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Abstract. We introduce and describe PerPI, a software tool analyzing
the instruction level parallelism (ILP) of a program. ILP measures the
best potential of a program to run in parallel on an ideal machine – a
machine with infinite resources. PerPI is a programmer-oriented tool the
function of which is to improve the understanding of how the algorithm
and the (micro-) architecture will interact. PerPI fills the gap between the
manual analysis of an abstract algorithm and implementation-dependent
profiling tools. The current version provides reproducible measures of the
average number of instructions per cycle executed on an ideal machine,
histograms of these instructions and associated data-flow graphs for any
x86 binary file. We illustrate how these measures explain the actual per-
formance of core numerical subroutines when measured run times cannot
be correlated with the classical flop count analysis.

Keywords: Run time performance, instruction level parallelism, ideal
processor, BLAS, polynomial evaluation, mixed precision

1 Introduction

1.1 Motivation

We introduce PerPI, a programmer-oriented tool focusing the instruction level
parallelism of numerical algorithms. This tool is motivated by results like those

Measure Eval AccurateEval1 AccurateEval2

Flop count 2n 22n + 5 28n + 4
Flop count ratio (/Eval) 1 ≈ 11 ≈ 14

Measured #cycles ratio (/Eval) 1 2.8 – 3.2 8.7 – 9.7

Table 1. Flop counts and run times are not proportional

presented in Table 1 where two algorithms, AccurateEval1 and AccurateEval2,
are respectively compared to a third one, Eval [3]. The three algorithms evaluate
a polynomial of degree n. Eval is the classical Horner algorithm, AccurateEval1
and AccurateEval2 are two competing evaluations which are both twice more
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accurate. These two algorithms solve the same problem: how can we double the
accuracy of a core numerical subroutine? Such a need appears also, for example,
in numerical linear algebra where an accurate iterative refinement relies on a dot
product performed with twice the current computing precision [2].

Table 1 presents the flop counts and the ratios of flop counts and run times
for the two accurate algorithms over Eval ones. The first two lines are significant
for the algorithm’s complexity, while the last one presents the range of run times
measured on several desktop computers. Such measures are quite familiar when
publishing new core numerical algorithms, e.g., floating-point summation, dot
product, polynomial evaluation — see entries in [8] for instance. Here Accura-
teEval1 appears to run about three times faster than AccurateEval2, whereas
their flop counts are similar. Such a speedup is important for basic numerical
subroutines that are used at any parallelism level. This gap between the classi-
cal manual analysis of the abstract algorithms (flop counts) and the measures
provided by automatic profiling tools (cycle counts, with [6] for instance) has to
be justified.

Of course, merely counting the number of flop within an algorithm does not
fully explain the actual performance of its implementation, which depends on
other factors such as parallelism and memory access. Moreover, measuring actual
run times is hard to reproduce and yields results with a very short life-time since
computing environments evolve fast. This process is very sensitive to numerous
implementation parameters such as architectural and microarchitectural charac-
teristics, OS versions, compilers and options, programming language, etc. Even if
the same data test is used in the same execution environment, measured results
suffer from numerous uncertainties: spoiling events (e.g., OS process scheduling,
interrupts), non-deterministic execution and accuracy of the timings [11].

Measuring the computing time of summation algorithms in a high-level
language on today’s architectures is more of a hazard than scientific
research [8].

We believe that this recent quotation is significant for (a call for) a change of
practice in the numerical algorithm community. Indeed, uncertainty increases as
the computer system complexity does, e.g., multicore or hybrid architectures.
Even in the community of program and compiling optimization, it is not always
easy to trust this experimental process.

If we combine all the published speedups (accelerations) on the well-
known public benchmarks for four decades, why don’t we observe exe-
cution times approaching to zero? [10]

A last difficulty comes from the gap between the algorithm design step and
the profiling one. The algorithmic step benefits from the abstraction of high level
programming languages and, more and more, from the interactivity of integrated
developing frameworks such as Matlab. Run time performance analysis is a later
step process, and it takes place in a technically more complex and change-prone
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environment. The programmer suffers from the lack of performance indicators,
and associated tools, being independent of the targeted computing architecture
that would help at the algorithmic level to choose the most efficient and long-
lasting solutions.

