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Abstract
Infra-species taxonomy is a prerequisite to compare features such as virulence in different

pathogen lineages.Mycobacterium tuberculosis complex taxonomy has rapidly evolved in

the last 20 years through intensive clinical isolation, advances in sequencing and in the

description of fast-evolving loci (CRISPR and MIRU-VNTR). On-line tools to describe new

isolates have been set up based on known diversity either on CRISPRs (also known as spo-

ligotypes) or on MIRU-VNTR profiles. The underlying taxonomies are largely concordant

but use different names and offer different depths. The objectives of this study were 1) to

explicit the consensus that exists between the alternative taxonomies, and 2) to provide an

on-line tool to ease classification of new isolates. Genotyping (24-VNTR, 43-spacers spoli-

gotypes, IS6110-RFLP) was undertaken for 3,454 clinical isolates from the Netherlands

(2004-2008). The resulting database was enlarged with African isolates to include most

human tuberculosis diversity. Assignations were obtained using TB-Lineage, MIRU-

VNTRPlus, SITVITWEB and an algorithm from Borile et al. By identifying the recurrent con-

cordances between the alternative taxonomies, we proposed a consensus including 22

sublineages. Original and consensus assignations of the all isolates from the database

were subsequently implemented into an ensemble learning approach based on Machine

Learning tool Weka to derive a classification scheme. All assignations were reproduced

with very good sensibilities and specificities. When applied to independent datasets, it was

able to suggest new sublineages such as pseudo-Beijing. This Lineage Prediction tool, effi-

cient on 15-MIRU, 24-VNTR and spoligotype data is available on the web interface “TBmi-

ner.” Another section of this website helps summarizing key molecular epidemiological

data, easing tuberculosis surveillance. Altogether, we successfully used Machine Learning
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on a large dataset to set up and make available the first consensual taxonomy for human

Mycobacterium tuberculosis complex. Additional developments using SNPs will help stabi-

lizing it.

Introduction
Bacterial taxonomy has logically emerged when technology unveiled the microscopic level of
life at the end of the nineteenth century. Macroscopic organisms were being classified since
Aristotle, 350 BC [1,2], and the same taxonomic levels (Species, Genus, Family, Order, Class,
Phylum, and Reign) were chosen. The process of assigning an organism inside a definite taxon-
omy will thereafter be referred to as classification, the term taxonomies being used for the clas-
sification schemes themselves. For the Species level, microbiologists have applied various
concepts of species definition (phenotypical, morphological, ecological), trying to identify
groups of organisms with identical biochemical features, studying colony morphology, nutri-
tion requirements, etc., as well as host symptoms for pathogenic species. The similarities
between lineages were randomly or intuitively ordered. With the advent of molecular biology,
DNA-DNA hybridization has been recognized as a powerful, objective and consistent tool for
characterizing lineages, and the threshold of 70% identity has been proposed for species delin-
eation [1]. 16S rRNA sequence has then attracted attention: the presence of conserved regions
ensured amplification in any bacteria. 16S rRNA sequences retrieved environmental samples
helped describe bacterial diversity among uncultivable organisms. The comparison between
DNA-DNA hybridization data with 16S rRNA sequences has shown that organisms with less
than 97% identity in 16S rRNA sequence could safely be considered as belonging to different
species [3]. Whole Genome sequences of Bacteria are now easily acquired due to their relative
small size (below 10 Mb). The Average Nucleotide Identity (ANI) assesses DNA identity
between two genomes and proves very concordant with DNA-DNA Hybridization. A thresh-
old of 95% ANI is now advised to name new species [4]: individuals with more than 95% ANI
should be considered as belonging to the same species.

Tuberculosis agent was first isolated by Robert Koch in 1882, the name Bacillus tuberculosis
was proposed to the community by Zopf in 1883, which was changed forMycobacterium tuber-
culosis in 1907 [5]. In 1912, a bacillus isolated by E. Nocard on cows and today known asM.
bovis was specifically used to set up a vaccine after serial passage experiments led by Calmette
and Guérin; it did not receive a different species name at that time, possibly because it was
known to infect humans and trigger symptoms very similar to those ofM. tuberculosis. In con-
trast, a bacillus collected on rodents, initially referred to asM. tuberculosis var.muris, was offi-
cially raised to the species level in 1957 [6] in a period where scientists promoted the use of
infectivity profile as a mean of pathogen characterization [7]. Following this rationale, an
increasing number of species were named according to their principal animal host even if alter-
native mammal hosts were common and disregarding DNA similarity criteria:M. bovis in
1970,M. caprae in 1999,M. pinnipedii in 2003,M.mungi in 2010,M. orygis in 2012,M. surri-
catae in 2013 [8,9,10,11,12,13]. Two lineages infecting humans were raised to the level of spe-
cies because of specific metabolic and phenotypic features:M. africanum andM. canettii
[14,15]. In fact, the DNA diversity within and between all these lineages as studied by Whole
Genome Sequencing proved limited, except forM. canettii’s showing higher intra- and inter-
lineage diversity [16,17,18]. According to molecular data such as average nucleotide identity
(ANI) and 16S rRNA divergence, all these “species” could be considered as a single one despite
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the clear diversity in host spectrum. In contrast, someM. tuberculosis isolates proved more dis-
tant from one another than one was from any animal isolates. The resemblance between all the
species listed above has led to the advent of “M. tuberculosis complex” (MTC) terminology for
more than 30 years [19]. The diversity among human isolates harboring similar metabolic fea-
tures being higher than the diversity between animal isolates whatever the host species [20],
infra-species taxonomy ofM. tuberculosis affecting humans is as important as the description
of animal isolates diversity.

RFLP data detecting IS6110 insertion sequence and/or that of CRISPR locus (long called
“Direct Repeat” or “DR locus”, and the method, “Spoligotyping”) have initiated MTC infra-
species MTC taxonomies strictly based on genotyping data [21,22,23]. The taxonomy based on
CRISPR locus, relying on the presence/absence of specific spacers, became soon the most
extensively used and a worldwide database referred to as SpolDB and later SITVITWEB is
including an increasing number of sublineages since 1999 [24,25,26]. The CRISPR locus was
found to have carried 68 spacers in the most recent common ancestor to all MTC species
exceptM. canettii [27,28] and to have subsequently evolved by the loss of spacers or the inte-
gration of IS6110 sequences [29]. Recurrent “signatures”, i.e. the absence of specific spacers,
easily detected by experts, led to the naming of LAM, CAS, S, X, etc. sublineages [30]. The rele-
vance of the corresponding taxonomy has been promptly acknowledged by the tuberculosis
community based on the good congruence with geographical data, previously described eco-
logical speciesM. africanum,M. bovis, sublineages such as Beijing and Haarlem detected using
IS6110-RFLP [31,32]. Other studies criticized this taxonomy based on the fact that the deletion
of each spacer considered independently can suffer from convergence [33,34]. However, these
criticisms were defeated for major signatures as defined in SITVITWEB [35,36]. The reason
for the reliability of well-known signatures despite convergence effects on individual spacers is
that these signatures take into account the spatial organization of the locus. In the end,
CRISPR-derived taxonomy is still widely used with 100 hits in Pubmed during the last 12
months (as assessed on February 12th, 2015) using keywords “(spoligo� OR CRISPR) AND
tuberculosis”. The automation of CRISPR data use for classification has led to several web
interfaces: spoligoforest to infer transmission chains SPOTCLUST and TB-Lineage for labeling
new isolates [29,37,38], with TB-Lineage using a simplified taxonomy indicating large lineages
as defined by Gagneux et al. [38,39].

