaches, as shown in our experiments. Besides, it
is important to notice that they inspire the investigation of
new deep learning models making use of more traditional vi-
sual features embedding methods (e.g. Simonyan et al. (2013)).

3. Rice seeds dataset

3.1. Context

The French research unit on Genetic Improvement and Ame-
lioration of Mediterranean and Tropical Plants (Agap) man-
ages some major collections of plant genetic resources (lucerne,
grapevine, rice, sorghum, cotton, groundnut, etc.), amounting
to date to almost 60,000 accessions. These collections are made
up of different categories of genetic resources: French national
collections and heritage resources, original materials, species
related to the cultivated or wild species worked on, resources of
a scientific nature. In particular, these collections contain many
materials intended for genetics and genomics studies, notably
for the model species Medicago truncatula Gaertn., along with
collections of rice insertion lines. The facilities managing these
collections are labelled as biological resource centres through
the ISO 9001 certification initiatives and the extension of stan-
dard Afnor NF 96900.
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The seed and biological resources laboratory (LSRG), in Mont-
pellier, more specifically manages a large collection of 1717 va-
rieties of Oryza sativa L. coming from more than 50 countries
world wide. This large collection host nevertheless a small frac-
tion of the 40 000 rices varieties used across the world. Each
variety is preserved through one or few accessions, each ac-
cession being formed by a set of rice seeds kept in their hulls
(from few tens of seeds to several thousands depending on the
variety). The seeds are regularly renewed through germination
allowing to keep a high average germination rate of about 90%.
Before the image acquisition campaign initiated by the work
presented in this paper, only few illustrations of the seeds in
collection did exist.

3.2. Usage scenario

Automatically identifying the rice seeds varieties thanks to
their visual appearance might be useful for several scenarios.
First of all, a visual control is already performed by the oper-
ators in charge of managing seeds collections. This allows de-
tecting mistakes or inconsistencies in the labelling of the new
received accessions (i.e. new in-the-field samples). This pro-
cess is however very imprecise as it relies on rough visual at-
tributes of the seeds such as color:brown, shape:long or hairi-
ness:hairy. Secondly, the automatic identification of the vari-
ety could be useful for entity resolution purposes (taxonomic
name resolution). In many field contexts, the variety of a culti-
vated plant is actually only known through its vernacular name,
i.e the local name given by the farmers of that region of the
world. Mapping that names on a taxonomic referential is usu-
ally a very hard task and prevent from collecting accurate data
from that cultures (which represent a potentially huge source of
information).

3.3. Image acquisition

The image acquisition set up (illustrated in Figure 1) was
a standard reflex camera fixed on a tripod at a fixed distance
(DIST=10.4cm) from the petri box containing the rice seeds.
The camera was equipped with a Compact Macro Lens (EF
50mm 1:2.5, Sigma), an MR-14 EX flash and a remote trigger.
The images used for the training set (see next section for more
details) were acquired by a different person, a different day,
and with a different camera than the ones used as test images.
This allows making the benchmark more realistic and closer to
a real-world scenario where a person would have to reproduce
the image acquisition protocol. For the selection of the varieties
to be included in the dataset, we focused only on the ones hav-
ing their rough visual attributes informed in the database (i.e.
550 varieties). We then selected 95 varieties through a random-
ized greedy algorithm guarantying that all visual attributes are
represented in the dataset. The table 1 gives a synthesis of the
visual and morphological diversity of this dataset, as for exam-
ple the rounded shape of the variety 16, the brown color of the
variety 23, or the presence of long hairs on variety 25.

3.4. Evaluation dataset

The final evaluation dataset to be shared with the scientific
community, referred as CiradRiceSeed is composed of two

Fig. 1. Image acquisition setup for the CiradRiceSeed dataset

parts, a training set and a testing set. The train dataset is
compound of 1 506 images produced by the same operator,
while the 565 images of the test dataset (based on the same
varieties) were produced by an other operator. This was done in
order to reproduce a real world scenario, in which an external
actor realise new data in the aim to get possible varieties
names. The varieties list is provide in table 2.

