
HAL Id: lirmm-01354971
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01354971v1

Submitted on 21 Aug 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FCA for Software Product Lines Representation:
Mixing Configuration and Feature Relationships in a

Unique Canonical Representation
Jessie Carbonnel, Karell Bertet, Marianne Huchard, Clémentine Nebut

To cite this version:
Jessie Carbonnel, Karell Bertet, Marianne Huchard, Clémentine Nebut. FCA for Software Product
Lines Representation: Mixing Configuration and Feature Relationships in a Unique Canonical Rep-
resentation. CLA: Concept Lattices and their Applications, HSE, Moscow Russia, Jul 2016, Moscow,
Russia. pp.109-122. �lirmm-01354971�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01354971v1
https://hal.archives-ouvertes.fr

FCA for Software Product Lines Representation:
Mixing Configuration and Feature Relationships

in a Unique Canonical Representation

Jessie Carbonnel1, Karell Bertet2, Marianne Huchard1 and Clémentine Nebut1

1 LIRMM, CNRS and Université de Montpellier, France
2 L3i, Université de La Rochelle, France

{jcarbonnel,huchard,nebut}@lirmm.fr,bertet@univ-lr.fr

Abstract. Software Product Line Engineering (SPLE) is a software en-
gineering domain in which families of similar softwares (called products)
are built reusing common artifacts. This requires to analyze common-
alities and variabilities, for example to detect which parts are common
to several products and which parts differ from one product to another.
Such software characteristics that may be present or not in a product
are called features. Several approaches in the literature exist to organize
features and product configurations in terms of features. In this paper
we review those approaches and show that concept lattices are a relevant
structure to organize features and product configurations. We also ad-
dress scaling issues related to formal context computation in the domain
of SPLE.

Keywords: Software Product Lines, Feature Model, Formal Concept
Analysis, Concept Lattice

1 Introduction

Software Product Line Engineering (SPLE) focuses on the reuse of common
software pieces to reduce the building and maintenance cost of similar software
systems (called products). An important step of this methodology consists in
analyzing and modeling variability, i.e. mainly extracting "features", a feature
being a discriminating characteristic common to several products or specific to
a product. A product configuration is then a set of these features. Different for-
malisms are used in SPLE to organize features and product configurations. Some
of these formalisms focus on features, while others represent product configura-
tions. Some are canonical, while others are not, and depend on the designer point
of view.

In this paper, we review the main used formalisms and we show that concept
lattices might be a relevant (canonical) structure for representing variability,
while highlighting information on relationships between product configurations,
and between product configurations and features, that other formalisms hardly
represent. Besides explaining what is the contribution of concept lattices to vari-
ability representation, we propose a solution to address some scaling issues of

concept lattices in this domain. Actually, scaling issues can occur at two levels
when computing: (1) the formal context, and (2) the concept lattice. Here, we
focus on scaling issues related to formal context computation; we investigate im-
plicative systems on attributes as closure operators to build a feature closed sets
lattice without building the formal context. We show that implicative systems
are another representation of the variability that can be useful for designers.

The remaining of the paper is organized as follows. Section 2 presents the
various formalisms found in the literature to capture the variability of a software
product line. Section 3 shows that concept lattices are an interesting formalism
to analyse variability, and presents related work concerning the use of formal con-
cept analysis for product lines. Section 4 explains how using implicative systems
allows to face scaling issues related to formal context computation for variability
management.

2 Existing Formalisms for variability representation

To capture and describe the variability of a software product line, almost all ap-
proaches in the literature use feature-oriented representations [11, 12, 20]. Fea-
tures describe and discriminate the products. As an example, features for an
e-commerce website may include displaying a catalog, proposing to fill a basket
of products, or offering a payment_method. In our context, we consider a feature
set F . A product configuration (or simply a configuration) is a subset of F .

Feature models (FMs) are graphical representations that include a decorated
feature tree and a set of textual cross-tree constraints which complements in-
formation given in the tree. The vertices of the tree are the features (from F),
while the edges (in F × F) correspond to refinement or sub-feature (part of)
relationships in the domain. Edges can be decorated by a symbol meaning that
if the parent feature is selected, the child feature can be selected or not (op-
tional). Another symbol indicates that if the parent feature is selected, the child
feature is necessarily selected (mandatory). Groups of edges rooted in a feature
represent: xor-groups (if the parent feature is selected, exactly one feature has
to be selected in the group), and or-groups (if the parent feature is selected, at
least one feature has to be selected in the group). Fig. 1 shows a simple FM for
e-commerce websites.

