
HAL Id: lirmm-01349698
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01349698

Submitted on 28 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallel experiments with RARE-BLAS
Chemseddine Chohra, Philippe Langlois, David Parello

To cite this version:
Chemseddine Chohra, Philippe Langlois, David Parello. Parallel experiments with RARE-BLAS.
SYNASC: Symbolic and Numeric Algorithms for Scientific Computing, Sep 2016, Timisoara, Romania.
pp.135-138, �10.1109/SYNASC.2016.032�. �lirmm-01349698�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01349698
https://hal.archives-ouvertes.fr


1

Parallel experiments with RARE-BLAS

Chemseddine Chohra, Philippe Langlois and David Parello
Univ. Perpignan Via Domitia,

Digits, Architectures et Logiciels Informatiques,
F-66860, Perpignan.
Univ. Montpellier,

Laboratoire d’Informatique Robotique et de Microélectronique de
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Abstract—Numerical reproducibility failures rise in parallel compu-
tation because of the non-associativity of floating-point summation.
Optimizations on massively parallel systems dynamically modify the
floating-point operation order. Hence, numerical results may change
from one run to another. We propose to ensure reproducibility by
extending as far as possible the IEEE-754 correct rounding property to
larger operation sequences. Our RARE-BLAS (Reproducible, Accurately
Rounded and Efficient BLAS) benefits from recent accurate and efficient
summation algorithms. Solutions for level 1 (asum, dot and nrm2) and
level 2 (gemv) routines are provided. We compare their performance to
the Intel MKL library and to other existing reproducible algorithms.
For both shared and distributed memory parallel systems, we exhibit an
extra-cost of 2× in the worst case scenario, which is satisfying for a wide
range of applications. For Intel Xeon Phi accelerator a larger extra-cost
(4× to 6×) is observed, which is still helpful at least for debugging and
validation.

I. INTRODUCTION AND BACKGROUND

The increasing power of supercomputers leads to a higher amount
of floating-point operations to be performed in parallel. The IEEE-
754 [1] standard requires the addition operation to be correctly
rounded. However because of the errors generated by every addition,
the accumulation of more than two floating-point numbers is non-
associative. The combination of the non-associativity of floating-
point addition and the non-deterministic behavior in parallel programs
yields non-reproducible numerical results.

Numerical reproducibility is important for debugging and validat-
ing programs. Some solutions are available in parallel programming
libraries. Static scheduling and deterministic reduction ensure the
numerical reproducibility of the library OpenMP. Nevertheless, the
number of threads has to be set for all runs [2]. The CNR feature
(Conditional Numerical Reproducibility) has been introduced in Intel
MKL library 11.0 release [2]. By limiting the use of instruction
set extensions this feature ensures numerical reproducibility between
different architectures. Unfortunately, this decreases significantly the
performance especially on recent architectures, and requires the
number of threads to remain the same from run to run to ensure
reproducible results.

First algorithmic solutions are proposed in [3]. Algorithms
ReprodSum and FastReprodSum ensure numerical reproducibil-
ity independently of the operation order. Therefore, numerical results
do not depend on hardware configuration. The performance of these
latter is improved with the algorithm OneReduction [4] by relying
on indexed floating-point numbers [5] and requiring a single reduction
operation to decrease the communication cost. Hence, highly efficient
reproducible parallel sum is provided for large distributed memory
computing systems. However, those solutions do not improve accu-
racy. The computed result even being reproducible is still exposed
to accuracy problems, especially when an ill-conditioned problem is
addressed.

Another way to guarantee reproducibility is to compute accurately
rounded results. Recent works [6], [7], [8] show that an accurately

rounded floating-point summation can be calculated with very little
or even no extra-cost. We have analyzed in [7] different summation
algorithms, and identified those suited for an efficient parallel imple-
mentation on recent hardware. So parallel algorithms for correctly
rounded dot and asum and for a faithfully rounded nrm2 have been
designed [7]. This approach has been extended to the matrix-vector
multiplication from the level 2 BLAS in [9]. First implementation
of level 1 BLAS exhibits interesting performance with 2× extra-cost
in the worst case scenario on shared memory parallel systems [7].
Other implementations for distributed memory computing systems
and accelerators (Intel Xeon Phi) are introduced in [9].