From 2000 on, tuberculosis taxonomy was complexified by the advent of large deletions
[40,41] and minisatellites termed MIRU-VNTR (mycobacterial interspersed repetitive units,
variable number tandem repeats) [42,43,44,45,46,47]. The large acquisition of MIRU-VNTR
data soon suggested that at least some specific labels provided using spoligotype patterns could
be flawed [48]. An independent database and the corresponding taxonomy was set up to clas-
sify isolates according to the standardized combination of 24 MIRU-VNTR patterns [49], and/
or Regions of deletion: MIRU-VNTRPlus [47,50]. These 24-VNTR genotypes can be used in
parallel for molecular epidemiology as they include many loci with high discriminatory power
[51,52,53]. The most variable loci form a 15-MIRU-VNTR set that is now collected for epide-
miological surveillance by most Reference labs, in combination or not with spoligotyping [54].

The next step in MTC diversity exploration was the analysis of Single Nucleotide Polymor-
phisms (SNP) either using high-throughput SNP typing [55,56,57] or Whole Genome
Sequencing [39,58,59,60,61,62,63]. These approaches largely validated spoligotype and MIR-
U-VNTR based taxonomies [34]. Several studies propose new classification tools using SNPs
detection, the most precise and consensual being that derived from the data mining in more
than 1,000 genomes [62].

Altogether, several tools currently exist for assigningM. tuberculosis complex isolates to tax-
onomic groups at different depths, but little time was by now invested in characterizing the
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concordance between the corresponding taxonomies. As a consequence, TB epidemiologists
are often puzzled when trying to characterize their isolates. There is a clear need for using large
studies and powerful algorithms on large datasets for establishing consensual infra-specific
MTC taxonomy.

Machine learning is a statistics science identifying relevant information in large datasets
even when some data are missing. It involves pattern recognition in prototypes i.e. the identifi-
cation of formal rules correlated to a characteristic of interest [64]. Once patterns have been
identified, assignation of unknown individuals is easy and very fast. Such method has been
applied previously on spoligotyping data and helped identifying informative spacers to recog-
nize experts-based groups [65]. Weka is a work bench set up in 1997 and implementing state of
the art machine learning algorithms. This ability proved critical for reducing assignation errors
[66]. It is very popular and was used in studies as diverse as epilepsy characterization using
imaging data [67] and methylated DNA patterns linked to genetic diseases [68]. Its swiftness
enables to implement it in parallel on different type of data, so that complete annotation of
very large dataset can be reached in a timeframe of one minute.

In this work, we first completed the genotyping of a large dataset of 3,454 humanM. tuber-
culosis isolates from the National Reference Center of Netherlands (RIVM) collected between
2004 and 2008 [69]. This data was used to further describe TB diversity and transmission
dynamics in Netherlands and to clarify the potential of spoligotyping in molecular epidemiol-
ogy. We then used this large database as a reference for humanM. tuberculosis worldwide
diversity after complementing it with genotypes from Lineages 5 and 6 particularly underrepre-
sented in the RIVM dataset. We annotated all these genotypes according to existing classifica-
tion tools to search for stable correspondences between the underlying taxonomies and
proposed a new consensus where the correspondences are made explicit. We finally used Weka
software to learn in parallel classification procedures, handling Spoligotype or MIRU-VNTR
data, reproducing original and new taxonomies, and made the most successful procedure avail-
able on-line. Altogether, our work successfully clarifies the correspondence between the exist-
ingM. tuberculosis complex taxonomies. This consensus can be retrieved for any sufficiently
informed new genotype (best when including at least Spoligotype + 15 MIRU-VNTR) using
our new web interface, TBminer.

Material and Methods

Isolates
All isolates analyzed in this study were cultured on Lowenstein Jensen solid media or 7H9 liq-
uid medium in MGIT960 device. Three thousand four hundred and fifty four (n = 3,454) were
from the National Reference Center of Netherlands, also committed in worldwide quality con-
trol studies. 225 isolates were from diverse hospitals in Pakistan (Faisalabad n = 6; Islamabad
National Reference Center n = 109; Karachi n = 29; Lahore n = 21; Rawalpindi n = 60). DNA
was extracted using the standard procedure using Cetyl-trimethyl-ammonium bromide
(CTAB) [70]. No information concerning the patients was included in the analysis so that no
approval from any ethical comity was required.

High throughput Luminex-based spoligotyping
A total of 3,454 DNA samples, extracted from isolates collected between 2004 and 2008 by the
RIVM and sent as concentrated CTAB (Cetyl-trimetthyl-ammonium bromide) extracts, were
genotyped by high-throughput Luminex spoligotyping [23,27,71,72]. Briefly, 1 μL of ~50 ng/
μL DNAs were amplified by PCR using DRb and biotinylated DRa in 25μL. PCR product (2μL)
were hybridized with coupled polystyrene microbeads (2500 Microplex microbeads per
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individual target, Luminex Corp, Austin, USA) for 30mn at 55°C in 1.5X TMAC (Tetra-methyl
ammonium chloride). After washing, 2μL streptavidin-R-phycoerythrin (1mg/mL, Invitrogen,
USA) was added, microbeads were centrifuged and washed again, and after resuspending in 1x
TMAC, the plates were read at 52°C. Interpretation was made using home-made excel matrixes
helping control of cut-off selection between positive and negative values for each spacer. A
Quality Control check, done by an independent investigator on 5% of randomly selected sam-
ples showed a perfect reproducibility of the patterns.

Twenty-two (22) samples could not be genotyped by spoligotyping totaling 3432 fully geno-
typed isolates (complete spoligotype, IS6110-RFLP and maximum 1 out of 24 MIRU-VNTR
missing).

Assignation to sublineages using available classifications
Files of 500 24-VNTR and spoligotyping genotypes complying with all specified requirements
were loaded onto TB-lineage and MIRU-VNTRPlus websites. In MIRU-VNTRPlus, default
settings were changed to assign isolates to the closest inside the curated database as soon as the
distance is of 0.5 maximum (default = 0.17), so that most isolates could be classified (n = 3382).
TB-lineage could classify 3283 isolates (i.e. 97%).

To assign genotypes according to SITVITWEB taxonomy, we first made use of an Excel ver-
sion of SpolDB4 uncovering the 2881 first SITs implemented in SITVITWEB. The assignations
were slightly corrected by taking into account recent knowledge on relatedness among Euro-
American sublineages. For instance, CAMEROON genotypes previously referred to as
LAM10_CAM and subsequently found not to be related to LAM were simply labeled CAM,
TURKISH isolates previously referred to as LAM7_TUR and subsequently found not to be
related to LAM were simply labeled TUR, H4 subsequently found not to be related to Haarlem
were renamed URAL, and more precisely URAL1 when spacer 2 was present and URAL2
when spacer 2 was absent. For the unclassified isolates, we used expert knowledge of C. Sola,
mainly applying rules as described in Filliol et al.[73,74].