Such a software necessarily includes a catalog for proposing products, and this
catalog is displayed using a grid or (exclusive) using a list. Optionnally, a basket
functionality is proposed. A payment_method may also be optionally proposed.
Two payment methods are proposed: credit_card or (inclusive) check. A cross-
tree constraint, written below the tree, indicates that if a basket is proposed, a
payment method is also proposed (and reciprocally).

A variability representation conveys ontological information (ontological se-
mantics): the edges of the feature tree and the groups correspond to domain
knowledge, e.g. the group grid, list indicates a semantic refinement of catalog;
the edge (e_commerce, catalog) indicates that catalog is a subpart of the website.

Optional

Xor

Mandatory

Or

Double include
$

e_commerce

catalog payment_method basket

grid list credit_card check

payment_method↔ basket

Fig. 1: (Left) Basic feature model’s relationships and their corresponding edges;
(Right) A basic feature model for an e-commerce website

A variability representation also has a logical semantics: for example an al-
ternative representation of the FM is an equivalent propositional formula with
|F | variables and constraints defined using propositional connectives (∧,∨,→,↔
and ¬) [5, 8]. Automated analysis can then be performed using SAT-solvers, gen-
erally on the Conjunctive or Disjunctive Normal Forms (CNF or DNF). Fig. 2
shows the propositional formula equivalent to the FM of Fig. 1. The down side of
the propositional formula is that ontological semantics is lost, e.g. an implication
in the formula may represent a subpart relationship or a cross-tree constraint.

hierarchy :

xor-groups :
or-groups :
mandatory :
cross-tree :

(Ca→ Ec) ∧ (G→ Ca) ∧ (L→ Ca) ∧
(Pm→ Ec) ∧ (Cc→ Pm)∧(Ch→ Pm) ∧ (B → Ec) ∧
(Ca→ (G⊕ L)) ∧
(Pm→ (Cc ∨ Ch)) ∧
(Ec→ Ca) ∧
(Pm↔ B)

Fig. 2: Propositional formula corresponding to the feature model of Fig. 1

The third semantics is the configuration-semantics that associates to any
variability representation the set of its valid configurations. The set of the 8
valid configurations for the FM of Fig. 1 is given in Table 1. For the sake of
space, it is shown using the Formal Context representation, which is equivalent.

An important property of a formalism is canonicity. Given a set of configu-
rations that are to be represented, and considering a chosen formalism, there are
often different ways of writing a representation of a given set of configurations
following this formalism. For example different feature models can have the same
configuration-semantics. Concision is also an interesting property: a variability
representation can be extensional if it enumerates all the possible configurations,
or intensional if it represents these configurations in a more compact way. For
example, the formal context of Table 1 is an extensional representation of the

Table 1: Set of valid configurations of the FM of Fig. 1
e_com.(Ec) catalog(Ca) grid(G) list(L) pay.met.(Pm) cred.card(Cc) check(Ch) basket(B)

1 x x x
2 x x x
3 x x x x x x
4 x x x x x x
5 x x x x x x x
6 x x x x x x
7 x x x x x x
8 x x x x x x x

FM of Fig. 1, whereas the FM is an intensional representation of variability.

In this section, we study graph-like representations which have been used
in the literature to express software product line variability of a feature model
starting from a propositional formula. For each representation, we give a defini-
tion and discuss its canonicity, concision, configuration semantics and ontological
semantics.

