Categorizing plant images at the variety level: Did you say fine-grained?

Julien Champ, Titouan Lorieul, Pierre Bonnet, Najate Maghnaoui, Christophe Sereno, Thierry Dessup, Jean-Michel Boursiquot, Laurent Audeguin, Thierry Lacombe, Alexis Joly

To cite this version:

Julien Champ, Titouan Lorieul, Pierre Bonnet, Najate Maghnaoui, Christophe Sereno, et al.. Categorizing plant images at the variety level: Did you say fine-grained?. Pattern Recognition Letters, Elsevier, 2016, 81, pp.71-79. 10.1016/j.patrec.2016.05.022 . lirmm-01348914

HAL Id: lirmm-01348914
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01348914
Submitted on 11 Sep 2019
Categorizing plant images at the variety level: did you say fine-grained?

Julien Champ, Titouan Lorieul, Pierre Bonnet, Alexis Joly

PII: S0167-8655(16)30106-4
DOI: 10.1016/j.patrec.2016.05.022
Reference: PATREC 6546

To appear in: Pattern Recognition Letters

Received date: 24 March 2015
Accepted date: 23 May 2016

Please cite this article as: Julien Champ, Titouan Lorieul, Pierre Bonnet, Alexis Joly, Categorizing plant images at the variety level: did you say fine-grained?, Pattern Recognition Letters (2016), doi: 10.1016/j.patrec.2016.05.022

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Research Highlights (Required)

To create your highlights, please type the highlights against each \item command.

It should be short collection of bullet points that convey the core findings of the article. It should include 3 to 5 bullet points (maximum 85 characters, including spaces, per bullet point.)

- two new datasets were created for the evaluation of plant varieties recognition
- an experimental study was conducted with today’s best performing techniques
- recognizing rice seeds variety appears to be feasible in controlled environment
- recognizing grape varieties from their leaves is still an open problem
- results show that convolutional neural networks perform the best on such problems
Categorizing plant images at the variety level: did you say fine-grained?

Julien Champa, Titouan Lorieulb, Pierre Bonnetc, Alexis Jolyb,\,**

aInra, LIBMM, Montpellier, France
bInria, LIBMM, Montpellier, France
cCirad, AMAP, Montpellier, France