In this paper, we focus on the experimental part of this work
that illustrates the efficiency of our proposed implementation both in
terms of run-time and of accuracy. We exhibit their scalability with
tests on the Occigen supercomputer. Experiments with the Intel Xeon
Phi accelerator illustrate their efficiency and also their portability to
many-core systems. Our correctly rounded dot product scales well
on distributed memory parallel systems. Compared to optimized but
not reproducible implementations, it has no substantial extra-cost
up to about 1600 threads (128 sockets, 12 cores). On Intel Xeon
Phi accelerator the extra-cost increases up to 6× mainly because
our solution benefits less from the high memory bandwidth of this
architecture compared to MKLs implementation. Nevertheless, this
seems reasonable enough (less than 10×) to be useful for validation,
debugging or even for mid-sized applications that could require
accurate and reproducible results.

This document is organized as follows. Section II presents our
algorithms for reproducible and accurate parallel BLAS. Section III
is devoted to implementation and detailed results. Last Section IV
presents some conclusions and future work.

II. PARALLEL RARE BLAS

A. Parallel Algorithms for the Level 1 BLAS

1) Sum of Absolute Values: The condition number of asum is
known to equal 1. This justifies the use of the algorithm SumK [10].
The parallel version of algorithm SumK [11] is used for parallel
asum. Two stages are required. (1) The first one consists in applying
the sequential SumK on local data without performing the final error
compensation. So we end with K floating point numbers per thread.
(2) Afterwards the master thread gathers all these numbers in a single
vector and applies a sequential SumK on it.

The value of K is picked up such that computing asum(p) as
SumK(|p|) is faithfully rounded. Since the condition number equals
1, one appropriate K only depends on the vector size.

2) Dot Product: Our implementation of parallel reproducible dot
and nrm2 is presented in [9]. For parallel dot product, we distinguish
three steps. (1) In the first step vectors are distributed equally to
threads. Each thread make an error-free transformation of its local
dot product. Note that the local result is not rounded, the dot product
is transformed to a sum of non-overlapping floating-point numbers.
The process is done in different ways depending on the vector size
(more details in [9]). (2) Afterwards, local results of transformation
are gathered by master thread. All previous transformations do not
generate any error. (3) Finally the master thread uses iFastSum [12]
to calculate a correctly rounded sum of the gathered data (See
Figure 1 in [9]).

3) Euclidean Norm: The euclidean norm of a vector p is defined
as (

∑
p2i )

1/2. The sum
∑

p2i can be correctly rounded using the
previous dot product. Finally, we apply a square root that returns
a faithfully rounded euclidean norm [13]. This does not compute a
correctly rounded norm-2 but this faithful rounding is reproducible
because it depends on a reproducible dot.
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(a) Parallel platform A
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(b) Parallel platform B

Fig. 1: Extra-cost of correctly rounded dot product (cond=108)
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(a) Single socket
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(b) Multi socket
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(c) Multi socket normalized by ClassicDot

Fig. 2: Performance of the distributed memory parallel implementations (platform C).

B. Parallel Algorithms for the Level 2 BLAS

Matrix-vector multiplication is defined in the BLAS as y = αA ·
x+βy. In the following, we denote yi = αa(i) ·x+βyi, where a(i)

is the ith row of matrix A.
To compute a correctly rounded value of yi we pass through the

following stages: (1) First we transform the dot product a(i) · x
into a sum of non-overlapping floating-point numbers. We use the
same algorithm as for parallel dot product in section II-A2. (2) The
second step evaluates multiplications by the scalars α and β using
TwoProd [14]. Again data are transformed with no error. (3) Finally
we distillate results of the previous steps to get a correctly rounded
result of yi = αa(i) · x+ βyi. The same process should be repeated
for each row of the matrix A.

To perform a parallel matrix-vector multiplication let A be a
n−rows matrix, y be a n−elements vector, and let us be given p
available threads. The matrix A and the vector y are equally split
to threads, and the vector x is shared by all threads. Note that A is
split by rows (Figure 2 in [9]). Therefore, each thread will use the
previous algorithm to compute the correctly rounded value of n/p
elements of y.

This algorithm scales almost perfectly since it does not require any
reduction operation.