A binary decision tree (BDT) is a tree-like graph used to represent the
truth table of a boolean function equivalent to a propositional formula: it is an
extensional representation. This representation has redundancies which can be
avoided by node sharing, which results in a graph called binary decision di-
agram [8, 6] (BDD): this representation is more concise than the BDT. BDD
usually refers to ROBDD (for reduced ordered binary decision diagram), which
is unique for a given propositional formula. A BDD depicts the same set of
configurations as the original feature model, but the ontological semantics is
lost in the transformation. A propositional formula can also be represented as
an implication hypergraph [8]. As the implication set for a given formula
is not necessarily unique (except if it is a canonical basis), neither is the ob-
tained hypergraph. The hypergraph depicts exactly the same configuration set.
It also keeps a part of the ontological semantics, as feature groups patterns can
be extracted from the hyperedges. Another similar representation is the impli-
cation graph [8], which only depicts binary implications, and thus does not
express feature groups. For a given propositional formula, several implication
graphs can be constructed, but two induced structures are unique: the transitive
closure and the transitive reduction of the graph. Its configuration semantics is
not always the same as the original feature model, because an implication graph
can eventually depict more configurations, as it expresses less constraints than
the original feature model or propositional formula. Finally, a feature graph
[19] is a diagram-like representation which seeks to describe all feature models
which depict a same set of configurations. Because configuration semantics do
not formulate mandatory relationships between features, they are not expressed
in feature graphs either. As for FMs, a feature graph is not necessarily unique
for a given set of configurations, but the transitive reduction and the transi-
tive closure of the feature graph are canonical. All these representations express
variability in a compact way.

Table 2: Properties of the different formalisms
Ontol. sem.

Domain Representation C
an

on
ic
it
y

Sa
m
e
C
on

f.
Se

m
.
as

th
e
F
M

Sa
m
e
L
og

ic
al

Se
m
.
as

th
e
F
M

G
ro
up

s
in
cl
ud

e
vs
.
re
fi
n.

do
ub

le
in
cl
ud

e
vs
.
m
an

d

F
×

F

C
o
n
f
ig
.
×

F

C
o
n
f
ig
.
×

C
o
n
f
ig
.

te
xt
ua

l
re
pr
es
en
ta
ti
on

gr
ap

hi
ca
l
re
pr
es
en
ta
ti
on

ex
te
ns
io
na

l
re
pr
es
en
ta
ti
on

in
te
ns
io
na

l
re
pr
es
en
ta
ti
on

SPLE Set of configurations x x x x x x
SPLE Feature model x x x x x x x x x
SPLE Propositional formula x x x x x
SPLE Binary decision tree x x x x x x
SPLE Binary decision diagram x x x x x x
SPLE Implication hypergraph x x x x x x
SPLE Implication graph (IG) x x x
SPLE IG → Transitive reduction x x x x
SPLE IG → Transitive closure x x x x
SPLE Feature graph (FG) x x x x x x x
SPLE FG → Transitive reduction x x x x x x x x
SPLE FG → Transitive closure x x x x x x x x
FCA Formal Context x x x x x x
FCA Concept lattice x x x x x x x x
FCA Labelled feature closed set lattice x x x x x x x x x

The upper part of Table 2 compares the different formalisms used in SPLE
domain with respect to canonicity and their ability to encompass or highlight the
different semantics. Besides, it shows which kinds of relationships can be read
in the formalism: between features only, between configurations and features, or
between configurations. Then it indicates if this is a textual or a graphical for-
malism, and if this is an intensional or an extensional representation. In SPLE
domain, all representations (except the set of configurations and the BDT) con-
sider an intensional point of view with only feature organization. FM is the
only representation which clearly expresses all ontological information, but it is
not canonical, since many relevant FMs can be built from domain information.
Implication hypergraph and feature graph preserve the notion of groups, but
refinement and mandatory information of features are lost.

To sum up, these formalisms concentrate on feature organization (except the
set of configurations and the BDT), are more or less respectful of initial semantics
of the FM they represent and none of them considers a mixed representation of
features and configurations. In the next section, we show the benefits of having
such a mixed representation and in general, the contributions that a concept
lattice based representation may bring to the SPLE domain as a complement to
the existing representations.

3 Contribution of concept lattices to variability
representation and related work

Formal Concept Analysis [10] provides an alternative framework for variability
representation, based on a configuration list, given in the form of a formal context
(as in Table 1). Formal objects are the configurations, while formal attributes
are the features. Fig. 3 presents the corresponding concept lattice. A concept
groups a maximal set of configurations sharing a maximal set of features. In the
representation, configurations appear in the lower part of the concepts and are
inherited from bottom to top. Features appear in the upper part of the concepts
and are inherited from top to bottom. This representation includes the FM, in
the sense that if there is an edge indicating F2 sub-feature of F1 in the tree,
these features are respectively introduced in two comparable concepts C2 ≤ C1,
furthermore, the cross-tree constraints are verified by the logic formula that
describes the concept lattice.