ABSTRACT

This paper addresses the problem of categorizing plant images at the variety level, i.e. at a finer taxonomic grain than state-of-the-art studies usually working at the species level. It therefore introduces two new evaluation datasets of agro-biodiversity interest, each being related to concrete scenarios on large-scale plant resources. They have been chosen so as to involve very different acquisition protocols and visual patterns in order to evaluate if state-of-the-art image classification techniques can generalize to such specific contexts and avoid the cost of building specific ad-hoc solutions. The first one is a collection of 2,071 pictures of loose rice seeds built from 95 accessions kept in a bank of seeds. The second one is a collection of 2,037 pictures of grape leaves taken in the fields and belonging to 34 varieties among the most commonly ones used in viticulture. Both datasets exhibit a very low inter-class variability resulting in two challenging fine-grained classification tasks, even for expert human operators. A baseline experimental study was conducted on the two datasets using the two most effective families of classification techniques in the state-of-the-art, i.e. convolutional neural networks on one side and fisher vectors-based discriminant models on the other side. It shows that the achieved classification performance is very different between the two problems. It is actually pretty bad for the grape leaves collection but much better in the case of the rice seeds collection for which the acquisition protocol was much more constrained and the morphological variability more visible. The conclusion is that automatically identifying plant varieties might already be feasible for some specific scenarios and in controlled environments but that it is still an open problem in the general case.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Sustainable development of agriculture as well as biodiversity conservation are strongly related to our knowledge of the identity, geographic distribution and uses of plants. Unfortunately, such basic information is often only partially available for professional stakeholders, teachers, scientists and citizens, and often incomplete for ecosystems that possess the highest plant diversity (such as Mediterranean and tropical regions). One of the big challenge, expressed as the taxonomic gap, is that identifying plants is usually impossible for the general public, and also often a difficult task for professionals such as farmers or foresters and even for the botanists themselves. Using image-based identification and collaborative data management tools is considered as one of the most promising solution to help bridging the taxonomic gap (Joly et al. (2014b); Caputo et al. (2013); Cai et al. (2007a); Joly et al. (2014a); Spampinato et al. (2010); Kumar et al. (2012)). For centuries, plants have actually been classified according to their morphology, and then in many cases on their visual appearance. With the recent advances in digital devices/equipment, automatizing such classification process thanks to computer vision techniques therefore appears as the most straightforward solution. The study of the visual appearance of plants is however much less advanced when speaking about agricultural varieties and genetic resources. Indeed, plants breeding has been practiced since thousands of years by farmers, nurserymen and others plant producers. Theses centuries of selection has allowed to develop specific plant characteristics (from wilds plants populations) for specific needs, such as better plant
production, pest resistance, or water use efficiency. Due to this work, humanity is now able to store, access and exchange thousands of crops varieties or horticultural plants. Describing and analysing the morphological, physiological or ecological variations of the closely related varieties belonging to a single original species is however much more difficult than studying classical inter-species variations. This problem is increasingly studied with the recent advances in plant genomics and the availability of related data but it is usually not studied from the perspective of image data and automatic visual analysis tools. The emergence of automatized varieties identification tools based on visual contents might be useful in many different use cases such as (i) living or dry plant collections management (for field conservatory, nursery plant production), (ii) control of plant material transfer, (iii) field prospecting (with the aim to well characterize the terroir of a plant production), etc. However, categorizing plant images at the variety level is a problem that is much harder than the more classically studied problem of identifying plants at the species level. Working at such a finer taxonomic grain is actually much more difficult because of the very low inter-class variability and the fact that the visual patterns to be used for discriminating the varieties can be very specific and very different from a species to another one. The real grand challenge is thus not to design ad-hoc computer vision techniques for each use case but to evaluate in what way generic image classification techniques can deal with very different contexts and acquisition protocols set up by the biologists themselves. In this paper, we therefore introduce two image collections of agro-biodiversity interest with the aim to evaluate the feasibility of automated plant varieties recognition from their visual appearance. They have been chosen so as to involve very different acquisition protocols and visual patterns in order to evaluate if state-of-the-art image classification techniques can generalize to such specific contexts and avoid the cost of building specific ad-hoc solutions. The acquisition protocol of each collection was carefully designed jointly with biologists and stakeholders so as to target innovative usage scenarios within existing workflows. The produced image datasets exhibit a very low inter-class variability resulting in two challenging fine-grained classification tasks, even for expert human operators (see section 3 and 4). As a second contribution, we then present the results of an experimental study that was conducted on the two datasets using the two effective families of classification techniques for solving fine-grained image classification problems, i.e. convolutional neural networks on one side and fisher vectors-based discriminant models on the other side (see section 6).

More generally, the scientific contribution of this paper lies in two main points. First of all, the production of specific visual training data and knowledge is now becoming one of the most central problem in computer vision. Image classification has actually now been proved to be solved on large generalist corpora, but there is still a gap before being able to recognize the spectrum of millions or even billions of entities lying in the long tail of data occurrences (i.e classes with very few or none training samples available). Experimental studies such as the one conducted in this paper provides some essential findings on the genericity and transfer learning abilities of state-of-the-art computer vision techniques in this regard. Secondly, the paper proves for the first time that automatically identifying plant varieties from their visual appearance is feasible for some groups and usage scenarios and this opens the door to further investigations in the domain.