2 Analysis: principles and pen-and-paper example

2.1 Principles

We propose to analyze the instruction level parallelism (ILP) of a program by
simulating its run with a Hennessy-Patterson ideal machine [1]. An ideal ma-
chine has infinite resources: renaming registers, perfect branch predictor, perfect
memory disambiguation. As a result, running a code on an ideal machine is like
having at hand the full trace and picking up from this trace instructions as soon
as their sources are available. In such a way, the run is ordered according to the
only producer/consumer dependencies.

ILP represents the best potential of the instructions of a program that can be
executed simultaneously. Every current processor exploits program’s ILP thanks
to well-known techniques such as pipelining, superscalar execution, out-of-order
execution, dynamic branch prediction or address speculation, etc. The ideal ma-
chine removes all artificial constraints on ILP (registers, memory, control flow),
so it runs the program in such a way that every instruction is scheduled imme-
diately after the execution of the latest producer on which it depends.

The following example illustrates how to quantify this ILP and what kind of
information is useful to understand and improve the potential performance of
an algorithm.

2.2 A first pen-and-paper analysis

The algorithms presented in Table 1 consist of one loop n times iterated. Fig-
ure 1 represents the data-flow graphs of the two accurate algorithms: (a) one
iteration, (b) one iteration depending on its predecessor, and (c) the shape of
the n iterations (or part of it) [3]. In each of the three parts of the figure, two
consecutive horizontal layers represent two consecutive execution cycles within
the ideal machine. To be performed manually, the data dependency analysis
has been restricted to the floating-point operations, i.e., to the algorithmic level
description.

Measure Eval AccurateEval1 AccurateEval2

FP ILP 1 ≈ 11 ≈ 1.65

Table 2. Floating-point ILP as in Table 1

From these graphs, we count the number of floating-point operations and
the number of cycles to run them, i.e., the total number of nodes and the depth
of the (c) graph. The ratio of these values measures the (floating-point) ILP,
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Fig. 1. Data-flow graphs of the main loop in AccurateEval1 (left) and AccurateEval2
(right). (a) one iteration, (b) its dependencies and (c) n iterations (part of it for the
right one)

i.e., the average width of the full loop data-flow graph. These values are re-
ported in Table 2. AccurateEval1 benefits from about 6.66 times more ILP than
AccurateEval2. This certainly justifies that AccurateEval1 runs faster than Ac-
curateEval2 on modern processors that are designed for exploiting this ILP. Of
course no quantitative correlation with the measured cycles ratios can be done:
current processors have limited resources compared to the ideal machine, and
this pen-and-paper analysis only considers floating-point operations. In the next
Section we present the PerPI tool which builds the full data dependency graph,
including all the instructions in the trace, being floating point computations or
integer control. Nevertheless, comparing this floating point ILP (Table 2) and
the floating point count ratios (Table 1) of this manual analysis, we deduce that
the accurate evaluation AccurateEval1 will run as fast as Eval on a processor
that will exploit the whole ILP of this algorithm.

The graph analysis also exhibits the origin of such ILP differences. The two
algorithms use almost the same groups of operations, but AccurateEval2 suf-
fers from two bottle-necks identified as vertical rectangles on the (a) graph. A
detailed analysis is presented in [3]. In this perspective, this property will be
useful to design other accurate algorithms more inspired by AccurateEval1 than
by AccurateEval2.
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3 The PerPI tool

We now present the PerPI tool that automates this ILP analysis. PerPI currently
includes the following facilities: ILP computation, ILP histogram and data flow
graph displays.

3.1 Computing ILP

The measuring part of PerPI is a Pin tool [7]. Pin [4] is an Intel (R) free pro-
grammable tool. Pin consists of an engine which instruments any code at run
time with user-defined measurement routines. PerPI is a set of routines aiming
at computing the run code ILP. The ILP is computed while the real code is
run. The examining routine gives the control of the examined code for a single
instruction run and recovers control to update its examination statistics. This
back and forth execution is continued until the examined code has been fully
scanned. At each step of the examination, PerPI computes the run cycle of the
examined instruction, increments the number of instructions run so far and pos-
sibly updates the highest run cycle. In such a way, PerPI computes ILP = I/C,
where I is the number of machine instructions run, and C is the number of steps
needed to complete the run. The higher the ILP, the more parallel the piece of
code.