Concept_EC_15

e_commerce
catalog

Concept_EC_13

grid

1

Concept_EC_0

Concept_EC_1

8

Concept_EC_2

4

Concept_EC_10

list

5

Concept_EC_8

Concept_EC_14

payment_method
basket

Concept_EC_9

Concept_EC_4

6

Concept_EC_12

credit_card

Concept_EC_7

2

Concept_EC_3

7

Concept_EC_5

Concept_EC_11

check

Concept_EC_6

3

Fig. 3: Concept lattice for the formal context of Table 1, built with RCAExplore3

3 http://dolques.free.fr/rcaexplore.php

A concept lattice organizes configurations and features in a single structure,
which has a canonical form (only one concept lattice can be associated with a
formal context). If the configurations in the formal context are the valid config-
urations of a feature model, the configuration semantics of the concept lattice is
the same and the configurations can be read from the lattice. The logical seman-
tics is the same too. However, the ontological semantics is incomplete as in the
structure, we cannot distinguish ontological relationships: for example, when a
feature F2 is in a sub-concept of a concept that introduces another feature F1,
we cannot know whether F2 implies F1 (having a basket implies having a pay-
ment_method) or F2 refines F1 (pay by check is a kind of payment_method).

The concept lattice has many qualities regarding the variability represen-
tation and relationships between configurations, features, as well as between
configurations and features, including highlighting:

– bottom features that are present in all configurations (e.g. catalog, e_comm-
erce)

– mutually exclusive features (in concepts whose supremum is the top)
– feature co-occurrence (introduced in the same concept, e.g. basket and

payment_method)
– feature implication (one is introduced in a sub-concept of another one, e.g.

credit_card implies basket)
– how a configuration is closed to or specializes another one, or a merge of

other configurations. E.g. 8 is a specialization of 5,6,7.
– features that are specific to a configuration, or shared by many.

The concept lattice is also an interesting structure to navigate between these
features and configurations, and is a theoretical support for association rule
extraction, a domain that has not been explored yet in SPLE, as far as we know.

Besides, lattice theory defines irreducible elements, useful for identifying ir-
reducible features and configurations (in a polynomial time), that are used for
defining canonical representations of a context or a rule basis. In lattice theory, an
element is called join-irreducible if it cannot be represented as the supremum of
strictly lower elements. They are easily identifiable in a lattice because they have
only one predecessor in lattice transitive reduction. All join-irreducible elements
are present in the formal context, so they all correspond to valid configurations.

Research work done in the framework of reverse engineering exploits some of
the relevant properties of the concept lattice. Formal Concept Analysis has been
used to organize products, features, scenarios, or to synthesize information on the
product line. In [13], the authors classify the usage of variable features in existing
products of a product line through FCA. The analysis of the concept lattice
reveals information on features that are present in all the products, none of the
products, on groups of features that are always present together, and so on. Such
information can be used to drive modifications on the variability management.
In the same range of idea, the authors of [2] explore concept lattices as a way
to represent variability in products, and revisit existing approaches to handle
variability through making explicit hidden FCA aspects existing in them. The
authors of [7] go a step further in the analysis of the usage of FCA, by studying

Relational Concept Analysis (RCA) as a way to analyze variability in product
lines in which a feature can be a product of another product family.

Different artifacts are classified in [15]: the authors organize scenarios of a
product line by functional requirements, and by quality attributes. They identify
groups of functional requirements that contribute to a quality attribute, detect
interferences between requirements and quality attributes, and analyze the im-
pact of a change in the product line w.r.t functional requirement fulfillment.

Several proposals investigate with FCA the relationships between features
and source code of existing products. References [4, 21] aim at locating features
in source code: existing products described by source code are classified though
FCA, and an analysis of the resulting concepts can detect groups of source code
elements that may be candidates to reveal a feature. In the same idea, traceability
links from source code to features are mined in reference [17]. In reference [9],
the authors mine source code in order to identify pieces of code corresponding to
a feature implementation through an FCA analysis with pieces of source code,
scenarios executing those pieces of source code, and features.