To assign each genotype according to Borile et al. taxonomy, we computed distances to the
32 Borile references based on shared blocks of absent spacers [36]. Every isolates was assigned
to the group of the most similar reference, and unassigned when equal distances were found
with at least 2 references.

Taxonomy consensus identification
Correspondences between all taxonomies were listed using an in-house algorithm to identify
synonyms. As 24-VNTR signatures are known to be less prone to convergence than deletions
of individual spacers in spoligotype patterns [34], when assignations by SITVITWEB and MIR-
U-VNTRPlus taxonomies were conflictive, we privileged MIRU-VNTRPlus assignation. To
make the synonym explicit, we tended to concatenate short versions of the different synonyms
unless it was too long (Table 1).

Classification learning using Weka
A curated database enlarged to include moreM. africanum isolates was imported into Weka.
More specifically, curation removed all isolates for which at least one taxonomy was not able to
provide an assignation or when one VNTR had a zero value (indeed absence of results was at
some point in this long-lasting study recorded as 0 which may have lead to erroneous profiles);
this concerned all lineages (data not shown) and almost all MIRU-VNTR so that it is not likely
to have introduced any bias in the database.M. africanum isolates added to the RIVM curated
dataset came from a Nigerian study. Altogether, the database counted 2,904 isolates including
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Table 1. Correspondence table between the differentM. tuberculosis taxonomies.

TBlineage MIRU-VNTRPlus SITVITWEB Borile-AP Consensus Expert Coll et al.

Lineage 6 West African 2 AFRI_1 Afri1 L6_Afri1 6

(West African 2) AFRI

Lineage 5 West African 1 AFRI_2 Afri2-3 L5_Afri2 5

(West African 1) AFRI_3

Animal strains Bovis BOVIS bovis L0_Animal M. bovis

MICROTII, PINI Pin-Mic

CAP Cap

Lineage 1 (Indo Oceanic) EAI EAI1_SOM EAI1 L1_EAI1 1.2.2

EAI2_MANILLA,NTB EAI2 L1_EAI2 1.2.1

EAI3_IND EAI3-5 L1_EAI3 1.1.2

EAI4_VNM EAI L1_EAI 1 & 1.1.1

& EAI5

EAI6, EAI 7 EAI6 L1_EAI6 1.1.3

Lineage 2 (East Asia) Beijing BEIJING Beij L2_Beijing 2.2

BEIJING-LIKE

Lineage 3 Dehli/CAS CAS1_DEHLI CAS L3_CAS 3

(India and CAS1_KILI (3.1.1)

East Africa) CAS2 (3.1.2)

BEIJING Beijing (-)

Lineage 4 Ghana T1 T1a—T1b—T1c in L4 in 4

(Euro- UgandaI-II T2, T2_UGANDA T2 L4_Uganda(T2) 4.6.1

American) EAST_MED1 T(T1-H-CAM) in L4 4.6 ?

LAM3_S

? T3 ? in L4 4.6.2 ?

? T4_CEU T4 L4_T4 4.8 ?

? T5_MAD2 T5 L4_T5 4.7a ?

H37Rv H37Rv ? L4_H37Rv 4.9

TUR LAM7_TUR ? L4_TUR 4.2.2

T1 ?

URAL H4 (remaned Ural1) Ural L4_Ural1 4.2.1a

New-1 H4 (remaned Ural2) ? L4_Ural2(New1) 4.2.1b

S S S L4_S 4.4.1

Cameroon LAM10_CAM T-T1 L4_CAM 4.6.2

Haarlem H1, H2 H1-2 L4_H1-2 4.1.2

H3, H3-T3 H3 L4_H3 4.5 ?

LAM LAM1, LAM2, LAM5 LAM5-2-1 L4_LAM 4.3

LAM3, 4, 6, 8 LAM3

LAM9, 11, 12 LAM9-11

T5_RUS1 T(T1-H-CAM)

T5 ? L4 4.7b ?

X X2 X2 L4_X 4.1.1

H1 H1-2 4.1

X, Haarlem X1, X3 X1-3 4.1

? ? MANU1, MANU2, ZERO Manu ? 2.1 ?

The items in italics were subsequently added according to findings in complementary analyses. Parts under brackets indicate synonyms. Complete

sublineages under brackets indicate imprecise correspondance. “?” indicate hypotheses with no actual proof.

doi:10.1371/journal.pone.0130912.t001
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at least 36 isolates of main human tuberculosis lineages: 36 L0_M. bovis, 313 L1_EAI, 213
L2_Beijing, 270 L3_CAS, 1975 L4_Euro-American, 58 L5_Waf1-Afri2, 36 L6_Waf2-Afri1.

Weka was used to train a classifier using different Machine learning algorithms and a Vote
procedure. Machine algorithms handle characteristics such as genotype patterns at different
loci, and a selected feature to be predicted. Every genotypic characteristic handled indepen-
dently is called an “attribute”. Different algorithms exist. A short description of their different
characteristics is as follows: 1) J48 algorithm is the Weka version of the C4.5 algorithm. J48 is
used to learn decision trees using quantitative values of attributes. First, the pair (attribute,
value) that optimizes a criterion (entropy, gini index) is used to split the data in two sample.
Then, for each sample, if it is pure (only one lineage represented) or if it contains less than a
predefine number of data, the tree growing is stopped, else another split is determined based
on the same algorithm; 2) JRip algorithm (with Rip standing for Repeated Incremental Prun-
ing, and J for Java, the programming language used to implement Weka) an algorithm already
implemented on tuberculosis data for TB-lineage [38] consists in identifying an ordered list of
complex rules using quantitative values, beginning with less prevalent class; if the first set of
rules is fulfilled, the isolate is assigned to the corresponding lineage, otherwise the next set of
rules is examined; a default assignation is proposed at the end of the list if no set of rules has
been fulfilled; 3)Naive Bayes algorithm is based on the assumption that attributes are indepen-
dent. Despite the fact that this assumption is rarely true, the obtained classifier has frequently
good performances. The main idea of Naive Bayes is to determine the lineage maximizing the
probability of being associated to a given set of attributes (here spacers in spoligotype pattern,
individual MIRU-VNTRs). This probability is the product of all the marginal probabilities of
each attribute associated to the lineage (this product makes sense only under the assumption of
attributes independence); PART uses rules in the same way JRip does, but these rules are built
using a decision tree as does J48; Random Forest consists in assigning each isolates using a
multitude of decision trees and provides the assignation that is the mode among all of these
trees; the decision trees are built partly randomly. All these methods can undergo meta-bagging
procedures to reduce the impact of overfit to the data. Overfitting occurs when lots of data are
used to set up the classifiers so that some irrelevant features are included in the decision trees
or rules. Meta-bagging consists in randomly selecting features and data used to induce the clas-
sifiers, a step that actually reduces the chances for learning irrelevant features.

All algorithms can be combined and contribute to a Vote step during which the most fre-
quent assignation is selected.

Evaluation was performed for each algorithm using stratified cross-validation. Stratified
cross-validation consists in partitioning the training dataset in a specified number of folds k,
learn on k-1 folds and test the algorithm of the remaining fold. The number of folds was varied
between 3 and n-1 (leave-one-out procedure, n corresponding to the total number of items).
When the number of folds is low, the computed accuracy is more likely to match that obtained
on an independent dataset as the testing set is quite large, however, the rules or trees inferred
may be less precise as they have been set up with smaller training data.