4. Grape Leaves dataset

4.1. Context

The French Vine and Wine Institute (IFV), through the inter-
mediary of the National Plant Material Pole located in Southern
France, is a vine selection establishment that coordinates clonal
selection and conservation actions carried out throughout the
country. It ensures the conservation of a quite unique collection
in the world of hundreds of vine varieties at the ”Domaine de
l’Espiguette”, and about 4000 clones. A large part of this mate-
rial is inscribed in the national official catalogue5. The main ob-
jectives of the IFV is to improve the potential of the wine plant
material while maintaining all of the characteristics and iden-
tity of each variety. The IFV contributes to the conservation
of all vine varieties grown in France by both the sanitary qual-
ity of plants, and the consideration of the diversity of varieties
and types of wines. This activity allows a strong link between
research and production. The IFV selection center is located
in the ”Domaine de l’Espiguette”, occupying 80 hectares in the
town of Grau du Roi, Languedoc-Roussillon. This site was cho-
sen for the national conservatory clones because its soils consist
only of pure Mediterranean sand, containing neither phylloxera
or nematode vectors of fanleaf virus. More than 38 hectares are
planted with clones collections. Based on DNA results, it is es-
timated that around 5000 varieties exist worldwide, and many
of them are closely related (This et al. (2006)). This important
number, reflect the long history of domestication that probably
started 8000 BP (before present). Morphological identification
of this varieties is mainly done with adult leaves analysis, with
some specific normalized leaf descriptors, as described in OIV
(2009).

5http://plantgrape.plantnet-project.org/
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Table 1. Image samples of the CiradRiceSeed dataset for 5 random varieties

Train Test

Variety 4

Variety 16

Variety 23

Variety 25

Variety 84

4.2. Usage scenario

Ampelography is a field of botany dedicated to the identifi-
cation and classification of grapevines. Traditionally this has
been done by comparing the shape, colour and texture of the
vine leaves and grape berries. Recently, DNA fingerprinting
has played a major role in the development of this discipline,
nevertheless it has not permitted to widely extend grapevines
identification to non-expert peoples. Automatically identify-
ing the grape varieties thanks to the visual appearance of their
leaves might be for this reason useful for several scenarios.
First of all, it is important to remember that grape identifica-
tion may have a very important impact, notably on financial
aspect, as most of the wines in the world are based on the cul-
tivars names. Vine variety identification is then practice, (i)
by state agents in charge of the reglementation in vigor, (ii)
nurserymans that want to confirm names of the commercial-
ized material, (iii) winegrowers who want to identify old plants
conserved in unused plots, etc... All theses contexts could get
a significant benefit of an automated multimedia identification
system.

4.3. Image acquisition

In the aim to evaluate such solution, we organised in June
2012 the collect of visual data on a selection of grape varieties
growing at the Espiguette estate. 11 different people, each of
them with different camera, were mobilized for this experimen-
tation. They were organised by binomials, in order to collect

by binomial about 60 different images of laves for each variety.
Variety were selected according to their economic importance
in French viticulture. Leaves were selected at the adult stage,
in healthy condition, and the provided instructions were to (i)
try avoiding strong lightness contrasts (with a part of the leaf in
shadow and and other one in full sun condition) (ii) try to avoid
the visual overlap between several leaves. Photographers were
free to choose their camera parameters, but to pay attention to
put one leaf at the image center, to photograph it in landscape
format, to maximize it surface on the picture (in order to ovoid
to take picture from a too long distance). Most of the pictures
were taken directly on the living plants, but a part of them were
took on a cut leaf put on the ground (with pure sand in this
case).

4.4. Evaluation dataset

The final evaluation dataset to be shared with the scientific
community, referred as IFVGrapeLeaves is composed of
two parts, a training set and a testing set. The table 1 give
a synthesis of the visual and morphological diversity of this
dataset. It is then possible to see variation (i) between leaves
in terms of leaf shape, lobes number, or tooth size on the
leaf margin, (ii) but also in terms of background color, light
conditions, or image quality. The full dataset is compound
of 2037 images of 34 grape varieties. In order to divide it in
train an test sets, we kept all the pictures of one photograph for
train (generally the photograph who took the most important
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Table 4. Image samples of the IFVGrapeLeaves dataset for 5 random varieties

Train Test

Variety 4
(Chenin)

Variety 9
(Gamay)

Variety 12
(Gros Manseng)

Variety 19
(Meunier)

Variety 25
(Roussanne)

number of images for or specific variety), and we putted all
the others pictures of the binomial in test dataset. This avoids
for the same variety, to have picture of the same author in both
datasets. The varieties list is provide in table 3.