FCA is also used in several approaches to study the feature organization
in feature models. Concept structures (lattices or AOC-poset) are used to de-
tect constraints in feature models, and propose a decomposition of features into
sub-features. The authors of [16] extract implication rules among features, and
covering properties (e.g. sets of features covering all the products). References
[3, 18] produce logical relationships between the features of a FM, as well as
cross-tree constraints.

Concept lattice could also be a tool in the framework of forward engineering,
using a transformation chain starting from a FM, building with the existing
tools, as FAMILIAR [1], the configuration set (which is equivalent to having a
formal context), then building the corresponding lattice. But applying in practice
this approach to the FMs repository SPLOT4 [14], we noticed that tools hardly
compute more than 1000 configurations, thus we faced a scaling problem.

4 Addressing scaling issues

4.1 From feature models dependencies to implicative systems

The set of all valid attribute implications of a formal context represent a closure
operator, which produces attribute closed sets corresponding to concept intents
of the context. The associated attribute closed set lattice is thus isomorphic to
the concept lattice of the formal context. It is noteworthy that (1) FMs represent
features interaction by graphically depicting a set of features and dependencies
between them, and that (2) the set of all valid implications also describes depen-
dencies between attributes (i.e. features). Thus, an analogy can be done between
implicative systems and FMs dependencies.

We have previously mentioned a method to build a concept lattice from a FM,
which consists in enumerating all the FM configurations (i.e. all combinations of
4 http://www.splot-research.org/

features w.r.t its dependencies) in a formal context. However, FMs are intensional
representations which can potentially depict a large number of configurations,
making difficult their enumeration and the context computation. In order to
avoid this enumeration, we propose a way to express FMs dependencies as sets
of implications P(F) × F , without building the formal context. We made an
experiment in which we generated several FMs of small size (< 10 features) and
built their equivalent formal contexts, from which we extracted a complete set of
valid implications with the tool Concept Explorer5 [22]. When comparing these
FMs to their corresponding set of implications, we noticed that each type of FM
dependency generates the same kind of implications, as presented in Table 3.

Table 3: FM dependencies and their corresponding implications
Root Hier. Opt. Mand. Or-group Xor-group

de
p
en

de
nc

ie
s

R

A

B

A

B

A

B

A

B C

A

B C D

im
pl
.

∅ → R B → A None A→ B None
BC → ABCD
BD → ABCD
DC → ABCD

The root feature traditionally represents the name of the modeled software
system, and thus is present in all configurations. This peculiarity is translated
by ∅ → root, requiring the presence of root in all closed sets. Hierarchy con-
straints (subpart relationships) require that a child feature can be selected only
if its parent feature is already selected, and thus produce a child → parent
implication. Optional relationships actually express the absence of dependencies
between a feature and its child, and do not generate any implication. Mandatory
relationships imply that a child feature is necessarily selected with its parent and
produce a parent → child implication. Or-groups behave as optional relation-
ships with an obligation to select at least one feature: this kind of constraints
do not produce any implication. Finally, xor-groups require that two of their
features cannot appear together in any configuration: each pair of features thus
implies the set of all features.

We can also determine implications for cross-tree constraints, i.e. include and
exclude constraints. Let F be the set of all features and f1, f2 ∈ F two features.
f1 includes f2 can naturally be translated by f1 → f2, and f1 excludes f2 can
be translated by f1 f2 → F , as in xor-groups.

Table 3 thus permits to translate FM dependencies in implicative systems
without building a formal context. The fact that the obtained implicative system
is exactly the system corresponding to the original FM can be proved by con-
struction. When adding a new feature (resp. feature group) to a FM, this adds

5 http://conexp.sourceforge.net/

new dependencies which only involve the added feature (resp. feature group)
and its parent. It does not change the previous dependencies expressed in the
FM, but only adds new ones. In our approach, we first identify the implications
corresponding to each type of feature groups and optional/mandatory relation-
ships. Then, if we construct the FM step by step, we can create the implications
corresponding to each added feature (resp. feature group), and thus no implica-
tion is missing, nor needs to be changed afterward. We applied our method on
the FM of Fig. 1 and obtained the implicative system presented in Fig. 4.