The “Vote-10” algorithm (using all 5 original algorithms as well as all their 5 meta-bagging
derivates) was applied on the complete training dataset to build up the Lineage prediction clas-
sifier available on TBminer website.

Datasets for independent evaluation of Lineage Prediction tool
The first independent dataset was that of MIRU-VNTRPlus database uncovering 186 isolates
from both human and animal tuberculosis.
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The second independent dataset was built by complete genotyping as described in Yasmin
et al. [53]. Only isolates with “complete” spoligotype and 24-MIRU-VNTR genotypes i.e. lack-
ing at most one VNTR (n = 225) were kept. Isolates were mainly from Punjab. Altogether, only
38 datapoints were missing out of 15,075, mostly from VNTR Qub26 (n = 10), Qub11b (n = 7)
and ETR-A (n = 6).

Results

Characteristics of the RIVM dataset and contribution of spoligotyping to
molecular epidemiology
We characterized by spoligotyping 3,454 DNA samples retrieved from as many clinical isolates
of the RIVM collection (2004–2008). Genotypes obtained by 24-MIRU-VNTR and IS6110
RFLP profiles were already available [69]. Ninety-nine percent of the patterns were successfully
obtained (99.4%; n = 3432). According to TB incidence estimates in the Netherlands for this
period (n = 1330 per year as estimated in 2004), this represents around 65% of all TB cases
[75]. Assignation of genotypic profiles to described lineages was performed independently for
each isolate and for each taxonomy using available on-line tools: 1) SITVITWEB database
using spoligotype patterns and upgraded by the expert eye for new profiles, 2) MIRU-VNTR-
Plus assignation tool implementing similarities on 24 MIRU-VNTR patterns, 3) TB-Lineage
using both spoligotype patterns and 24 MIRU-VNTR information, 4) Borile et al.-derived in-
house algorithm using spoligotype profiles only [36]. The resulting file is available as S1 Table.
Alternative taxonomies were largely concordant as detailed below. Most prevalent lineage
according to TB-Lineage taxonomy was the so-called “lineage 4” (also referred to as Euro-
American lineage, 68%, n = 2,345). Lineages 1, 2 and 3 (corresponding to EAI, Beijing and
CAS SITVITWEB denominations) corresponded each to slightly less than 10% of the isolates
(n = 324, 228 and 291 respectively), lineages 5 and 6 (designated as Afri2 and Afri1 in SITVIT-
WEB) andM. bovis lineage representing around 1% of the isolates each (n = 30, 18 and 47
respectively, Fig 1). Among the 171 isolates (5.0%) that could not be classified using TB-

Fig 1. Relative prevalence of mainM. tuberculosis complex lineages in the Netherlands (2005–2008).

doi:10.1371/journal.pone.0130912.g001
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lineage, most of them were classified by MIRU-VNTRPlus as being part of Euro-American
lineage (Haarlem, n = 50) or EAI (n = 23). Altogether, this RIVM dataset is typical of that of a
Western country (predominance of Euro-American lineage) with worldwide immigration pro-
viding larger diversity. Euro-American isolates infra-lineage diversity (67.9% of the total data-
set) can be described using the MIRU-VNTRPlus classification. Most were labeled Haarlem
(n = 777; 22.5% of total dataset), second, LAM (n = 548; 15.9%) and third, Cameroon (n = 260;
7.5%).

We assessed the clustering level in this database and set up an online tool to automate it,
available at info-demo.lirmm.fr/TBminer/ (Clusters Analysis option). We used 24-VNTR pro-
files to define clusters as it stands as the current Gold standard for molecular epidemiology
since 2006 [49,69,76]. We detected 109 to 295 clustered isolates each year (S2 Table). When
considering the global 5-years set, the number of clustered isolates reached 1,362 which was
higher than the sum of clustered isolates for each separate year. This indicates that unique iso-
lates collecting during different years carry the same genotype. Such phenomenon may illus-
trate the likely underestimation of clustered cases if performing smaller studies over a shorter
period as previously shown theoretically [77]. Alternatively, it may be caused by a lack of dis-
criminatory power in the genotyping techniques, as recently shown by Whole Genome
Sequencing [78]. Recent Transmission Index as computed using the “n-1”method [79] varied
from 10.8% to 26.6% when considering each year separately but reached 29% when considering
all 5-years sampling period (S2 Table). Mean cluster size was 3.8 isolates but one cluster
belonging to LAM lineage was made of 64 isolates and nineteen clusters exhibited more than
10 isolates. We explored if these clusters could be split when considering spoligotyping data
(Table 2). All spoligotype patterns of isolates belonging to the same 24-VNTR cluster were sim-
ilar. The isolates carrying different spoligotype signatures often were collected on different
years. Inside these 24-VNTR clusters, spoligotype patterns harboring more deletions were
rather posterior to patterns with fewer deletions (n = 21), albeit with several exceptions (n = 7;
Table 2). This confirms that both rare mutations in spoligotype pattern without changes in the
24-VNTR set may occur, and that convergence in 24-VNTR data for related isolates is not so
rare. On the whole dataset, adding spoligotyping to 24-VNTR typing refined clustering by
10.1% (S1 Fig), likely identifying most convergence events among 24-VNTR clusters that could
be detected using Whole Genome data [59].

All major lineages except Beijing were represented among these large clusters and no signifi-
cant difference with the global representation of lineages could be detected (Fisher exact test
n1 = 9, n2 = 2, p = 0.275).

Set-up of a correspondence table between the differentM. tuberculosis
taxonomies and proposition of a consensual “expert” taxonomy
We took advantage of the large resulting database to examine the correspondence between the
existing MTC taxonomies. Preliminarily, we removed all isolates for which no assignation
existed for at least one of the taxonomy. Dataset was subsequently enriched in Afri1 and Afri2
isolates by including 52 additional isolates from a published study [80]. The resulting dataset
counted 2,904 genotype profiles with classifications by TB-Lineage, Miru-VntrPlus, SITVIT-
WEB and Borile (S3 Table). When browsing this material, we identified good concordance for
22 sublineages between the TB-lineage, MIRU-VNTRPlus, Borile and SITVITWEB classifica-
tion tools. In addition, we could find a good correspondence with the SNP-based classification
set up by Coll et al. [63] (Table 1). When assignations were discordant, we kept MIRU-VNTR-
Plus assignation only if the spoligotype signature was not contradicting it. Consequently,
T5_RUS1 isolates for instance, that carry a larger deletion than standard LAM isolates in their
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Table 2. Major clusters of the 2004–2008 Netherlands RIVM collection (n�10).