5. Baseline fine-grained image classification systems

We did experiment two families of image classification tech-
niques that are known to provide state-of-the-art classification
performances in fine-grained recognition challenges (Gosselin
et al. (2014); Joly et al. (2014b)) and that perform the best
within the two last editions of the PlantCLEF international eval-
uation campaign Goëau et al. (2014b, 2015) (whatever the type
of view or acquisition protocol e.g. leaf scans, in-the-field leaf
pictures, flower pictures, bark pictures, etc.).

5.1. Fisher vectors & Support Vectors Machine
Fisher vectors (FV) were first introduced in image classifica-

tion by Perronnin and Dance (2007) and proved to be very ef-
ficient in the fine-grained classification task later on (Gosselin
et al. (2014)). According to recent surveys such as Huang et al.
(2014), they are the best performing pooling strategy currently
available. We will only recall here the main steps used to ex-
tract Fisher vectors, for detailed explanations of the theoretical
derivation and for performance analysis we redirect the readers
to Sánchez et al. (2013). The pipeline for computing the Fisher
vector describing an image consists in:

• Dense extraction of local features: descriptors, usually
SIFT descriptors, are extracted on densely sampled over-
lapping patches on several scales.

• PCA transformation: the descriptors are then decorrelated
and compressed using a Principal Component Analysis
reducing the dimensionality (usually to 80 for SIFT fea-
tures).

• Feature space density estimation: the distribution of fea-
tures is modeled as a Gaussian Mixture Model (GMM)
that is learned using the popular Expectation Maximisa-
tion algorithm. We thus obtain a probability distribution
of the form of u(x) =

∑K
k=1 wkuk(x) where uk follows a

Gaussian distribution, uk ∼ N(µk,Σk) with µk the mean
and Σk the covariance matrix which is diagonal because
the features are decorrelated, and wk is the weight of the
k-th Gaussian, they satisfy

∑
k wk = 1.

• Encoding: the features are encoded and pooled using

Gµk =
1√
wk

N∑

i=1

γk(xi)
xi − µk

σk

Gσk =
1√
wk

N∑

i=1

γk(xi)√
2

(( xi − µk

σk

)2 − 1
)

where all the dicitions and squaring are element-wise op-
eration and where γk(x) =

wkuk(x)∑K
k′=1 wk′uk′ (x)

. Theses 2K vectors
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Table 2. Variety list of the CiradRiceSeed dataset
ID Variety name ID Variety name
0 KANIRANGA 48 LAC 3 (1)
1 DA 9 49 P 335
2 DA 5 50 9 AB
3 T 1 51 T 1 (IRR 74)
4 CO 18 52 NHTA 13
5 SURJAMKUHI 53 T 43
6 DHOLA AMAN 54 DJUBUH
7 JC 73-4 55 SAN THOU GEE
8 RTS 5 56 KHAO TONG
9 KUN MIN TSIEH HUNAN 57 MACK FAY DENG
10 CO 25 58 KH CHETANG
11 JHONA 349 59 KHAO XENG
12 BAGUAMON 14 60 LA KHONE DENG
13 MALAGKIT PIRURUTONG 61 9 D
14 RTS 16 62 13 A
15 PADI RAOEKANG 63 257
16 HU LO TAO 64 483
17 JC 91 65 KU 48
18 LAMBAYQUE 1 66 IRAT 8
19 ARC 10497 67 RAM TULASI SEL.
20 KAKANI 2 68 HERIKA (LONG FORM)
21 ACHILLE 69 CALORO
22 63-105 70 SEMO
23 ZAKPALE 71 ZAKPALE 4
24 268 B / PR 22-3-2 72 KESSIRIME B
25 377 73 KEDIALA OUADEO B
26 TAITUNG 328 74 MAROVEL BEIDARI B
27 KOIRAO BALEO 75 PAGAIYAHAN
28 COLUMBIA 2 76 EH IA CHIU
29 SHINHAKABURI (1) 77 DA 23
30 ZAKPALE 3 78 DA 16
31 HAO MET NHAY 79 RATHUWEE
32 MACK HING HOM 80 JC 148
33 CHIANAN 8 MA-3 81 JC 178
34 SOMCAU 70 A 82 NAM SA GUI 19
35 9 A 83 MOROBEREKAN
36 P 269 84 ARC 10317
37 8 A 85 DA 13
38 3 E 86 BASMATI 370
39 14 SEN 8 A 87 PRATAO
40 AGNAKE G 88 TA MAO TAO
41 DV 29 89 JC 1
42 HAGINOMAE MOCHI 90 JC 92
43 MALADY (MDG 439) 91 TSIPALA 421
44 GOUE L 92 DOM ZARD
45 GOUE CC 93 MEHR
46 KOREMOUTOU L 94 ARELATE
47 TELE 1

are concatenated to produce the final representation of di-
mension 2dK.