root :
hierarchy :

mandatory :
xor-group :
cross-tree :

∅→ Ec
Ca→ Ec ; G→ Ca ; L→ Ca ;
Pm→ Ec ; Cc→ Pm ; Ch→ Pm ; B → Ec
Ec→ Ca
G,L→ Ec,Ca,G,L, Pm,Cc, Ch,B
Pm→ B ; B → Pm

Fig. 4: Implicative system corresponding to the feature model of Fig. 1

These implications can be extracted by performing a graph search on the
FM, and their number can be predicted by analysing its dependencies (# stands
for "number of"):
1 + #child-parent relationships+#mandatory relationships
+#pairs of features in each xor-group+#cross-tree constraints

For example, a representative FM of SPLOT (e-commerce) with 19 features
and 768 configurations is equivalent (with the configuration-semantics) to an
implicative system with 27 implications.

4.2 Identification of the set of possible configurations

In a concept lattice representing a FM, an object introduced in a concept ex-
tent represents a valid configuration, which corresponds to the feature set of the
concept intent. Because each configuration in a FM is unique, a concept can in-
troduce at most one object. Thus, for SPLE, a concept intent represents either a
valid configuration or an invalid one. In the isomorphic feature closed set lattice,
each closed set corresponds to a concept intent from the context: therefore, each
valid configuration of the FM matches a feature closed set. However, the feature
closed set lattice does not display objects and thus we cannot identify which
closed set corresponds to a valid configuration. To be able to retrieve knowledge
about configurations as in concept lattices, their identification in feature closed
set lattice is necessary.

As previously said, all join-irreducibles correspond to valid configurations.
But there can exist valid configurations which do not correspond to join-irreduci-
bles, and thus they cannot be discerned from invalid ones in feature closed set
lattices. A solution is to add a unique attribute for each configuration, as an

identifier. Thus, we change the lattice structure to make each configuration cor-
respond to a join-irreducible element, which can be detected. However, the ob-
tained lattice is not isomorphic to the original concept lattice, and its size is
larger. A way to keep the isomorphism is to add "reducible" attributes, which
do not modify the lattice structure and which can label the lattice’s elements.

In what follows, we investigate a way to label feature closed sets to help the
identification of valid configurations. We seek to produce a labelled implicative
system that generates a labelled feature closed set lattice, isomorphic to the
concept lattice associated with the formal context. We recall that a valid config-
uration is a combination of features w.r.t. all the FM dependencies: thus, we seek
to retrieve valid configurations by detecting which feature closed sets respect all
these dependencies.

Features linked by mandatory relationships always appear together in closed
sets: this type of dependencies is respected. Optional relationships express the
absence of dependencies and do not create difficulties. Or-groups and xor-groups,
however, are more problematic. Let us consider the or-group in Table 3, com-
posed of B and C, which are two sub-features of A. {A,B} and {A,C} are
two valid combinations of features of this group. Because our feature closed set
family is closed under intersection/join, {A,B} ∩ {A,C} = {A} is also a feature
closed set of the family, but it does not respect the dependencies induced by the
or-group (i.e. contains at least B or C). The same reasoning can be applied to
xor-groups. To identify if a feature closed set respects the dependencies induced
by or-groups and xor-groups, we choose to make constraints related to feature
groups appear directly in feature closed sets, as labels.

Let {f1, . . . , fn} be a subset of features involved in a feature group. If they
form an or-group, each feature closed set containing the parent feature of this
group will be labeled (f1, . . . , fn), defining the constraint: "this feature closed set
must have at least one feature from {f1, . . . , fn} to correspond to a valid config-
uration". If they form a xor-group, each feature closed set containing the parent
feature of the group will be labeled [f1, . . . , fn], defining the constraint: "this
feature closed set must have exactly one feature from {f1, . . . , fn} to correspond
to a valid configuration". As example, the FM of Fig. 1 produces two different
labels: one for the xor-group of the feature catalog (Ca), and another for the
or-group of the feature payment_method (Pm). Each feature closed set possess-
ing catalog has to be labeled [grid, list], and each feature closed set possessing
payment_method has to be labeled (check, credit_card).