2. Related works

Content-based image retrieval and computer vision approaches are considered as one of the most promising solutions to help bridging the taxonomic gap, as discussed in Gaston and O’Neill (2004); Cai et al. (2007b); Trifa et al. (2008); Spampinato et al. (2012); Joly et al. (2014a). We therefore see an increasing interest in this trans-disciplinary challenge in the multimedia community (e.g. in Nilsback and Zisserman (2008); Goèau et al. (2011b); Cerutti et al. (2011); Mouine et al. (2012); Kebabci et al. (2011); Hsu et al. (2011). Some recent studies have been done on closely related species (based on leaves analysis such as bean species Laere et al. (2014), or seed analysis such as in the studies of Acacia species and sub-species Smykalova et al. (2013), Diplotaxis species Grillo et al. (2012), or pea varieties Smykalova et al. (2011)). Orru et al. (2012) have meanwhile invested on the efficiency evaluation of image analysis methods (for morpho-colorimetric feature extraction) compare to molecular analysis on grape variety seeds in the aim to discriminate taxonomical groups. Nevertheless, most of the analysis actually realised are not able to deal with an important number of varieties, such as in our case. Beyond the raw identification performances achievable by state-of-the-art computer vision algorithms, recent visual search paradigms actually offer much more efficient and interactive ways of browsing large flora than standard field guides or online web catalogs (Ellison et al. (2013)). Smartphone applications relying on such image-based identification services are particularly promising for setting-up massive ecological monitoring systems, involving thousands of contributors at a very low cost.

A first step in this way has been achieved by the US consortium behind LeafSnap\(^1\), an i-phone application allowing the identification of 184 common american plant species based on pictures of cut leaves on an uniform background (see Kumar et al. (2012) for more details). Then, the French consortium supporting Pl@ntNet (Joly et al. (2014a)) went one step beyond by building an interactive image-based plant identification application that is continuously enriched by the members of a social network specialized in botany. Inspired by the principles of citizen sciences and participatory sensing, this project quickly met a large public with more than 300K downloads of the mobile applications (Goèau et al. (2013a, 2014a)). A related initiative is the plant identification evaluation task organized since 2011 in the context of the international evaluation forum CLEF\(^2\) and that is based on the data collected within

\(^{1}\)http://leafsnap.com/

\(^{2}\)http://www.clef-initiative.eu/
From a computer vision and technological perspective, our work is more generally related to image classification. Most popular methods for this problem are typically based on the pooling of local visual features into global image representations and the use of powerful classifiers in the resulting high-dimensional embedded space such as linear support vector machines (Lazebnik et al. (2006); Perronnin et al. (2010)). The Bag-of-word representation (BoW) notably remains a key concept although the raw initial scheme of (Sivic and Zisserman (2003)) is now outperformed by several alternative new schemes (Lazebnik et al. (2006); Jiang et al. (2007); Perronnin and Dance (2007); van Gemert et al. (2010); Jégou et al. (2012)). Its principle is to first train a so-called visual vocabulary thanks to an unsupervised clustering algorithm computed on a given training set of local features. The produced partition is then used to quantize the visual features of a given new image into visual words that are aggregated within a single high-dimensional histogram. Partial geometry can be embedded in the image representation by using the Spatial Pyramid Matching scheme of (Lazebnik et al. (2006)). As it relies on vector quantization, the BoW representation is however affected by quantization errors. Very similar visual features might be split across distinct clusters whereas more dissimilar ones might be affiliated to the same visual word. This results in both mismatches and potentially irrelevant matches. To alleviate this problem, several improvements have been proposed in the literature. The first one consists in expanding the assignment of a given local feature to its nearest visual words (Jiang et al. (2007); Philbin et al. (2008); van Gemert et al. (2010); Jégou et al. (2012)). This allows reducing the number of mismatches without degrading much the encoding time. Other researchers have investigated alternative ways to avoid the vector quantization step, using sparse coding (Yang et al. (2009)) or locality-constrained linear coding (Wang et al. (2010)). Such methods optimize the affectation of a given local feature to a few number of visual words thanks to sparsity or locality constraints on the global representation. Another alternative is to use aggregation-based models such as the improved Fisher Vector of Perronnin and Dance (2007) or the VLAD encoding scheme (Jégou et al. (2012)). Such methods do not only encode the number of occurrences of each visual word but also encode additional information about the distribution of the descriptors by aggregating the component-wise differences. When used with discriminative linear classifiers, such high-dimensional representations benefit of both generative and discrimination approaches leading to state-of-the-art classification performances on fine-grained classification benchmarks (Gosselin et al. (2014)).