• Post-processing: the vectors are L2-normalized and then
they are power-normalized using sign(x).|x|γ where the
power parameter γ is found by cross-validation.

Usually, the supervised classification of Fisher Vectors is per-
formed by using a linear classifier as it has been shown that
using kernelized techniques on such high-dimensional features
does not improve the performances. In our experiments, we
used the Support Vector Machine (SVM) algorithm imple-
mented within the LibLinear library (Fan et al. (2008)).

5.2. Convolutional neural networks
Convolutional Neural Networks (CNN) have been mainly

used since the 90’s for their performances in digit classifica-

Table 3. Variety list of the IFVGrapeLeaves dataset
ID Variety name
1 Arrufiac.B 18 Mauzac.B
2 Bourboulenc.B 19 Merlot.N
3 Cabernet.franc.N 20 Meunier.N
4 Chardonnay.B 21 Mourvedre.N
5 Chenin.B 22 Négrette.N
6 Clairette.B 23 Petit.Courbu.B
7 Colombard.B 24 Petit.Manseng.B
8 Duras.N 25 Piquepoul.blanc.B
9 Fer.N 26 Roussanne.B
10 Gamay.N 27 Sauvignon.B
11 Grenache.gris.G 28 Semillon.B
12 Grenache.N 29 Syrah.N
13 Gros.Manseng.B 30 Tannat.N
14 Lauzet.B 31 Tempranillo.N
15 Len.de.l’El.B 32 Ugni.Blanc.B
16 Macabeu.B 33 Vermentino.B
17 Marsanne.B 34 Viognier.B

Table 5. Parameters of the train stage for the CNN
base lr max iterations Step size

CiradRiceSeed 0.00001 10000 1000
IFVGrapeLeaves 0.0001 2000 200

tion. But since a few years, they appear to have now surpassed
all state of the art methods for large-scale image classification
(Krizhevsky et al. (2012)).

In these experimentations we have used Caffe (Jia et al.
(2014)), a Deep Learning Framework, allowing us to use state
of the art CNN architectures and models. For the two datasets
presented in this work, we have chosen in the Caffe model
Zoo the ”GoogLeNet GPU implementation” model, based on
Google winning architecture in the ImageNet 2014 Challenge
Szegedy et al. (2014), and we finetuned this model on our
datasets.

The GoogLeNet architecture consists of a 22 layers deep
network with a softmax loss as the classifier on top, and is
composed of three ”inception modules” stacked on top of each
other. Each intermediate inception module is also connected
to an auxiliary classifier during training, so as to encourage dis-
crimination in the lower stages in the classifier, increase the gra-
dient signal that gets propagated back, and provide additional
regularization. These auxiliary classifiers are only used during
the training part, and then discarded.

6. Experiments

6.1. Setup

For a fair evaluation of both visual classification methods, we
first cropped and resized all images to a resolution of 256x256
pixels, that is the size of the images given as input to the first
layer of the convolutional neural network as described in sec-
tion 5.2.
For the Fisher Vector’s method, we used a sampling step of 3
pixels and 5 different scales to extract the patches on which the
SIFT descriptors were computed. These descriptors were L2-
normalized and square-rooted before being reduced to 80 di-
mensions using PCA similarly to Gosselin et al. (2014). The
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Table 6. Classification rates of the evaluated runs on the CiradRiceSeed dataset

System used
Classification rate

Top 1 Top 3 Top 5
CNN 1 (= without ImageNet) 8.84 14.86 19.82
CNN 2 (= with ImageNet) 52.38 75.39 86.37
CNN 3 (= with ImageNet + colorimetric data augmentation) 84.95 98.40 99.29
CNN 4 (= with ImageNet + Histogram equalization) 88.67 98.93 99.82
Fisher Vectors 72.57 88.14 94.51
Fisher Vectors + Histogram equalization 76.81 93.98 97.17

