V. Bafna, B. O. Narayanan, and R. Ravi, Nonoverlapping local alignments (weighted independent sets of axis-parallel rectangles), Discrete Applied Mathematics, vol.71, issue.1-3, pp.41-53, 1996.
DOI : 10.1016/S0166-218X(96)00063-7

H. L. Bodlaender, B. M. Jansen, and S. Kratsch, Cross-composition: A new technique for kernelization lower bounds, Proc. 28th STACS Schloss Dagstuhl?Leibniz-Zentrum für Informatik, pp.165-176, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00573603

K. S. Booth and G. S. Lueker, Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms, Journal of Computer and System Sciences, vol.13, issue.3, pp.335-379, 1976.
DOI : 10.1016/S0022-0000(76)80045-1

J. Chuzhoy, R. Ostrovsky, and Y. Rabani, Approximation Algorithms for the Job Interval Selection Problem and Related Scheduling Problems, Mathematics of Operations Research, vol.31, issue.4, pp.730-738, 2006.
DOI : 10.1287/moor.1060.0218

M. R. Fellows, D. Hermelin, F. A. Rosamond, and S. Vialette, On the parameterized complexity of multiple-interval graph problems, Theoretical Computer Science, vol.410, issue.1, pp.53-61, 2009.
DOI : 10.1016/j.tcs.2008.09.065

URL : https://hal.archives-ouvertes.fr/hal-00619739

D. R. Fulkerson and O. A. Gross, Incidence matrices and interval graphs, Pacific Journal of Mathematics, vol.15, issue.3, pp.835-855, 1965.
DOI : 10.2140/pjm.1965.15.835

M. M. Halldórsson and R. K. Karlsson, Strip Graphs: Recognition and Scheduling, Proc. 32nd WG, pp.137-146
DOI : 10.1007/11917496_13

W. Höhn, F. G. König, R. H. Möhring, and M. E. Lübbecke, Integrated Sequencing and Scheduling in Coil Coating, Management Science, vol.57, issue.4, pp.647-666, 2011.
DOI : 10.1287/mnsc.1100.1302

R. Impagliazzo, R. Paturi, and F. Zane, Which problems have strongly exponential complexity?, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280), pp.512-530, 2001.
DOI : 10.1109/SFCS.1998.743516

K. Jansen, Generalizations of assignments of tasks with interval times, 1991.

K. Jansen, Transfer flow graphs, Discrete Mathematics, vol.115, issue.1-3, pp.1-3187, 1993.
DOI : 10.1016/0012-365X(93)90488-F

M. Jiang, On the parameterized complexity of some optimization problems related to multiple-interval graphs, Theoretical Computer Science, vol.411, issue.49, pp.4253-4262, 2009.
DOI : 10.1016/j.tcs.2010.09.001

A. W. Kolen, J. K. Lenstra, C. H. Papadimitriou, and F. C. Spieksma, Interval scheduling: A survey, Naval Research Logistics, vol.130, issue.5, pp.530-543, 2007.
DOI : 10.1002/nav.20231

K. Nakajima and S. L. Hakimi, Complexity results for scheduling tasks with discrete starting times, Journal of Algorithms, vol.3, issue.4, pp.344-361, 1982.
DOI : 10.1016/0196-6774(82)90030-X

N. Sbihi, Algorithme de recherche d'un stable de cardinalite maximum dans un graphe sans etoile, Discrete Mathematics, vol.29, issue.1, pp.53-76, 1980.
DOI : 10.1016/0012-365X(90)90287-R

F. C. Spieksma, On the approximability of an interval scheduling problem, Journal of Scheduling, vol.58, issue.5, pp.215-227, 1999.
DOI : 10.1002/(SICI)1099-1425(199909/10)2:5<215::AID-JOS27>3.0.CO;2-Y