III. TEST AND RESULTS

A. Experimental framework

We consider the three frameworks described in Table I. They are
significant of today’s practice of floating-point computing.

A Processor Dual Xeon E5-2650 v2 16 cores (8 per socket), No
hyper-threading. L1/L2 = 32/256 KB per core. L3 =
shared 20 MB per socket.

Bandwidth 59,7 GB/s.
Compiler Intel ICC 16.0.0.
Options -O3 -xHost -fp-model double -fp-model strict -

funroll-all-loops.
Libraries Intel OpenMP 5. Intel MKL 11.3.

B Processor Intel Xeon Phi 7120 accelerator, 60 cores, 4 threads
per core. L1/L2 = 32/512 KB per core.

Bandwidth 352 GB/s.
Compiler Intel ICC 16.0.0.
Options -O3 -mmic -fp-model double -fp-model strict -

funroll-all-loops.
Libraries Intel OpenMP 5. Intel MKL 11.3.

C Processor Xeon E5-2690 v3 (12 cores per socket), No hyper-
threading. L1/L2 = 32/256 KB per core. L3 = shared
30 MB per socket (4212 sockets).

Bandwidth 68 GB/s.
Compiler Intel ICC 15.0.0.
Options -O3 -xHost -fp-model double -fp-model strict -

funroll-all-loops.
Libraries Intel OpenMP 5. Intel MKL 11.2. OpenMPI 1.8.

TABLE I: Experimental frameworks

We test the efficiency of the shared memory parallel implementa-
tion on platform A. Platform B illustrates the many core accelerator
use. The scalability of our approach on large supercomputers is
exhibited on platform C (Occigen supercomputer).
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(b) Parallel platform B

Fig. 3: Extra-cost of correctly rounded matrix-vector multiplication (cond=108)

Data for dot product are generated as in [10]. Data parametrized by
the condition number for the matrix-vector multiplication is generated
relying on the same algorithm for dot product: matrix A and vector
x are such that all dot products of lines a(i) per x verify a condition
number given in [105, 1016].

B. Implementation and Performance Results

We compare the performance results of our implementation to the
highly optimized Intel MKL library, and to implementations based
on algorithm OneReduction used by the library ReproBLAS [15].
We have implemented an OpenMP parallel version of this algorithm
since ReproBLAS only offers one MPI parallel version. We
derive reproducible version of dot and gemv replacing all non-
associative accumulation by the algorithm OneReduction [4].
These versions are for instance denoted OneReductionDot and
OneReductionGemv. The same implementations is provided for
other level 1 BLAS routines.

We do not compare to the CNR feature because it does not guaran-
tee reproducibility between sequential and parallel runs. According
to [2] and our tests, the number of threads must remain the same
from run to run for the results to be reproducible.

Running time is measured in cycles using the RDTSC instruction.
In the parallel case, RDTSC calls have been made out of parallel
region before and after function calls.

Parallel implementations for platform A are based on OpenMP
library. All available 16 cores are used with no hyper-threading.
Implementations for the Intel Xeon Phi accelerator are also based
on OpenMP. Intrinsic functions are used to benefit from the avail-
able instruction set extension AVX-512. A FMA (Fused Multiply
and Add) is also available. Therefore TwoProd is replaced by
2MultFMA [16] which only requires two FMAs to compute the
product and its error, and so improves performance.

In this paper we only focus on gemv and dot. Results for asum
and nrm2 are presented in [7], [9].

1) Dot Product: Results for dot product are shown in Figures 1
and 2. The condition number of all dot products tested on platforms A
and B is 108. In Figure 1a all 3 algorithms OneReductionDot, Rdot
and MKLDot hit the limit imposed by the memory bandwidth.
Therefore, the correctly rounded Rdot do not exhibit any extra-cost
compared to MKLDot.

Figure 1b shows the performance results on the Intel Xeon Phi
accelerator. Since it has much more memory bandwidth than the

platform A, the MKLDot takes this advantage to improve its
scalability. On the other side, our Rdot is not so efficient here because
it has many operations that can not be vectorized (but still occupy
the 512 bit units to perform scalar operations), which decreases
significantly the performance on an accelerator. We measure an extra-
cost of 4× in this case.