A radically different approach to image classification is the use of deep convolutional neural networks. Rather than extracting the features according to hand-tuned or psychovision oriented filters, such methods directly work on the image signal. The weights learned by the first convolutional layers allows to automatically build relevant image filters whereas the intermediate layers are in charge of pooling these raw responses into high-level visual patterns. The last fully connected layers work more traditionally as any discriminative classifier on the image representation resulting from the previous layers. Deep convolutional neural networks have been recently proved to achieve better results on large-scale image classification datasets such as ImageNet (Krizhevsky et al. (2012)) and do attract more and more interest in the computer and multimedia vision communities. A known drawback of Deep Convolutional Neural Networks is however that they require a lot of training data mainly because of the huge number of parameters to be learned. Their performances on fine-grained classification are consequently more controversial and they are still often outperformed by local features based approaches, as shown in our experiments. Besides, it is important to notice that they inspire the investigation of new deep learning models making use of more traditional visual features embedding methods (e.g. Simonyan et al. (2013)).
The seed and biological resources laboratory (LSRG), in Montpellier, more specifically manages a large collection of 1717 varieties of *Oryza sativa* L., coming from more than 50 countries worldwide. This large collection host nevertheless a small fraction of the 40,000 rices varieties used across the world. Each variety is preserved through one or few accessions, each accession being formed by a set of rice seeds kept in their hulls (from few tens of seeds to several thousands depending on the variety). The seeds are regularly renewed through germination allowing to keep a high average germination rate of about 90%. Before the image acquisition campaign initiated by the work presented in this paper, only few illustrations of the seeds in collection did exist.

3.2. Usage scenario

Automatically identifying the rice seeds varieties thanks to their visual appearance might be useful for several scenarios. First of all, a visual control is already performed by the operators in charge of managing seeds collections. This allows detecting mistakes or inconsistencies in the labelling of the new received accessions (i.e. new in-the-field samples). This process is however very imprecise as it relies on rough visual attributes of the seeds such as *color:* brown, *shape:* long or *hairiness:* hairy. Secondly, the automatic identification of the variety could be useful for entity resolution purposes (taxonomic name resolution). In many field contexts, the variety of a cultivated plant is actually only known through its vernacular name, i.e. the local name given by the farmers of that region of the world. Mapping that names on a taxonomic referential is usually a very hard task and prevent from collecting accurate data from that cultures (which represent a potentially huge source of information).

3.3. Image acquisition

The image acquisition set up (illustrated in Figure 1) was a standard reflex camera fixed on a tripod at a fixed distance (DIST=10.4cm) from the petri box containing the rice seeds. The camera was equipped with a Compact Macro Lens (EF 50mm 1:2.5, Sigma), an MR-14 EX flash and a remote trigger. The images used for the training set (see next section for more information). From that cultures (which represent a potentially huge source of information).

Fig. 1. Image acquisition setup for the CiradRiceSeed dataset

3.4. Evaluation dataset

The final evaluation dataset to be shared with the scientific community, referred as CiradRiceSeed is composed of two parts, a training set and a testing set. The train dataset is compound of 1,506 images produced by the same operator, while the 565 images of the test dataset (based on the same varieties) were produced by another operator. This was done in order to reproduce a real world scenario, in which an external actor realise new data in the aim to get possible varieties names. The varieties list is provide in table 2.

4. Grape Leaves dataset

4.1. Context

The French Vine and Wine Institute (IFV), through the intermediary of the National Plant Material Pole located in Southern France, is a vine selection establishment that coordinates clonal selection and conservation actions carried out throughout the country. It ensures the conservation of a quite unique collection in the world of hundreds of vine varieties at the "Domaine de l’Espiguette", and about 4000 clones. A large part of this material is inscribed in the national official catalogue. The main objectives of the IFV is to improve the potential of the wine plant material while maintaining all of the characteristics and identity of each variety. The IFV contributes to the conservation of all vine varieties grown in France by both the sanitary quality of plants, and the consideration of the diversity of varieties and types of wines. This activity allows a strong link between research and production. The IFV selection center is located in the "Domaine de l’Espiguette", occupying 80 hectares in the town of Grau du Roi, Languedoc-Roussillon. This site was chosen for the national conservatory clones because its soils consist only of pure Mediterranean sand, containing neither phylloxera or nematode vectors of fanleaf virus. More than 38 hectares are planted with clones collections. Based on DNA results, it is estimated that around 5000 varieties exist worldwide, and many of them are closely related (This et al. (2006)). This important number, reflect the long history of domestication that probably started 8000 BP (before present). Morphological identification of this varieties is mainly done with adult leaves analysis, with some specific normalized leaf descriptors, as described in OIV (2009).