Table 7. Classification rates of the evaluated runs on the IFVGrapeLeaves dataset

System used
Classification rate

Top 1 Top 3 Top 5
CNN 1 (= without ImageNet) 3.75 5.81 12.59
CNN 2 (= with ImageNet) 9.32 23.12 35.83
CNN 3 (= with ImageNet + colorimetric data augmentation) 11.50 27.60 39.70
CNN 4 (= with ImageNet + Histogram equalization) 11.01 22.76 34.86
Fisher Vectors 9.20 22.28 30.99
Fisher Vectors + Histogram equalization 10.05 21.55 32.57

Gaussian mixture was configured to learn K = 1024 visual
words which is a good compromise between memory & CPU
usage vs. classification performances (as discussed in Sánchez
et al. (2013) or Gosselin et al. (2014)). Using more words (e.g.
2048 or 4096) might provide slightly better results but requires
switching to more powerful hardware architectures and heavy
computation times. As suggested in Gosselin et al. (2014), we
applied a power-law normalization of the fisher vectors and did
learn the value of the parameter α (i.e. the power value) for
each dataset by cross-validation. The regularization parameter
C of the SVM (which controls the trade-off between achieving
a low error on the training data and minimising the norm of the
weights) was also learned by cross-validation for each dataset.
The cross-validation was performed using a stratified shuffling
procedure with 5 iterations: during each iteration, 10% of the
data was randomly sampled to constitute the validation set and
the rest was kept for training while preserving the proportion of
the different classes in each set.
For the Convolutional Neural Network, we used several strate-
gies that appeared to improve the results within our experi-
ments. The first one (CNN 1) consisted in training the CNN
described in section 5.2 from scratch, exclusively on the train-
ing data of each dataset and without the use of any external
data. As for all other configurations, it makes use of the data
augmentation technique implemented within Caffe library and
consisting in cropping randomly a 224x224 pixels image, and
eventually mirroring it horizontally. The second strategy (CNN
2) rather consisted in fine-tuning a previously trained CNN. We
therefore started with the CNN described in 5.2, trained on the
popular generalist ImageNet dataset. We then removed its top
layers (the fully connected ones) and train this new model using
the desired dataset.
The third strategy (CNN 3) is similar to the second one but inte-
grates an additional data augmentation step aimed at improving
the robustness of the classifier to the heterogeneous acquisition

conditions and camera settings (such as the white balance, the
use of the flash, etc.). For each training image, 8 new images
were generated by applying a set of colorimetric transforma-
tions with randomized parameters, i.e. brightness & saturation
modulation in the HSL color space (multiplier factor random-
ized between 0.8 and 1.2), and contrast modulation (multiplier
factor randomized between 0.7 and 1.3). The fourth strategy
(CNN 4) targets the same objective of increasing the robustness
to colorimetric variations but through a different approach con-
sisting in pre-processing all images (train and test images are
both modified) with an histogram equalization (on each RGB
channel) instead of using data augmentation. As this strategy
provided the best results in the experiments, we also evaluated
it for the Fisher Vector method so as to allow a fair comparison.

For all the training strategies of the CNN, the batch size was
fixed to 32, and the gamma value to 0.9. Other specific pa-
rameters can be found in table 5. During the training, at each
iteration, the learning rate is updated according to :

base lr ∗ gammab#iterations/stepc

Note that for the CNN1 configuration, for which the training
phase is started from scratch, the base learning rate parameter
(base lr) was multiplied by 100.