We choose to represent these labels in the labelled implicative system as
attributes. A label is attached to a feature by adding to the original implicative
system a double implication between the feature and the corresponding label-
attribute. Fig. 5 presents the implications added to the implicative system of Fig.
4 in order to take into account labels [grid, list] ([G,L]) and (check, credit_card)
((Ch,Cc)).

A feature closed set with a (check, credit_card) label is a valid configuration
if it contains at least features credit_card or check. A feature closed set with a

labels :
Pm→ (Ch,Cc) ; (Ch,Cc)→ Pm ;
Ca→ [G,L] ; [G,L]→ Ca

Fig. 5: Adding labels in the implicative system of Fig. 4

[grid, list] label is a valid configuration if it contains grid or list, but not both. A
feature closed set respecting the constraints expressed by all its labels represents
a valid configuration. A label is associated with the parent feature of the group,
and thus does not change the original lattice structure.

Closed_set_15

e_commerce, catalog
[grid, list]

Closed_set_13

grid

Closed_set_0

Closed_set_1Closed_set_2

Closed_set_10

list

Closed_set_8

Closed_set_14

payment_method, basket
(check, credit_card)

Closed_set_9

Closed_set_4

Closed_set_12

credit_card

Closed_set_7 Closed_set_3Closed_set_5

Closed_set_11

check

Closed_set_6

Fig. 6: Feature closed set lattice built with the implicative system of Fig. 4,
labeled with implications of Fig. 5

Fig. 6 represents the feature closed set lattice associated with the labeled
implicative system of Fig. 4 plus Fig. 5: feature closed sets which respect all
the constraints defined by their labels are colored, and correspond to the 8
configurations of the formal context of Table 1. In the lattice, "label features"
are inherited from top to bottom, as usual features. For example, Closed_set_3
possesses features {e_commerce, catalog, list, basket, payment_method, check}
and the two labels [grid, list] and (check, credit_card). This feature closed set
possesses feature list and not feature grid, and thus respects the constraint of
label [grid, list]. Moreover, it possesses feature check, and thus also respects the

constraint of label (check, credit_card). The constraints corresponding to all its
labels are respected: Closed_set_3 is thus a valid configuration of the software
product line. Note that in this particular case, the valid configurations are all
irreducible.

To conclude, the labelled implicative system permits to construct a lattice
from a FM without enumerating all its configurations: the obtained feature closed
set lattice is a canonical representation, isomorphic to the concept lattice of a
formal context, in which one can retrieve exactly the same information about
features and configurations.

5 Conclusion

In this paper, we compare the various formalisms used in the literature to repre-
sent and manage the variability of a software product line. Especially, we study
their different semantics, their canonicity and the type of information they can
highlight. We investigate formal concept analysis and concept lattices to repre-
sent a software product line originally described by a feature model. Contrary
to FMs, concept lattices represent commonalities and variabilities in a canonical
form. Moreover, they permit to extract relationships between features, between
features and configurations and between configurations.

Constructing a concept lattice from a FM requires to enumerate all its con-
figurations in a formal context, but this method can be difficult to realize when
their number is too high. We propose a method to extract feature implications
directly from feature models dependencies. The obtained implicative system pro-
duces a feature closed set lattice isomorphic to the concept lattice which can be
built from the context. We also propose a method to label these implicative sys-
tems in order to identify the set of valid configurations, and thus retrieve the
same informations as in concept lattices.

In the future, we will make experiment on the existing FMs repositories in
order to assess the size of FMs, implicative systems, and closed set lattices and
how frequent are the FMs that have reducible configurations. We will also expand
our study to multiple software product lines. We will study relational concept
analysis to connect several software product lines represented by concept lattices,
and analyze their properties and the issues they permit to answer.