http://plantgrape.plantnet-project.org/
4.2. Usage scenario

Ampelography is a field of botany dedicated to the identification and classification of grapevines. Traditionally, this has been done by comparing the shape, colour and texture of the vine leaves and grape berries. Recently, DNA fingerprinting has played a major role in the development of this discipline, nevertheless it has not permitted to widely extend grapevines identification to non-expert peoples. Automatically identifying the grape varieties thanks to the visual appearance of their leaves might be for this reason useful for several scenarios. First of all, it is important to remember that grape identification may have a very important impact, notably on financial aspects, as most of the wines in the world are based on the cultivars names. Vine variety identification is thus practice, (i) by state agents in charge of the reglementation in vigor, (ii) nurserymans that want to confirm names of the commercialized material, (iii) winegrowers who want to identify old plants conserved in unused plots, etc... All these contexts could get a significant benefit of an automated multimedia identification system.

4.3. Image acquisition

In the aim to evaluate such solution, we organised in June 2012 the collect of visual data on a selection of grape varieties growing at the Espiguette estate. 11 different people, each of them with different camera, were mobilized for this experimentation. They were organised by binomials, in order to collect by binomial about 60 different images of leaves for each variety. Variety were selected according to their economic importance in French viticulture. Leaves were selected at the adult stage, in healthy condition, and the provided instructions were to (i) try avoiding strong lightness contrasts (with a part of the leaf in shadow and other one in full sun condition) (ii) try to avoid the visual overlap between several leaves. Photographers were free to choose their camera parameters, but to pay attention to put one leaf at the image center, to photograph it in landscape format, to maximize it surface on the picture (in order to avoid to take pictures from a too long distance). Most of the pictures were taken directly on the living plants, but a part of them were took on a cut leaf put on the ground (with pure sand in this case).

4.4. Evaluation dataset

The final evaluation dataset to be shared with the scientific community, referred as **IFVGrapeLeaves** is composed of two parts, a training set and a testing set. The table 1 give a synthesis of the visual and morphological diversity of this dataset. It is then possible to see variation (i) between leaves in terms of leaf shape, lobes number, or tooth size on the leaf margin, (ii) but also in terms of background color, light conditions, or image quality. The full dataset is composed of 2037 images of 34 grape varieties. In order to divide it in train and test sets, we kept all the pictures of one photograph for train (generally the photograph who take the most important

<table>
<thead>
<tr>
<th>Variety</th>
<th>Train</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variety 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variety 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variety 23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variety 25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variety 84</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4. Image samples of the IFVGrapeLeaves dataset for 5 random varieties

<table>
<thead>
<tr>
<th>Variety 4</th>
<th>Train</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Chenin)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variety 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Gamay)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variety 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Gros Manseng)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variety 19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Meunier)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variety 25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Roussanne)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

number of images for or specific variety), and we putted all the others pictures of the binomial in test dataset. This avoids for the same variety, to have picture of the same author in both datasets. The varieties list is provide in table 3.

5. Baseline fine-grained image classification systems

We did experiment two families of image classification techniques that are known to provide state-of-the-art classification performances in fine-grained recognition challenges (Gosselin et al. (2014); Joly et al. (2014b)) and that perform the best within the two last editions of the PlantCLEF international evaluation campaign Coëme et al. (2014b, 2015) (whatever the type of view or acquisition protocol e.g. leaf scans, in-the-field leaf pictures, flower pictures, bark pictures, etc.).