Finally for dot product we show the performance on a distributed
memory parallel system (platform C). In this case we have two levels
of parallelism: OpenMP is used for thread level parallelism on a
single socket and OpenMPI library is used for socket communication.
The algorithm scalability is tested on a single data set with input
vectors of length 107 and a condition number of 1032.

Fig. 2a shows the scalability for a single socket configuration. It
is not a surprise that MKLDot does not scale so far since it is
quickly limited by the memory bandwidth. OneReductionDot and
OnlineExactDot scale well up to exhibit no extra-cost compared to
optimized MKLDot. Again such scaling occurs until being limited
by the memory bandwidth.

Performance for the multi socket configuration is presented in
Figure 2b. ClassicDot denotes a socket local MKLDots followed
by a MPI sum reduction. X-axis shows the number of sockets where
all the 12 available cores are used. Y-axis represents the execution
time and this measure is normalized by ClassicDot on Figure 2c.

Algorithms OnlineExactDot and OneReductionDot are al-
most as efficient as ClassicDot. Since all 12 cores are used per
socket all algorithms hit the limit imposed by the memory bandwidth.
For inter socket communication all 3 algorithms rely on a single
communication. Therefore, they exhibit the same performance on
platform C.

2) Matrix-Vector Multiplication: Our Rgemv matrix-vector mul-
tiplication computes a correctly rounded result using iFastSum [12]
for small matrices and HybridSum for large ones, this latter being
slightly more efficient than OnlineExact [17] on both platforms A
and B.

In the shared memory parallel case, our correctly rounded gemv
costs about twice compared to MKLGemv as shown in figure 3a.
As for MKLDot, also MKLGemv hits the limit that is imposed
by memory bandwidth. Therefore, the scalability of MKLGemv is
limited. Rgemv benefits from a better scalability which gives it the
advantage of reducing the extra-cost to 2×, even if it performs much
more floating-point operations.

Intel Xeon Phi results for gemv are presented in Figure 3b. Since
the building blocks for both algorithms MKLGemv and Rgemv are
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Fig. 4: Accuracy results for dot and gemv (IEEE-754 binary64 with round-to-the-nearest).

respectively based on MKLDot and Rdot, we observe the same
behavior already noted for the dot product. MKLGemv benefits
from higher bandwidth and AVX-512 vector capabilities to run even
faster than Rgemv. An extra-cost of 6× is observed here.

C. Accuracy Results

Now we present accuracy results for dot and gemv variants for
the IEEE-754 binary64 arithmetic rounded to the nearest. In both
figures 4a and 4b, we measure the relative error with respect to the
condition number of the problem. The latter ranges from 105 to 1016.
Relative errors are calculated comparing with results from MPFR
library [18]. The two subroutines nrm2 and asum are excluded
from this test because condition number is fixed for both of them.
In almost all cases, solutions based on algorithm OneReduction
besides being reproducible are more accurate than MKL. However,
for ill-conditioned problems both MKL and OneReduction derived
implementation gives worthless results. On the other side the RARE-
BLAS subroutines ensure that results are always correctly rounded
independently from the condition number (one horizontal line of plots
at the computing precision level).

IV. CONCLUSION AND FUTURE WORK

We have introduced algorithms that compute reproducible and
accurately rounded results for BLAS. Level 1 and 2 subroutines
have been addressed. Implementations of these algorithms have been
tested on three platforms significant of the floating-point computing
practice. While existing solutions tackle only the reproducibility
problem, our proposed solution aims at ensuring both reproducibility
and accuracy. We measure interesting performance on CPU based
parallel environments. Extra-cost on CPU when all available cores are
used is at worst twice compared to optimized but non-reproducible
libraries. However performance on Xeon Phi accelerator is lagging
behind: extra-cost is between 4 and 6 times more. Nevertheless,
our algorithms remain efficient enough to be used for validation
or debugging programs, and also for parallel applications that can
sacrifice performance to increase the accuracy and the reproducibility
of their results.

Our plan for future development includes achieving reproducibility
and precision for other BLAS subroutines. We are currently designing
an accurate and reproducible version of triangular solver. Other Level
3 BLAS routines will be addressed even if the performance gap with
optimized libraries will enforce the previously identified restriction
of the application scope.
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