24-VNTR
Cluster ID

n Different spoligotype patterns within the same
24-VNTR cluster

SIT Sublineages
(SITVITWEB
classification)

Year of first
isolation

ID of eldest isolates with
corresponding genotype

νν�ννννννννννννννννν����νννννννν����ννννννν 20 2004 NLA000400263

1 64 νν�ννννν�ννννννννννν����νννννννν����ννν�ννν New LAM 1 2005 NLA000500735

νν�ν�ννννννννννννννν����νννννννν����ννννννν 729 2006 NLA000601675

ννννννννννννννννννννννννν������ν����ννν�ννν 62 H1 2004 NLA000400246

2 53 ννννννννννννννννννννννννν������ν����ννννννν 47 2005 NLA000500437

������������������������������������������� 2669 U 2006 NLA000600009

3 33 ννννννν���νννννννννννννννννννννν����ννν�ννν New U 2004 NLA000400201

4 28 ννννννννννννννννννν�νννννννννννν����ννν�ννν 736 T2 2004 NLA000400425

ννννννννννννννννννν������ννννννν����ννν�ννν New 2005 NLA000501826

5 22 νννννννννννννννννννν����νννννννν����ννννννν 42 LAM9 2004 NLA000400150

νννννννννννννννννννννννννννννννν����ννννννν 53 T 2005 NLA000500775

6 19 ννν����νν�ννννννννν����������������νννννννν 21 CAS1_KILI 2004 NLA000401265

ννν����νννννννννννν����������������νννννννν 22 2005 NLA000500746

νννννννννννν�νννννν�νν�ννννννννν����ννννννν 1227 2004 NLA000400237

7 18 ννννννννννννννννννν�νν�ννννννννν����ννννννν 58 T5_MAD2 2004 NLA000400972

νννννννννννννννννννννν�ννννννννν����ννννννν 44 2004 NLA000401032

8 17 νν�νννν������������������ννν����ν�ννννννννν 89 EAI2_NTB 2004 NLA000400077

9 15 ννννννννννννννννννννννννν�ννν�νν����ννννννν 1558 T1 2004 NLA000400231

10 14 ������������������������ν������ν����ννννννν 2 H2 2004 NLA000400112

ννννννννννννννννννν�����ν��ννννν����ννννννν 41 2004 NLA000401211

νν�νννννννννννννννν�����ν��ννννν����ννννννν 930 2005 NLA000500774

11 14 ννννννννννννννννννν�����ν��ννννν����ννν�ννν 1261 TUR 2005 NLA000501593

νννννννννννν�νννννν�����ν��ννννν����ννννννν 367 2006 NLA000601569

ννν��νννννννννννννν�����ν��ννννν����ννννννν New 2007 NLA000701171

ννν����ννννννννννννννν�������������νννννννν 203 2004 NLA000401787

12 13 ννν����ννννννννννννννν����������ν��νννννννν New CAS 2005 NLA000500783

ννν����νννννννννννννν���������������ννννννν 1949 2008 NLA000800421

13 12 ννν����ννννννννννννννν������������ννν�ννννν 289 CAS1_DELHI 2004 NLA000400590

ννν����ννννννννννννννν������������νν��ννννν 25 2005 NLA000500524

ννννννννν����������ννννννννννννν����ννννννν 149 2004 NLA000400548

14 11 ννννννννν����������ννννννννννννν����νννν�νν New T3_ETH 2006 NLA000600430

ννννννννν����������ννννννννννννν����ννν�ννν 345 2008 NLA000800132

15 11 ������������������������νννννννν����ννννννν 1280 T1 2004 NLA000400046

16 11 νν������νννννννννννν����νν����νν����ννννννν 1607 LAM11_ZWE 2005 NLA000500458

17 10 ννν���������ννννν�νννννννννννννν����ννννννν 92 X3 2004 NLA000400304

ννννννννννννννννννννννν�������������������� 786 2004 NLA000401283

νννννννννννννννννννννννννννννν������������� 237 2005 NLA000500740

18 10 νννννννννν����ννννννν�νννννννν������������� 465 U 2005 NLA000500790

νννννννννν����ννν�ννν���������������������� New 2005 NLA000501258

νννννννννννννννννννν����������������������� 402 2006 NLA000601923

νννννννννννννννννννννννν������������������� 46 2008 NLA000801472

������������������������������������������� 2669 2008 NLA000801594

νννννννννννν�ννννννννννννννννν�ν����ννννννν 36 H3-T3 2004 NLA000401512

νννννννννννννννννννννννννννννν�ν����ννννννν 50 H3 2005 NLA000500512

19 10 ννννννννννννννννννννννννν������ν����ννννννν 47 H1 2005 NLA000501842

(Continued)
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spoligotype pattern, were classified as LAM as suggested by MIRU-VNTRPlus, a classification
independently confirmed by Mokrousov [81]. The same rule led us to label “T2_Uganda” a
part of the isolates labeled as Uganda by MIRU-VNTRPlus: those that carry the spacer 40-dele-
tion in their spoligotype pattern. We named these consensual sublineages by merging short
versions of the synonym assignations. For instance, isolates labeled New-1 according to MIR-
U-VNTRPlus were found mostly H4-Ural2 according to SITVITWEB, and were thus named
L4_Ural2(New1) in the proposed “expert” taxonomy (Table 1). LAM3_S SITVITWEB subline-
age could not find any clear correspondence in the other taxonomies; we therefore propose to
temporarily abandon this sublineage and simply label the corresponding isolates “L4” as they
clearly belong to the Euro-American lineage also known as lineage 4. We similarly propose to
temporarily abandon MIRU-VNTRPlus Ghana sublineage. Our interpretation of such absence
of correspondence for some sublineages with other taxonomies is that they represent an insuf-
ficient number of isolates to be relevant in a worldwide classification. Similarly, these subli-
neages are not described in the SNP-inspired taxonomy of Coll et al. [62,63].

We measured the concordance of every existing taxonomies with the newly proposed
“expert” one on all isolates of our database. This consensual “expert” taxonomy reached almost
perfect concordance with that of TB-lineage as retrieved using 24VNTR and spoligotype data
(99.7%; discordant points n = 9; Fig 2). Although priority in naming was given to MIR-
U-VNTRPlus taxonomy during consensus building (see Methods), the “expert” taxonomy
reached a very good concordance with the SITVITWEB taxonomy refined using expert knowl-
edge (85% of concordant precise assignations; n = 2,464; Fig 2).

Rapid machine learning algorithms to achieve fine and specific
classification using spoligotyping and/or MIRU-VNTR data
Applying different classification tools on the same dataset helps understanding the real diver-
sity in a sample, but this procedure is very time-consuming. We took advantage of our large
amount of data and on machine learning to set-up a fast webtool combining all existing taxon-
omies including the newly proposed consensual “expert” one. We aimed at providing a classi-
fier using spoligotype pattern, 24-VNTR profile and/or 15-MIRU profile. The 15-MIRU panel
is a subset of the 24-VNTR loci with high discriminatory power. It has been validated alone or
rather in combination with spoligotyping as an alternative to the 24-VNTR typing scheme for
epidemiological studies [49].