A step is defined as the following sequence of operations: for every runnable
instruction, its source registers are read, its memory read references are loaded,
its operations are computed, its destination registers are written, and eventually
its memory write references are stored.

For example, addl %eax,4(%ebp) reads registers eax and ebp, computes a =
ebp + 4, loads memory referenced by a (assume value v is loaded), computes
r = eax+v, and stores r to memory referenced by a (the addl instruction could
be the translation of a C source code instruction such as x=x+y, where x is in
the function frame on the stack at address a and y is in register eax).

A step is performed in many cycles in a real machine. However in our tool,
a step is considered as atomic to match the ideal machine. As in the example,
ILP is the average number of machine instructions run per step. This definition
of the ILP removes any micro-architectural details such as latency and through-
put. We assume the piece of code is run on the best possible processor, with
infinite resources and single cycle latency operators (including memory access
and conditional and indirect branch resolution).

An instruction is runnable when all the source registers and all the memory
read references are ready, i.e., have been written by preceding instructions.

The Pin tool computes ILP as follows. For each instruction of the run in turn,
apply the following procedure (i.e., the procedure is applied to the full trace, in
order).
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1. For each source register, get the step at which it is updated
2. For each memory read reference, get the step at which it is updated
3. Let R be the latest of all the source register update steps
4. Let M be the latest of all the memory read reference update steps
5. The instruction is run at step c = max(R,M) + 1
6. For each destination register, mark it as being updated at step c
7. For each memory write reference, mark it as being updated at step c

While we compute the steps c, we adjust the step that has been last computed,
giving the number of cycles of the run C = max(c).

For reproducibility, the system calls involved in the measured piece of code
are not considered.

Table 3 illustrates how this algorithm computes the ILP of the expression
(a+b)+(c+d). The first instruction (eax=a, line 2) has its source ebp available
at cycle 0 (line 1, column 7). It is run and it updates its destination register eax,
making it available for later instructions at cycle 1 (line 2, column 3). Column 8
is the instruction number (I). Column 9 is its run cycle (c) and column 10 is the
greatest run cycle (C). The last instruction (edx+=ebx) reads its sources ebx
and edx at cycle 2 (look at the preceding line) and so is run and updates edx at
cycle 3 (last line, column 6). There are 6 instructions (I = 6, last line column
8) run in 3 cycles (C = 3, last line column 10) on an ideal machine, which gives
an ILP of 6/3 = 2. The ideal machine runs this fragment of code at an average
rate of two instructions per cycle.

Availability as source register
Instruction Semantic eax ebx ecx edx ebp I c C

0 0 0 0 0 0 0 0
mov eax,DWP[ebp-16] eax=a 1 0 0 0 0 1 1 1
mov edx,DWP[ebp-20] edx=b 1 0 0 1 0 2 1 1
add edx,eax edx+=eax 1 0 0 2 0 3 2 2
mov ebx,DWP[ebp-8] ebx=c 1 1 0 2 0 4 1 2
add ebx,DWP[ebp-12] ebx+=d 1 2 0 2 0 5 2 2
add edx,ebx edx+=ebx 1 2 0 3 0 6 3 3

Table 3. ILP computation yields ILP = I/C = 2, when evaluating (a + b) + (c + d).

3.2 Analyzing facilities

The analysis part of the tool consists in histogram and graph displaying func-
tions. These functions allow the user to zoom in and out of the trace. As in the
example, the graph represents the instruction dependencies where an instruction
j depends on an instruction i iff j has a source provided by i (j reads a register
or a memory word x written by i and no instruction between i and j writes to
x). The histogram represents the variation of the ILP along the steps.

The histogram tool is useful to locate the good (high ILP) and bad (low ILP)
portions of the code run. The graph tool is useful to analyze why a code has a
high or low ILP as illustrated in Section 4.
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3.3 How to interpret the measured ILP?