5.1. Fisher vectors & Support Vectors Machine

Fisher vectors (FV) were first introduced in image classification by Perronnin and Dance (2007) and proved to be very efficient in the fine-grained classification task later on (Gosselin et al. (2014)). According to recent surveys such as Huang et al. (2014), they are the best performing pooling strategy currently available. We will only recall here the main steps used to extract Fisher vectors, for detailed explanations of the theoretical derivation and for performance analysis we redirect the readers to Sánchez et al. (2013). The pipeline for computing the Fisher vector describing an image consists in:

- Dense extraction of local features: descriptors, usually SIFT descriptors, are extracted on densely sampled overlapping patches on several scales.
- PCA transformation: the descriptors are then decorrelated and compressed using a Principal Component Analysis reducing the dimensionality (usually to 80 for SIFT features).
- Feature space density estimation: the distribution of features is modeled as a Gaussian Mixture Model (GMM) that is learned using the popular Expectation Maximisation algorithm. We thus obtain a probability distribution of the form of \(u(x) = \sum_{k=1}^{K} w_k u_k(x) \) where \(u_k \) follows a Gaussian distribution, \(u_k \sim N(\mu_k, \Sigma_k) \) with \(\mu_k \) the mean and \(\Sigma_k \) the covariance matrix which is diagonal because the features are decorrelated, and \(w_k \) is the weight of the \(k \)-th Gaussian, they satisfy \(\sum_{k} w_k = 1 \).
- Encoding: the features are encoded and pooled using

\[
G_{\mu_k} = \frac{1}{\sqrt{w_k}} \sum_{i=1}^{N} \gamma_k(x_i) \frac{x_i - \mu_k}{\sigma_k} \\
G_{\sigma_k} = \frac{1}{\sqrt{w_k}} \sum_{i=1}^{N} \gamma_k(x_i) \left(\frac{(x_i - \mu_k)^2}{\sigma_k^2} - 1 \right)
\]

where all the dicitions and squaring are element-wise operation and where \(\gamma_k(x) = \frac{w_k u_k(x)}{\sum_{k'} w_{k'} u_{k'}(x)} \). Theses 2K vectors...
are concatenated to produce the final representation of dimension 2dK.

- Post-processing: the vectors are L2-normalized and then they are power-normalized using $sign(x)|x|^\gamma$ where the power parameter γ is found by cross-validation.

Usually, the supervised classification of Fisher Vectors is performed by using a linear classifier as it has been shown that using kernelized techniques on such high-dimensional features does not improve the performances. In our experiments, we used the Support Vector Machine (SVM) algorithm implemented within the LibLinear library (Fan et al. (2008)).

5.2. Convolutional neural networks

Convolutional Neural Networks (CNN) have been mainly used since the 90’s for their performances in digit classification. But since a few years, they appear to have now surpassed all state of the art methods for large-scale image classification (Krizhevsky et al. (2012)).

In these experimentations we have used Caffe (Jia et al. (2014)), a Deep Learning Framework, allowing us to use state of the art CNN architectures and models. For the two datasets presented in this work, we have chosen in the Caffe model Zoo the “GoogLeNet GPU implementation” model, based on Google winning architecture in the ImageNet 2014 Challenge Szegedy et al. (2014), and we finetuned this model on our datasets.

The GoogLeNet architecture consists of a 22 layers deep network with a softmax loss as the classifier on top, and is composed of three “inception modules” stacked on top of each other. Each intermediate inception module is also connected to an auxiliary classifier during training, so as to encourage discrimination in the lower stages in the classifier, increase the gradient signal that gets propagated back, and provide additional regularization. These auxiliary classifiers are only used during the training part, and then discarded.

6. Experiments

6.1. Setup

For a fair evaluation of both visual classification methods, we first cropped and resized all images to a resolution of 256x256 pixels, that is the size of the images given as input to the first layer of the convolutional neural network as described in section 5.2.