We used spoligotype data to predict spoligotype-inspired taxonomies (SITVITWEB, Borile
et al., and TB-lineage) and we used VNTR data to predict the 24-VNTR-inspired taxonomy of
MIRU-VNTRPlus. For expert taxonomy, we chose to predict it using VNTR data as it was the
first criterion inspected to set it up. Second, we reasoned that, when handling new isolates, we
should check if the assignations provided by the learnt classifier obtained with Weka using the

Table 2. (Continued)

24-VNTR
Cluster ID

n Different spoligotype patterns within the same
24-VNTR cluster

SIT Sublineages
(SITVITWEB
classification)

Year of first
isolation

ID of eldest isolates with
corresponding genotype

ννννννννννννννννννν��ννννννννν�ν����ννννννν New H3 2006 NLA000601244

νννννννννννννννννν�ννννννννννν�ν����ννννννν 183 H3 2006 NLA000601580

ν��νννννννννννννννννννννν������ν����ννννννν 1652 H1 2008 NLA000801391

24-VNTR clusters ID numbers were attributed according to their size (n°1 for the largest). Isolates ID are those stated in S1 Table. SIT = Short

International Type.

doi:10.1371/journal.pone.0130912.t002
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standard taxonomies are reproducing concordant associations as listed in the correspondence
table set up in this study (Table 1). If they are concordant, this could comfort the expert assig-
nation provided independently by the learnt classifier obtained with Weka. This examination
of concordance between all original assignations will be thereafter referred to as “consensus
classification”.

For each taxonomy, we trained five basic classifying algorithms (J48, JRip, Naïve Bayes,
PART and Random Forest, see Methods), one algorithm called Vote-5 using the mode of these
5 classifications, and one algorithm called Vote-10 using the mode of these 5 classifications and
their 5 meta-bagging counterparts (see Methods). The training dataset included all the 2,904
isolates described above. Accuracies of the different algorithms were stable when assessed with
different levels of stratified cross-validation (S4 Table) and were impacted both by the number
of lineages in the taxonomy to be inferred and by the input genotypic data (Table 3): TB-line-
age with only 7 lineages was the most easy to predict, with 99.8% accuracy using the Vote-10
classifier. Spoligotype-related predictions reached higher accuracies potentially due to the sim-
plest nature of this locus (complexity of 243 as compared to more than 524 i.e. a difference in
complexity of more than 1,000). 15-MIRU data allowed for higher performances than
24-VNTR data when using the finest algorithms such as Vote-10, showing that phylogenetic
information can be identified even among the most variable MIRU-VNTR loci.

Fig 2. Concordance of existing classifications with the consensus classification proposed in this
study.

doi:10.1371/journal.pone.0130912.g002
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On all types of genotypic data, the finest algorithm Vote-10 outperformed all basic classifi-
ers and was therefore chosen for on-line implementation.

Lineage Prediction available on-line on TBminer website
A Lineage prediction tool on the website TBminer was set up to make the Vote-10 classifier
available to all users. Underlying rules and trees were derived using the complete training data-
set. The web interface allows to upload any genotypic data including CRISPR spacer data (1 to
43 standard spacer set), and 24 standard MIRU-VNTR numbers of repeats. When including at
least 43-spacers spoligotype data or 15-MIRU, TBminer Lineage Prediction webtool provides
an output file with 7 new columns, one column for each of the 7 predictions mentioned in
Table 3 (Pred1 to Pred5bis), as well as 2 consensus columns clarifying whether the predictions
using spoligotype data and MIRU-VNTR data are concordant (Pred6 and Pred6bis; Fig 3).

Precise performances of Lineage Prediction tool on the training set
For TB-lineage taxonomy, sensitivity and specificity of Pred1 reached 100% for all sublineages
(data not shown). For MIRU-VNTRPlus taxonomy (Pred2 and 2bis), median sensitivity of
sublineage prediction was 98.4% and 98.1% when performed on 24VNTR and 15MIRU respec-
tively. Both predictions had very high sensitivity for all sublineages, the minimum correspond-
ing in both cases to Ghana sublineage (90% and 85% respectively). The median specificities
were 99.6% and 98.7% respectively with minima for UgandaII sublineage (93% and 90%
respectively, data not shown).

For SITVITWEB-expert taxonomy that includes 50 sublineages, Pred4 predicted most sub-
lineages with a sensitivity of 100% (n = 44) and the minimum sensitivity was 94.1% for
T4_CEU1. Most sublineages also were predicted with a specificity of 100% (n = 42) and the
minimum specificity was 83% for H3-T3 sublineage.

For Borile taxonomy (Pred3), sensitivity was 100% for almost all sublineages (n = 23 out of
27). Among the four sublineages that did not reach 100% sensitivity, 3 belonged to the Euro-
American lineage (LAM3, LAM5-2-1(del3-13) and T3 (del13)). Twenty-five sublineages had a
specificity of 100%, the minimum specificity being 95.1% for EAI3-5 (del2-3-37-38-39).

Table 3. Accuracy of different induction algorithms on the training dataset using 10-fold stratified cross-validation.

Input Predicted Nb Median Induction algorithms accuracies

data classification lineages/ sublineages lineage size J48 JRip NB PART RF Vote-5 Vote-10*

spoligo TB-Lineage (Pred1) 7 213 99.5 99.7 98.5 99.6 99.7 99.8 99.8

Borile (Pred3) 28 51 97.2 97.8 87.8 97.5 97.8 98.3 98.5

SITVITWEB-expert (Pred4) 52 28 96.7 96.6 89.3 96.7 97.6 97.7 97.9

24-VNTR MIRU-VNTRPlus (Pred2) 18 99 88.3 88.2 85.1 89 91.9 91 91.4

Expert-consensus (Pred5) 24 45 86.6 80.9 80.5 87.1 90.2 88.6 88.6

15-VNTR MIRU-VNTRPlus (Pred2bis) 18 99 88.2 86.1 84 88.5 91 91.8 92

Expert-consensus (Pred5bis) 24 45 84.6 78.8 79.4 85.3 88.6 90.3 90.3

NB: Naïve Bayes. RF: Random Forest. Vote-5: Vote including the 5 algorithms shown here (from J48 to RF). Vote-10: Vote including the 5 algorithms and

their meta-bagging derivatives.

*:algorithm used in Lineage Prediction tool on TBminer website. For details on the algorithm, see Material and Methods. Font size underlines

performance.

doi:10.1371/journal.pone.0130912.t003
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For the expert classification assessed using 24 or 15-VNTR (Pred5 and 5bis), median sensi-
tivities were in both cases 97.6% and median specificities 98.9%. The minimum sensitivity cor-
responded to L4_H1-2 sublineage (83 and 78% respectively), and the minimum specificity was
83% for L4_T5 sublineage when using 24 VNTR and 80% for L1_EAI3 when using 15VNTR
data. Altogether, predictions using 15VNTR data were almost as good as those using 24 loci.

Validation of the automatic assignations on independent datasets
We tested the performance of our webtool to predict the assignations (as provided by all exist-
ing taxonomic tools and the newly proposed “expert one”) of the isolates included in the refer-
ence database of MIRU-VNTRPlus. This database includes not only human but also animal
isolates. We first classified all isolates using the standard tools (SITVITWEB adjusted using the
expert eye, MIRU-VNTRPlus, TB-lineage) and inferred their expert assignation as described
above (Table 1). We then ran our webtool to retrieve all assignations predicted by the learnt
classifier obtained with Weka.