ILP is defined as the number of machine instructions run divided by the number
of ideal machine cycles needed to run them all on the ideal machine.

This definition shows that ILP is architecture-dependent. The number of
instructions depends both on the machine language employed and the compiler.

For example, it is easy to exhibit examples where a RISC-like (e.g., PowerPC,
ARM, MIPS, SPARC) translation of a high-level code sequence shows a higher
ILP than its CISC-like (e.g., x86) equivalent. Table 4 illustrates this for the
C code instruction a += b;. The c column depicts the cycle during which the
instruction is run (starting from cycle 1).

c RISC CISC
Instruction Semantic Instruct. Semantic

1 load a,ra load memory a into register ra mov b,rb load mem. b into reg. rb
1 load b,rb load memory b into register rb
2 add ra,rb,ra ra:=ra+rb add rb,a add reg. rb to mem. a
3 store ra,a store register ra into memory a

Table 4. ILP of a+=b; equals 4/3 for the RISC translation and 1 for the CISC one.

In this example, we have ILP(RISC) > ILP(CISC). This comes from the
load/store model inherent to the RISC-like machine languages in which an in-
struction is either a memory access (load or store) or a computation involving
registers only. In a CISC-like machine language, an instruction may involve both
a memory access and a computation. This difference results in a RISC trans-
lation having more instructions than its CISC equivalent, leading to a possibly
higher ILP (if more instructions are run in the same number of cycles).

However, we may notice that #cycles(CISC) < #cycles(RISC), meaning that
the CISC code can be run faster than the RISC one. We may also notice that
#instructions(CISC) < #instructions(RISC), meaning that the CISC code needs
less resources than the RISC one.

Another difference between RISC and CISC leads to the opposite ILP rank-
ing. Any x86 machine language computing instruction has an accumulating des-
tination whereas in any RISC machine language, the destination may be distinct
from the sources. As a consequence, a succession of computations may be trans-
lated in less instructions in a RISC language than in a CISC language.

A second example illustrating the preceding remark is given with the trans-
lation of x = |a − b| from the C code sequence x=(a-b>=0)?(a-b):(b-a);.
Corresponding RISC and CISC language translations are presented in Table 5.
In this second example, we have ILP(RISC) < ILP(CISC). We also have #cy-
cles(RISC) < #cycles(CISC) and #instructions(RISC) < #instructions(CISC).

These two examples show that ILP should not be taken as the ultimate code
quality factor. ILP is dependent on the architecture style (RISC vs CISC, 2-
operands vs 3-operands instructions). A high ILP is not synonymous with a fast
run but rather with a run which can fill the processor parallel units.
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c RISC CISC
Instruction Semantic Instruct. Semantic

1 load a,ra load mem. a into reg. ra mov a,ra load mem. a into reg. ra
1 load b,rb load mem. b into reg. rb mov b,rb load mem. b into reg. rb
2 sub ra,rb,rx rx:=ra-rb mov rb,rc rc:=rb
2 sub ra,rb rb:=ra-rb
3 csub (rx<0),

0,rx,rx

rx:=(rx<0)?(0-rx):rx sub rc,ra ra:=rc-ra

4 store rx,x store reg. rx into mem. x cmovge ra,rb rb:=(b-a≥0)?ra:rb
5 mov rb,x x:=rb

Table 5. ILP of x = |a− b| equals 1.25 for RISC and 1.4 for CISC.

4 Examples of results

We present PerPI results for some accurate summation algorithms introduced in
[5, 9, 8] and the previous polynomial evaluation algorithms. Sum2 and SumXBLAS
are in that sense similar to AccurateEval1 and AccurateEval2. These algorithms
are implemented as C functions and are called in a main part. From a practical
point of view, binary files are submitted to PerPI through a graphical interface,
and then some menu items generate the following outputs.

We first illustrate the ILP measure with Figure 2. Every called subroutine is
analyzed, i.e., PerPI returns the number of machine instructions I, the number
of steps C, and the corresponding ILP. One run is enough since these values are
reproducible.

