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Abstract

A graph H is an induced minor of a graph G if it can be obtained from an induced
subgraph of G by contracting edges. Otherwise, G is said to be H-induced minor-
free. Robin Thomas showed in [Graphs without K4 and well-quasi-ordering, Journal
of Combinatorial Theory, Series B, 38(3):240 – 247, 1985] that K4-induced minor-
free graphs are well-quasi ordered by induced minors.

We provide a dichotomy theorem for H-induced minor-free graphs and show that
the class of H-induced minor-free graphs is well-quasi-ordered by the induced minor
relation if and only if H is an induced minor of the gem (the path on 4 vertices plus
a dominating vertex) or of the graph obtained by adding a vertex of degree 2 to the
complete graph on 4 vertices.
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Similar dichotomy results were previously given by Guoli Ding in [Subgraphs and
well-quasi-ordering, Journal of Graph Theory, 16(5):489–502, 1992] for subgraphs
and Peter Damaschke in [Induced subgraphs and well-quasi-ordering, Journal of
Graph Theory, 14(4):427–435, 1990] for induced subgraphs.
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1 Introduction

A well-quasi-order (wqo for short) is a quasi-order which contains no infinite
decreasing sequence, nor an infinite collection of pairwise incomparable ele-
ments (called an antichain). One of the most important results in this field
is arguably the theorem by Robertson and Seymour which states that graphs
are well-quasi-ordered by the minor relation [14]. Other natural containment
relations are not so generous; they usually do not wqo all graphs. In the last
decades, much attention has been brought to the following question: given a
partial order (S,�), what subclasses of S are well-quasi-ordered by �? For in-
stance, Fellows et al. proved in [7] that graphs with bounded feedback-vertex-
set are well-quasi-ordered by topological minors. Other papers considering
this question include [1, 3–6,8, 9, 13, 15].

One way to approach this problem is to consider graph classes defined by
excluded substructures. In this direction, Damaschke proved in [4] that a class
of graphs defined by one forbidden induced subgraph H is wqo by the induced
subgraph relation iff H is the path on four vertices. Similarly, a bit later Ding
proved in [5] an analogous result for the subgraph relation. Other authors also
considered this problem (see for instance [2,10,11]). In this paper, we provide
the answer to the same question for the induced minor relation, which we
denote ≤im. Before stating our main result, let us introduce two graphs which
play a major role in this paper: K̂4 is obtained by adding a vertex of degree
two to K4 and the gem by adding a dominating vertex to P4. (cf. Figure 1).
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UMO-2012/07/D/ST6/02432 (Marcin Kamiński and Jean-Florent Raymond), and by
the Warsaw Center of Mathematics and Computer Science (Jean-Florent Raymond
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Fig. 1. The graph K̂4 (on the left) and the gem (on the right).

2 Induced minors and well-quasi-ordering

Our main result is the following.

Theorem 2.1 (Dichotomy Theorem) Let H be a graph. The class of H-
induced minor-free graphs is wqo by ≤im iff H ≤im K̂4 or H ≤im gem.

Our proof naturally has two parts: for different values of H, we need to
show wqo of H-induced minor-free graphs or exhibit an H-induced minor-free
infinite antichain. Due to space limitations, we only present the main ideas of
the proof of the dichotomy theorem.

2.1 Classes that are wqo

The following two theorems describe the structure of graphs with H forbidden
as an induced minor, when H is K̂4 and the gem, respectively.

Theorem 2.2 (Decomposition of K̂4-induced minor-free graphs) Let G
be a 2-connected graph of Exclim(K̂4). Then:

• either G �≤im K4;

• or G is a subdivision of a graph on at most 9 vertices;

• or V(G) has a partition (C,M) such that G[C] is an induced cycle, G[M ]
is a complete multipartite graph and every vertex of C is either adjacent
in G to all vertices of M , or to none of them.

Theorem 2.3 (Decomposition of gem-induced minor-free graph) Let G
be a 2-connected gem-induced minor-free graph. Then G has a subset X ⊆
V(G) of at most six vertices such that every connected component of G \X is
either a cograph, or a path whose internal vertices are of degree two in G.

Using these structural results, we are able to show the wqo of the two
classes with respect to induced minors.



2.2 Classes that are not wqo

For classes not covered by previous subsection, that is for any graph H which
is not an induced minor of one of K̂4 and gem, we need to show that the
H-induced minor-free graphs are not wqo by ≤im. The idea is to consider
an infinite antichain for induced minors, and to show that infinitely many
of its elements are H-induced minor-free. Let G denote the complement of
any graph G. Using the infinite antichain {Cn}n≥6, we are able to prove the
following lemma.

Lemma 2.4 If the class of H-induced minor-free graphs is wqo by ≤im, then
H is disjoint union of paths.

Using Lemma 2.4 and two antichains introduced in [6] and in [12], we
can deduce the following properties of H. (Let cc(G) denote the number of
connected components of a graph G.)

Lemma 2.5 If H-induced minor-free graphs are wqo by ≤im, then (a) H has
at most 4 connected components; (b) the largest connected component of H has
at most 4 vertices; (c) if cc(H) = 3 then |V(H)| ≤ 5; and (d) if cc(H) = 4
then |V(H)| ≤ 4.

Table 1 enumerates all the possible cases for H, where each line corresponds
to a fixed number of vertices and each column to a fixed value of cc(H). A gray
cell means that either that no such graph exists, or that the cell corresponds
to cases where H-induced minor-free graphs are not wqo by ≤im (according
to Lemma 2.5). The complement of any of the twelve remaining graphs can
easily be shown to be induced minor of K̂4 or gem.

|V(H)| \ cc(H) 1 2 3 4 ≥ 5

1 K1 (a)

2 K2 2 ·K1 (a)

3 P3 K2 + K1 3 ·K1 (a)

4 P4 P3 + K1 K2 + 2 ·K1 4 ·K1 (a)

5 (b) P4 + K1 P3 + 2 ·K1 (d) (a)

≥ 6 (b) (b) (c) (d) (a)

Table 1
If H-induced minors-free graphs are wqo by ≤im, then H belongs to this table.



References

[1] Aistis Atminas and Vadim V. Lozin. Labelled induced subgraphs and well-
quasi-ordering. Order, pages 1–16, 2014.

[2] Gregory Cherlin. Forbidden substructures and combinatorial dichotomies: Wqo
and universality. Discrete Mathematics, 311(15):1543–1584, August 2011.

[3] Jean Daligault, Michael Rao, and Stéphan Thomassé. Well-quasi-order of
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