We observed that the prediction of MIRU-VNTRPlus assignations (Pred2 tool) had an
accuracy of 100% when assigning human isolates from lineages 1 to 6 (Fig 4A). It failed in pre-
dicting animal sublineages other thanM. bovis as expected due to the absence of such isolates
in the training dataset. Most of them (n = 14 out of 21; 67%) were assigned to the closely related
lineage Lineage6_Afri1(WestAfrican2). Altogether, diversity picture of the whole sample as
provided by Pred2 tool in Lineage Prediction module of TBminer was very similar to that of
MIRU-VNTRPlus tool, overestimating only the prevalence of West African 2 lineage and
being unable to identify peculiar animal isolates as well asM. canettii (Fig 4A).

The performance of the consensus tool (consensus between spoligo and MIRU-VNTR data
as appearing in column 6_Consensus_Pred1_2_3_4) was characterized by measuring its ability
to reproduce the “expert” assignation. The consensus tool proved able to identify more precise
labels than the expert taxonomy for most Lineage_1 isolates and a significant proportion from
Lineage_0 (Bovis-BCG) and Lineage_4 (such as H1 as compared to H3) (Fig 4B). It provided a
less precise assignation for less than 20% of the Lineage 4 (possibly due to a lower rate of false
positive) and was unable to recognize both animal isolates other thanM. bovis andM. canettii

Fig 3. TBminer Lineage Prediction tool: the output file.

doi:10.1371/journal.pone.0130912.g003
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isolates. Altogether, this tool provides precise assignations for typical human isolates and is
able to detect when no known/implemented lineage corresponds to the uploaded genotype.

We performed the same approach on a representative dataset of Pakistanis clinical isolates
for which complete genotypes (at most one VNTR lacking) were available (n = 225). This data-
set is interesting because it uncovers human isolates of an origin very different from that of the
dataset used to set up TBminer Lineage Prediction webtool. Our rationale was that, if good per-
formances could be observed with this dataset, this would mean that TBminer Lineage Predic-
tion tool is robust to the geographical origin of the isolates. For SITVITWEB taxonomy, Pred4
reached an accuracy of 99.5% (1 error out of 190 isolates, mispredicting a T2 assignation for a
LAM3 genotype). For isolates with no prototypic assignation, examination of the profiles
found the predicted assignation to be plausible for 83% of the isolates (n = 29 out of 35), so that
altogether, 28 isolates (12.4%) reached a better assignation using TBminer than using SITVIT-
WEB. For MIRU-VNTRPlus taxonomy, Lineage prediction tool Pred2 provided a concordance
of 94.1% with the reference assignation using 24-VNTR genotypes, and reached 99.4% concor-
dance for the most prevalent lineage (Delhi/CAS). Concordance was low for isolates exhibiting
spoligotype patterns apparently discordant with their MIRU-VNTR profiles: for instance, iso-
lates classified as Cameroon by MIRU-VNTRPlus lacked the deletion of spacers 23 to 25 in
their spoligotype pattern, the deletion that originally characterizes this sublineage [82,83]. This
suggests that no appropriate label exists in the current system for the corresponding isolates. In
this case, the consensus proposed by TBminer, “Lineage4”, may be more accurate than the ten-
tative discordant assignations proposed by the existing taxonomies. The Consensus tool
(6_Consensus) exhibited a perfect concordance with the expert assignation for 92% of the iso-
lates, 6% of which being proposed a finer assignation by the automatized tool only (Fig 5).
Potential errors of this consensus tool were very rare and limited to sublineage inside Lineage 4
(1.3%). For 6.7% of the isolates, no output could be provided by this tool: no consensus was
identified between MIRU-VNTR-based and spoligotype pattern-based classifications. These
isolates need further studies, either using SNP or using expert knowledge of the genetic diver-
sity in the region. For instance, we identified isolates carrying a Beijing spoligotype but a
VNTR profile characteristic of CAS isolates. As recent studies have identified Pseudo-Beijing
isolates in the Middle East region, these specific isolates might well represent new cases of this

Fig 4. TBminer Prediction tool performance on Miru-VntrPlus database. A. Concordance between
TBminer Pred2_Miru-Vntr and Miru-VntrPlus assignations. B. Concordance between Pred6 and manual
expert assignation accounting for original labels.

doi:10.1371/journal.pone.0130912.g004
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sublineage identified as a bona-fide Lineage3-CAS [84]. Interestingly, the consensus based on
15-MIRU and spoligotype (6bis) performed almost as well as that using 24-VNTR (91.6%
instead of 92% concordance), with the only discordance reported for 24-VNTR being moved
to the unassigned group (No consensus) (data not shown).

We proceeded to a third validation test using the SNP-classification provided by Abadia
et al. [56]. In that study, several SIT were shown to be associated to phylogenetic SNPs classify-
ing them differently than SITVITWEB. For instance, SIT316 previously labeled as Haarlem 1
because of lacking spacers 26–31 (but also lacking spacer 25 and spacer 40) was found to be
related to the T2 sublineage (absence of themgtC SNP characteristic for Haarlem sublineage
and presence of the recR specific to T2). Similarly, SIT254, originally classified as T5-RUS1 was
renamed LAM because of carrying the ligBmutation. This SIT harbors the very specific signa-
ture of LAM (21–24 spacers deletion) but it was not recognized as such until 2014 because of
other missing spacers [56,81]. Here, we compared the SITVITWEB assignations, the expert
assignation taking into account new knowledge such as the belonging of former T5_RUS1
group to LAM sublineage [81], the SNP naming, and the Consensus assignation provided by
Lineage Prediction (6 and 6bis) for isolates having a discordant naming according to SITVIT-
WEB and SNP taxonomies as found in [56]. We also included 6 isolates harbouring SIT742 as
they are likely highly related to SIT316, and therefore likely belonging to the same SNP lineage.
Out of 21 isolates, 12 had a match between the SNP naming and the Lineage Prediction (6)
naming (57%, see Table 4). Two isolates only (10%), annotated as Haarlem 3 under SITVIT-
WEB taxonomy and classified as H by our algorithm were classified as X by SNP classification,
the other being linked to an imprecise but not spurious assignation (Table 4).

Discussion
We characterizedM. tuberculosis complex diversity in the Netherlands using the 3 most
widely-used genotyping techniques, 24-MIRU-VNTR and spoligotyping and IS6110-RFLP on
a set of clinical isolates collected over 5 years (2004–2008). To analyze this diversity we set up
an automatic Cluster analysis tool available on a new website dedicated to molecular epidemi-
ology and classification for human tuberculosis, called TBminer. Combined with a few addi-
tional genotypes from Lineages 5 and 6 (M. africanum lineages), the resulting database allowed
us to identify correspondences between the existing taxonomies based on spoligotype or MIR-
U-VNTR data, leading to the setting up of a consensual “expert” taxonomy. We then set up a

Fig 5. TBminer Prediction tool performance on a Pakistanis sample.Consensus Lineage Prediction tool
of TBminer was compared to the Expert assignation on an independent dataset from Pakistan.

doi:10.1371/journal.pone.0130912.g005
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tool based on machine learning for identifying the alternative assignations of new isolates
according to these different taxonomies. This tool is available as “Lineage Prediction” on the
TBminer website.