Sum ::I[511] ::C[105]::ILP[4.86]

Sum2 ::I[1617]::C[214]::ILP[7.55]

SumXBLAS ::I[2097]::C[898]::ILP[2.33]

Fig. 2. ILP measure for the three summation algorithms from [5] (100 summands)
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Fig. 3. ILP histograms for Sum2 and SumXBLAS and 100 summands
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Corresponding histograms are presented in Figure 3 and can be zoomed in as
in Figure 4. This latter exhibits the color significance. In this case the red bars
correspond to floating point operations, while purple ones are data transfers.
These histograms exhibit the regularity of the ILP of the two algorithms and
the better efficiency of Sum2.
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Fig. 4. Zoom of Figure 3 (SumXBLAS) with corresponding instruction type

The shape of the histograms starts with a high ILP part which comes from
the control flow instructions. They usually are independent of the data flow
computation (they control it) and so can all of them start simultaneously on the
ideal machine. Branch, increment and compare (loop control) instructions are
located only in this initial part of the histogram. This part serves also as a data
flow ILP increasing period as the precomputed control flow instructions launch
the data flow instructions which depend on them. After this, we find a data flow
plateau (more uniformly colored) and an ILP decreasing end part.

The last outputs are the data-flow graphs presented in Figure 5. This output
automates the pen-and-paper results of Figure 1; cycles are on the Y-axis. After
zooming into interesting parts of this graph, corresponding program instructions
are displayed in such a way that the programmer can analyze the code.

In Figure 6 we display a zoom into the innermost loop for two other accu-
rate summation algorithms introduced in [9, 8], resp. AccSum and FastAccSum.
The count of the floating-point operations suggests that FastAccSum should run
about 30% faster than AccSum. Performance counter timing of some implemen-
tation confirms this speed-up – as in [8] we measure it for instance using gcc -O3
on an Intel Core 2. Nevertheless PerPI yields measures and data flow graphs that
exhibit a higher degree of parallelism in one of the innermost loops of AccSum.
This parallelism was not automatically detected by the previously mentioned
implementation (as the assembly code reveals). A classical way to transform
ILP into data parallelism is vectorization, here using SSE instructions. Such an
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Fig. 5. Sum2 and SumXBLAS data flow graphs for 100 summands (Y-axis: cycles,
vertical scales reduce the height of the right one)

improved implementation of AccSum now exhibits an average speed-up of 1.7
compared to FastAccSum1 – while no cache size limitation applies. The AccSum
ILP potential could be caught by vectorization while the lack of ILP in FastAcc-
Sum did not give any advantage compared to a vectorized implementation. This
analysis also tells us that this algorithm may even benefit from larger vector mi-
croarchitectures as the ones present today in GPUs or tomorrow in AVX units
in Intel corei7 2011 releases. It still has some ILP left.

5 Conclusions and current work

The presented performance analysis and its PerPI tool aim to fill the gap be-
tween high level algorithm analysis and machine-dependent profiling tools. We
illustrate on some core numerical algorithms that the first results are interesting
and validate the proposed approach. These results are reproducible and help
the programmer both to justify the measured performances and to improve the
algorithm. As PerPI is based on Pin, it handles x86 machine code only. We
have commented on how the machine language has an impact on the ILP mea-
sure. The presented version of PerPI will be publicly available soon. Work is
in progress to extend the analysis facilities implemented in PerPI, as for exam-
ple identifying longest dependency instruction chains or introducing constraints
within the ideal machine.
1 A speed-up of 1.3 has also been identified later with the newest version of the icc

compiler without having to modify the source code. This again illustrates how the
measured run times are dependent of the compiler and its versions.
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Fig. 6. Zoom into the dataflow graph of corresponding instructions in an innermost
loop for two accurate summation algorithms from [9, 8] (Y-axis: cycles). AccSum (left)
exhibits more ILP than FastAccSum (right). The added ILP can be exploited thanks
to vector units (SSE). The left zoom is actually only partially displayed (it is to be
continued on each side with the same 4-steps shape), while the right zoom displays the
full (but more limited) width of the loop for FastAccSum.
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