References
1. Acher, M., Collet, P., Lahire, P., France, R.B.: FAMILIAR: A domain-specific

language for large scale management of feature models. Sci. Comput. Program.
78(6), 657–681 (2013)

2. Al-Msie ’deen, R., Seriai, A.D., Huchard, M., Urtado, C., Vauttier, S., Al-Khlifat,
A.: Concept lattices: A representation space to structure software variability. In:
5th Int. Conf. on Inf. and Comm. Systems (ICICS). pp. 1 – 6 (2014)

3. Al-Msie’deen, R., Huchard, M., Seriai, A., Urtado, C., Vauttier, S.: Reverse Engi-
neering Feature Models from Software Configurations using Formal Concept Anal-
ysis. In: 11th Int. Conf. on Concept Lattices and Their Applications (ICFCA). pp.
95–106 (2014)

4. Al-Msie’deen, R., Seriai, A., Huchard, M., Urtado, C., Vauttier, S., Salman, H.E.:
Mining Features from the Object-Oriented Source Code of a Collection of Software
Variants Using Formal Concept Analysis and Latent Semantic Indexing. In: 25th
Conf. on Soft. Eng. and Know. Eng. (SEKE). pp. 244–249 (2013)

5. Batory, D.S.: Feature Models, Grammars, and Propositional Formulas. In: 9th Int.
Conf. on Soft. Product Lines (SPLC). pp. 7–20 (2005)

6. Bryant, R.E.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Trans. Computers 35(8), 677–691 (1986)

7. Carbonnel, J., Huchard, M., Gutierrez, A.: Variability representation in product
lines using concept lattices: Feasibility study with descriptions from wikipedia’s
product comparison matrices. In: Int. Works. on Formal Concept Analysis and
Applications, FCA&A 2015, co-located with ICFCA 2015). pp. 93–108 (2015)

8. Czarnecki, K., Wasowski, A.: Feature Diagrams and Logics: There and Back Again.
In: 11th Int. Conf. on Soft. Product Lines (SPLC). pp. 23–34 (2007)

9. Eisenbarth, T., Koschke, R., Simon, D.: Locating features in source code. IEEE
Trans. Softw. Eng. 29(3), 210–224 (2003)

10. Ganter, B., Wille, R.: Formal Concept Analysis – Mathematical Foundations.
Springer (1999)

11. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-
Oriented Domain Analysis (FODA): Feasibility Study (1990)

12. Kang, K.C., Lee, J., Donohoe, P.: Feature-oriented product line engineering. IEEE
software 19(4), 58–65 (2002)

13. Loesch, F., Ploedereder, E.: Restructuring Variability in Software Product Lines
using Concept Analysis of Product Configurations. In: 11th Eur. Conf. on Soft.
Maintenance and Reengineering (CSMR). pp. 159–170 (2007)

14. Mendonça, M., Branco, M., Cowan, D.D.: S.P.L.O.T.: software product lines online
tools. In: Companion to the 24th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2009,
October 25-29, 2009, Orlando, Florida, USA. pp. 761–762 (2009)

15. Niu, N., Easterbrook, S.M.: Concept analysis for product line requirements. In: 8th
Int. Conf. on Aspect-Oriented Software Development (AOSD). pp. 137–148 (2009)

16. Ryssel, U., Ploennigs, J., Kabitzsch, K.: Extraction of feature models from formal
contexts. In: 15th Int. Conf. on Soft. Product Lines (SPLC) Workshop Proceedings
(Vol. 2). p. 4 (2011)

17. Salman, H.E., Seriai, A., Dony, C.: Feature-to-code traceability in a collection of
software variants: Combining formal concept analysis and information retrieval.
In: 14th Conf. on Inf. Reuse and Integration (IRI). pp. 209–216 (2013)

18. Shatnawi, A., Seriai, A.D., Sahraoui, H.: Recovering architectural variability of a
family of product variants. In: 14th Int. Conf. on Soft. Reuse (ICSR). pp. 17–33
(2015)

19. She, S., Ryssel, U., Andersen, N., Wasowski, A., Czarnecki, K.: Efficient synthesis
of feature models. Information & Software Technology 56(9), 1122–1143 (2014)

20. Van Gurp, J., Bosch, J., Svahnberg, M.: On the notion of variability in software
product lines. In: Work. IEEE/IFIP Conf. on Soft. Arch. (WICSA). pp. 45–54
(2001)

21. Xue, Y., Xing, Z., Jarzabek, S.: Feature location in a collection of product variants.
In: 19th Working Conf. on Reverse Engineering (WCRE). pp. 145–154 (2012)

22. Yevtushenko, S.A.: System of data analysis "Concept Explorer". In: 7th national
conference on Artificial Intelligence KII-2000. pp. 127–134 (2000)