6.2. Results

Tables 6 and 7 present the synthesized results of the ex-
periments for respectively the CiradRiceSeed dataset and the
IFVGrapeLeaves dataset. For each run, we provide the av-
erage success rate of the classifier on all images of the test
set, considering either the best prediction for each test image
(Top 1), or the 3 best predictions (Top 3), or the 5 best pre-
dictions (Top 5). A first global conclusion that we can derive
from the comparison of the two tables is that the performances
achieved on the CiradRiceSeed dataset are much better than
the ones achieved on the IFVGrapeLeaves dataset. Whatever
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the used classification approach and training strategy, the classi-
fication rate on the IFVGrapeLeaves dataset actually remains
very low, with a maximum of 11.50% good classification rate.
On the other side, the best performances on the CiradRiceSeed
dataset are very good reaching up to 88.67% good classifica-
tion rate, whereas the number of classes is much higher (95 vs.
34). This shows that the scenario addressed through the IFV-
GrapeLeaves dataset, i.e. the leaf-based identification of the
varieties in the field, is a much more challenging problem than
the scenario addressed through the CiradRiceSeed dataset (in-
lab identification). Note that this does not mean that the grape’s
varieties could never be automatically discriminated based on
the visual appearance of their leaf. We actually know that it is
to some extent possible thanks to existing morphological iden-
tification keys OIV (2009). But it shows that the acquisition
protocol should be more constrained (typically by scanning the
leaves instead of targeting in the field photographs) or enriched
by the use of other traits (e.g. grapes images). We thus plan
to enrich the IFVGrapeLeaves dataset with such new contents
for further evaluations.
On the other side the performances on the CiradRiceSeed
dataset are clearly better to what we could expect. The visual
variability across the 95 species is actually globally low and
there are many varieties that are almost impossible to distin-
guish to the naked eye. Back to the scenarios described within
section 3.2 (i.e. labelling control and entity resolution issues),
we can even argue that the achieved performances might be suf-
ficient for a practical usage. Rising an alert when the label of a
given accession does not belong to the 5 best automatic predic-
tions might for instance be a very effective control tool (the Top
5 classification rate of the best experimented classifier is actu-
ally equal to 99.29%). Beyond these scenarios, the achieved
performances show that the visual features learned by the clas-
sifiers are informative enough to characterize the morphological
variability of the different varieties. This open the door to new
phenotyping scenarios in the future, for instance if we consider
combining such analysis of the visual appearance with the anal-
ysis of genomic data or the analysis of other traits.
Let us now look more in details to the scores obtained by the
different classification methods on the CiradRiceSeed dataset,
starting with the different CNN strategies. The weak perfor-
mances of CNN 1 first show, as one could expect, that the
convolutional neural network is not able to learn effective vi-
sual features when it is trained on the targeted data only. It is
actually well known that this technology requires much more
larger training materials. The scores obtained by CNN 2 show
that using a network trained beforehand (on a generalist dataset
such as ImageNet) provides better performances, even if our
fine-grained classification problem is much more specific. The
achieved performances are however still lower than the ones
achieved by the Fisher Vectors. The most likely reason, con-
firmed by the better performances of CNN 3 and CNN 4, is that
the visual features trained by the CNN on ImageNet are still
less robust than the hand-crafted SIFT features to the colori-
metric variations occurring in our data (resulting from the het-
erogeneous acquisition conditions and camera settings of the
different observers). The score of CNN 3 shows that using

data augmentation as a way to increase the robustness to such
transformations does improve the results. A simple histogram
equalization (on each RGB channel) applied to all pictures as
performed in CNN4 provides an even better improvement and
allows the CNN to reach a very high classification score equal
to 88.67%. This shows that the visual features trained by the
CNN on ImageNet are generic enough to well characterize the
pre-processed pictures even if their colorimetric distribution is
far from the natural images of ImageNet.

7. Conclusion and perspectives

This paper addressed the problem of categorizing plant im-
ages at the variety level, i.e. at a finer taxonomic grain than
state-of-the-art studies usually working at the species level.
It therefore introduced two new evaluation datasets of agro-
biodiversity interest, each being related to concrete scenarios
on large-scale resources. A baseline experimental study was
conducted on the two datasets to assess whether state-of-the-art
classification techniques such as convolutional neural networks
and fisher vectors are performant enough to answer the targeted
use cases. It did show that the achieved classification perfor-
mance is very different between the two problems. It is actually
pretty bad for the grape leaves collection but much better in the
case of the rice seeds collection for which the acquisition pro-
tocol was much more constrained and the morpholigical vari-
ability between varieties more visible. The conclusion we can
draw from these raw results is that automatically identifying
plant varieties might already be feasible for some specific sce-
narios and in controlled environments but that it is still an open
problem in the general. In further works, we attempt to explore
more in depth the confusion matrix of variety-level visual clas-
sifiers in order to correlate the visual similarity of the varieties
with genomic data or with other phenotypical properties of the
plants.
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