For the Fisher Vector’s method, we used a sampling step of 3 pixels and 5 different scales to extract the patches on which the SIFT descriptors were computed. These descriptors were L2-normalized and square-rooted before being reduced to 80 dimensions using PCA similarly to Gosselin et al. (2014).
Gaussian mixture was configured to learn $K = 1024$ visual words which is a good compromise between memory & CPU usage vs. classification performances (as discussed in Sánchez et al. (2013) or Gosselin et al. (2014)). Using more words (e.g. 2048 or 4096) might provide slightly better results but requires switching to more powerful hardware architectures and heavy computation times. As suggested in Gosselin et al. (2014), we applied a power-law normalization of the fisher vectors and did learn the value of the parameter α (i.e. the power value) for each dataset by cross-validation. The regularization parameter C of the SVM (which controls the trade-off between achieving a low error on the training data and minimising the norm of the weights) was also learned by cross-validation for each dataset. The cross-validation was performed using a stratified shuffle with 5 iterations: during each iteration, 10% of the data was randomly sampled to constitute the validation set and the rest was kept for training while preserving the proportion of the different classes in each set.

For the Convolutional Neural Network, we used several strategies that appeared to improve the results within our experiments. The first one (CNN 1) consisted in training the CNN described in section 5.2 from scratch, exclusively on the training data of each dataset and without the use of any external data. As for all other configurations, it makes use of the data augmentation technique implemented within Caffe library and consisting in cropping randomly a 224x224 pixels image, and eventually mirroring it horizontally. The second strategy (CNN 2) rather consisted in fine-tuning a previously trained CNN. We therefore started with the CNN described in 5.2, trained on the popular generalist ImageNet dataset. We then removed its top layers (the fully connected ones) and train this new model using the desired dataset.

The third strategy (CNN 3) is similar to the second one but integrates an additional data augmentation step aimed at improving the robustness of the classifier to the heterogeneous acquisition conditions and camera settings (such as the white balance, the use of the flash, etc.). For each training image, 8 new images were generated by applying a set of colorimetric transformations with randomized parameters, i.e. brightness & saturation modulation in the HSL color space (multiplier factor randomized between 0.8 and 1.2), and contrast modulation (multiplier factor randomized between 0.7 and 1.3). The fourth strategy (CNN 4) targets the same objective of increasing the robustness to colorimetric variations but through a different approach consisting in pre-processing all images (train and test images are both modified) with an histogram equalization (on each RGB channel) instead of using data augmentation. As this strategy provided the best results in the experiments, we also evaluated it for the Fisher Vector method so as to allow a fair comparison.

For all the training strategies of the CNN, the batch size was fixed to 32, and the gamma value to 0.9. Other specific parameters can be found in table 5. During the training, at each iteration, the learning rate is updated according to:

$$\text{base}_{lr} \times \text{gamma}^{\text{iterations/step}}$$

Note that for the CNN1 configuration, for which the training phase is started from scratch, the base learning rate parameter (base$_lr$) was multiplied by 100.

6.2. Results

Tables 6 and 7 present the synthesized results of the experiments for respectively the CiradRiceSeed dataset and the IFVGrapeLeaves dataset. For each run, we provide the average success rate of the classifier on all images of the test set, considering either the best prediction for each test image (Top 1), or the 3 best predictions (Top 3), or the 5 best predictions (Top 5). A first global conclusion that we can derive from the comparison of the two tables is that the performances achieved on the CiradRiceSeed dataset are much better than the ones achieved on the IFVGrapeLeaves dataset. Whatever