M. tuberculosis complex diversity in the Netherlands
Our study confirmed the large prevalence of the Euro-American lineage in the Netherlands as
observed in Western countries and Africa, and especially so called “T” isolates [25]. Beijing
prevalence proved stable as compared to the 1993–2000 period, accounting for 6.6% of the TB
cases as compared to between 5 and 8% depending on the year between 1995 and 2000 [85].
Although tuberculosis prevalence steadily decreases among inlanders and increases among
immigrants i.e.M. tuberculosis strains are more and more collected from non-Western Euro-
pean citizens [86], this features had no significant consequence on lineage prevalence by now.
Recent transmission rate differed if evaluated on a one-year period or over a five year period.
This reminds that the concept of recent transmission should be used cautiously because current
inland transmission may reveal only few years after having occurred [77]. Alternatively, this
observation might be due to active transmission in the original country of immigrants.

Consensus taxonomy forM. tuberculosis complex
Subclassification ofM. tuberculosis complex has developed thanks to the use of high-mutation
rate markers: IS6110-RFLP, CRISPR, MIRU-VNTR. The monophyly of groups defined using
spoligotype patterns (CRISPR diversity) or multiple MIRU-VNTR genotyping was questioned
due to the possibility of convergence in these loci. Some sublineages such as LAM were in fact
wrongly delimited as evidenced by discordant genotypes using the alternative genotyping
method: LAM10_CAM isolates grouped with other LAM according to spoligotyping carry
MIRU-VNTR patterns largely discordant with other LAMs, and T5_RUS1 isolates clearly dis-
tinguished from LAM according to spoligotyping carried in contrasts patterns that indicated a
clear relatedness with LAM [81]. The redefinitions of groups were confirmed by the use of
SNPs [62,63]. SNP subclassification tends thus to become the new standard. As its cost when
using complete SNP panels is still high, a combination of a global panel and a restricted panel
using geographically-specific SNPs could become future practice for correct and precise taxo-
nomical assignation of any local TB clinical isolate.

Table 4. Concordance between SNP classification and the newly proposed and automatized consensus tool on a set of isolates with conflicting
assignations in existing taxonomies.

Lineage or Sublineage Concor-dance

SIT Spoligotype pattern classical
(SITVIT-WEB)

SNP
(Abadia
et al.)

TBminer Consensus
Lineage Prediction

between SNP and
Consensus Lineage
Pred

N

254 νννννννννννννν����������νννννννν����ννννννν T5_RUS1 LAM Lineage4_LAM +++ 9

316 νννννννννννννννννννννννν�������ν����ννν�ννν H3 T2 Lineage4_New1 (Ural2)ν +/- 2

316 νννννννννννννννννννννννν�������ν����ννν�ννν H3 T2 Lineage4-T2ν_Hν + 4

1531 ννννννννννννννννν�νννννννννννννν�������νννν U X Lineage4_X +++ 3

134 νννννννννννννννννννννννννννννν�ν����νν��ννν H3 X Lineage4_H3 - 2

78 νννννννννννννννννννννννννννννννν����ννν��νν T1-T2 Tur Lineage4 +/- 1

1274 ννννννννννννννννννννννν����������������νννν U H Lineage4_Hν + 1

The only available genotypic data available to perform classification was spoligotype patterns.

doi:10.1371/journal.pone.0130912.t004
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Confronting VNTR markers with assignation based on spoligotype patterns can still pro-
vide helpful information for classifying new isolates. The large database set up in this study
allowed us to build a new classification tool efficient when used on both 15-MIRU-VNTR and
spoligotype patterns. This on-line induction algorithm proved fairly robust. We believe that
until Whole Genome Sequencing decreases to below 40 euros per isolate, the continuous use of
15-MIRU-VNTR typing in combination with spoligotyping is relevant to both infer main epi-
demiological events and get a clear picture of the circulating diversity. As our tool greatly
speeds up the bioinformatical analysis of produced genotyping patterns, it may be of great use
to epidemiologists.

A limitation to our tool is that it was built exclusively on widespread humanM. tuberculosis
lineages, excluding animal sublineages such asM. caprae,M.microtii,M. pinnipedii, as well as
M. canettii and the recently described Lineage7 isolates [16].M. caprae andM.microtii geno-
types fromMIRU-VNTRPlus database were confidently classified as Lineage 0 or Lineage 6 by
our tool. MostM. canettii genotypes (21-VNTR data) as available in Blouin et al. [18] found no
concordant assignation by Pred2, Pred2bis, Pred5 and Pred5bis in our Lineage prediction tool
(n = 60; 75%), 15% were erroneously assigned to L4 Lineage, 4% to EAI_Lineage 1 and 1% to
Animal lineage_Lineage 0 (data not shown). Altogether, we can infer that our Lineage Predic-
tion tool as available on TBminer website is 100% reliable for large lineage assignation based
on 15-MIRU and spoligotyping when implemented on human epidemiological datasets in
most regions of the world. The only possible region where our tool may provide little informa-
tion and likely some spurious information could be the Horn of Africa where the diversity devi-
ates from the data we used to implement our tool.

Search for consensus taxonomies among Bacteria using Machine
Learning
Taxonomies rely on the biological data characterizing the classified organisms. When new
tools are developed to characterize diversity, new taxonomies are usually set up. It is only when
confronting multiple information that a consensus can emerge. Taxonomies built on different
genetic data do not match either due to convergence events or due to horizontal gene transfer.
Dealing with a single taxonomy without trying to search for a consensus limits inferences on
the properties of lineages as some characteristics may have been attributed to a complete sub-
group defined by taxonomy A, but a subpart that classification B could have identified may
really carry the property of interest. Building a consensus is usually a long process. We think
that our approach can speed up definition of consensual taxonomies. We recommend the fol-
lowing steps as developed in this study (Fig 6): 1) set up of a large collection of isolates repre-
sentative of the largest diversity and type them with all available tools; 2) inform every
alternative assignation according to existing taxonomies; 3) identify the concordant assigna-
tions, and propose a name made of all synonyms (but of reasonable length) for the consensual
groups; 4) implement Machine learning algorithms, for instance in Weka, to learn all taxono-
mies independently; 5) Making the tool for consensus assignation available on-line. This last
step of making the consensus available on-line, is in our opinion, very important as it will
clearly help all users to get acquainted with it. By providing not only the consensus assignation
but also the assignations according to existing taxonomies, users can build their trust in the
consensus by checking if the assignation provided for the known taxonomy is relevant to their
expert knowledge.

Given the deluge of genomic data produced using next generation sequencing, our approach
could also be used to check SNPs informativity in a very near future. Indeed, SNPs diversity
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may cover various level of informativity, which remains for the time-being poorly explored at
the statistical level, in particular concerning epistatic mutations significance.

Conclusion
We developed an approach making use of standard typing data for humanM. tuberculosis
isolates to infer a consensual taxonomy concordant with most up-to-date data on Whole
Genome Sequencing diversity. We believe that this tool will not only increase the under-
standing of clinical and epidemiological experts about the tuberculosis worldwide diversity,
but it will also help them build refined knowledge on the genetic diversity circulating in
their country. We hope that the same approach can benefit other human pathogens having
alternative taxonomies according to Serotypes, CRISPRtypes, MLST-types such as Salmo-
nella, Listeria, Brucella, and more broadly to other organisms such as bacterial plant-
pathogens.

Fig 6. Approach for consensus building between conflictive taxonomies.

doi:10.1371/journal.pone.0130912.g006
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