<table>
<thead>
<tr>
<th>System used</th>
<th>Classification rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNN 1 (= without ImageNet)</td>
<td>8.84 14.86 19.82</td>
</tr>
<tr>
<td>CNN 2 (= with ImageNet)</td>
<td>52.38 75.39 86.37</td>
</tr>
<tr>
<td>CNN 3 (= with ImageNet + colorimetric data augmentation)</td>
<td>84.95 98.40 99.29</td>
</tr>
<tr>
<td>CNN 4 (= with ImageNet + Histogram equalization)</td>
<td>88.67 98.93 99.82</td>
</tr>
<tr>
<td>Fisher Vectors</td>
<td>72.57 88.14 94.51</td>
</tr>
<tr>
<td>Fisher Vectors + Histogram equalization</td>
<td>76.81 93.98 97.17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System used</th>
<th>Classification rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNN 1 (= without ImageNet)</td>
<td>3.75 5.81 12.59</td>
</tr>
<tr>
<td>CNN 2 (= with ImageNet)</td>
<td>9.32 23.12 35.83</td>
</tr>
<tr>
<td>CNN 3 (= with ImageNet + colorimetric data augmentation)</td>
<td>11.50 27.60 39.70</td>
</tr>
<tr>
<td>CNN 4 (= with ImageNet + Histogram equalization)</td>
<td>11.01 22.76 34.86</td>
</tr>
<tr>
<td>Fisher Vectors</td>
<td>9.20 22.28 30.99</td>
</tr>
<tr>
<td>Fisher Vectors + Histogram equalization</td>
<td>10.05 23.55 32.57</td>
</tr>
</tbody>
</table>
the used classification approach and training strategy, the classification rate on the IFVGrapeLeaves dataset actually remains very low, with a maximum of 11.50% good classification rate. On the other side, the best performances on the CiradRiceSeed dataset are very good reaching up to 88.67% good classification rate, whereas the number of classes is much higher (95 vs. 34). This shows that the scenario addressed through the IFVGrapeLeaves dataset, i.e. the leaf-based identification of the varieties in the field, is a much more challenging problem than the scenario addressed through the CiradRiceSeed dataset (in-lab identification). Note that this does not mean that the grape’s varieties could never be automatically discriminated based on the visual appearance of their leaf. We actually know that it is to some extent possible thanks to existing morphological identification keys (OIV (2009)). But it shows that the acquisition protocol should be more constrained (typically by scanning the leaves instead of targeting in the field photographs) or enriched by the use of other traits (e.g. grapes images). We thus plan to enrich the IFVGrapeLeaves dataset with such new contents for further evaluations.

On the other side the performances on the CiradRiceSeed dataset are clearly better to what we could expect. The visual variability across the 95 species is actually globally low and there are many varieties that are almost impossible to distinguish to the naked eye. Back to the scenarios described within section 3.2 (i.e. labelling control and entity resolution issues), we can even argue that the achieved performances might be sufficient for a practical usage. Rising an alert when the label of a given accession does not belong to the 5 best automatic predictions might for instance be a very effective control tool (the Top 5 classification rate of the best experimented classifier is actually equal to 99.29%). Beyond these scenarios, the achieved performances show that the visual features learned by the classifiers are informative enough to characterize the morphological variability of the different varieties. This open the door to new phenotyping scenarios in the future, for instance if we consider combining such analysis of the visual appearance with the analysis of genomic data or the analysis of other traits.

Let us now look more in details to the scores obtained by the different classification methods on the CiradRiceSeed dataset, starting with the different CNN strategies. The weak performances of CNN 1 first show, as one could expect, that the convolutional neural network is not able to learn e

7. Conclusion and perspectives

This paper addressed the problem of categorizing plant images at the variety level, i.e. at a finer taxonomic grain than state-of-the-art studies usually working at the species level. It therefore introduced two new evaluation datasets of agrobiodiversity interest, each being related to concrete scenarios on large-scale resources. A baseline experimental study was conducted on the two datasets to assess whether state-of-the-art classification techniques such as convolutional neural networks and fisher vectors are performant enough to answer the targeted use cases. It did show that the achieved classification performance is very different between the two problems. It is actually pretty bad for the grape leaves collection but much better in the case of the rice seeds collection for which the acquisition protocol was much more constrained and the morphological variability between varieties more visible. The conclusion we can draw from these raw results is that automatically identifying plant varieties might already be feasible for some specific scenarios and in controlled environments but that it is still an open problem in the general. In further works, we attempt to explore more in depth the confusion matrix of variety-level visual classifiers in order to correlate the visual similarity of the varieties with genomic data or with other phenotypical properties of the plants.

Acknowledgments

This work has been done throughout the ARCAD-FEDER project, supported by Agropolis Fondation, the French foundation for Agricultural Sciences and Sustainable Development, the European Union through the ERDF, and the Région Languedoc-Roussillon.

References

