
HAL Id: lirmm-01355466
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01355466

Submitted on 23 Aug 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Full Application of the Extract Interface Refactoring:
Conceptual Structures in the Hands of Master Students

Marianne Huchard

To cite this version:
Marianne Huchard. Full Application of the Extract Interface Refactoring: Conceptual Structures in
the Hands of Master Students. IWoR: International Workshop on Software Refactoring, Sep 2016,
Singapore, Singapore. pp.33-40, �10.1145/2975945.2975952�. �lirmm-01355466�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01355466
https://hal.archives-ouvertes.fr


Full Application of the Extract Interface Refactoring

Conceptual Structures in the Hands of Master Students

Marianne Huchard
LIRMM, CNRS and Montpellier University

Montpellier, France
huchard@lirmm.fr

ABSTRACT
Interfaces are data types that are very useful for providing
abstract and organized views on programs and APIs, and
opportunities for writing more generic code and for reuse.
Extract interface refactoring is a well known local refactor-
ing which is commonly used in development tools. Beyond
that local refactoring, there is a need for mass extraction
of an interface hierarchy from a class hierarchy. In this pa-
per, we made an experience with master students to put
into practice an existing Formal Concept Analysis (FCA)
based approach for solving that problem. The results show
that the data selection (selected datatypes: interfaces, ab-
stract classes, concrete classes; attributes; attribute descrip-
tion; methods; method description; etc.) was not obvious as
it was expected to be, and that the students used the ap-
proach more as an analysis technique that would guide the
extraction, than as a turn key solution.

CCS Concepts
•Software and its engineering→ Software reverse en-
gineering; •Mathematics of computing → Graph the-
ory;

Keywords
Extract interface refactoring, Java collection API, Formal
Concept analysis

1. INTRODUCTION
Offering abstract views of programs and APIs is a fun-

damental activity in forward as well as in reverse software
development. These abstract views can be used for under-
standing purposes, to promote reusability or to facilitate
maintenance and evolution. Different techniques are used,
among which interfaces play a central role.

• Highlighting interfaces allows developers to separate
more clearly specification from implementation.

• Classes often group several responsibilities, that should
be separated in several interfaces. Once highlighted,
the responsibility subsets may correspond to roles and
serve as simplistic contracts for a class.

• The interface specialization hierarchy offers a concep-
tual classification, closer to the represented domain en-
tities (or data types) than a class hierarchy whose de-
sign has been partly guided by technical concerns.

• The existence of the interfaces allows developers to
write generic code, using only specified operations and
avoiding the use of technical tricks.

For these reasons, the extract interface refactoring (or EIR
for short) is one of the important refactorings proposed by
Fowler et al. [1] for writing a good quality code and it is
implemented in several IDEs such as the eclipse platform1.
Beyond that local refactoring, other research investigated
a full application of extract interface refactoring (FAEIR)
in order to extract in a systematic and exhaustive way all
the interfaces from a class hierarchy as a whole [3, 6]. The
additional benefit of these approaches, that are based on
Formal Concept Analysis [2], lays in gathering (in a single
interface) extracted method signatures that otherwise would
be duplicated several times, and in organizing the extracted
interfaces in a single hierarchy with strong theoretical prop-
erties.

In Java, an interface is a specific artifact that groups pub-
lic abstract methods, public static final fields, and since Java
1.8, default implementations of methods and static methods.
The interface hierarchy offers multiple specialization (with
extends keyword), while the class hierarchy uses single spe-
cialization (with the same extends keyword). A class can
implement several interfaces (with implements keyword).
This strengthens the capacity of the interface hierarchy to
better represent the modeled domain.

This paper reports a practical experience done with mas-
ter students, a few months before the internship in software
industry that concludes their studies. The students had to
apply FAEIR on the Java 1.8 Collections and Maps API us-
ing the method presented in [3, 6]. Initially the objective
was to check if this complex refactoring was easy to put into
practice by the students and the feasibility of adding it as a
component in IDE refactoring suggestions (and how). The
experience showed unexpected difficulties from which we can
define guidelines for using FAEIR.

1http://help.eclipse.org/luna/topic/org.eclipse.jdt.doc.user/
concepts/concept-refactoring.htm



Section 2 presents the local and the full refactorings on ex-
amples and outlines the method used for the full application
of extract interface refactoring. Then, Section 3 explains the
conditions under which the experience has been done. The
variations on the datasets used by the students are presented
in Section 4. The way the students analyzed the results is
reported in Section 5. Section 6 concludes the paper.

2. EXTRACT INTERFACE REFACTORING
Figure 1 shows how the Extract Interface Refactoring (EIR)

works. In this case, the signatures of the public (non-static)
methods, including name, parameter type list and return
type of class ArrayList are extracted and inserted in inter-
face IntArrayList which is created for this purpose. Then
ArrayList is updated to declare that it implements IntAr-

rayList.

Figure 1: Extract Interface Refactoring (EIR) ex-
ample: extraction of the ArrayList interface

Input data for full application of EIR based on Formal
Concept Analysis is not a single class, but a set of classes.
Figure 2(a) shows a set of four simplified sequence classes,
given with the signatures of their public non-static methods.
Applying EIR to each class would give four interfaces sharing
some signatures, and with no specialization relations.

To extract at the same time and rightly organize the in-
terfaces without signature duplication, the approaches in [3,
6] use a specific substructure of the concept lattice built on
top of the binary relation (called a formal context in FCA
terminology) of Figure 2(a). The concept lattice is formed
by computing the formal concepts of the formal context. In
our framework, a formal concept is a maximal set of classes
sharing a maximal set of signatures. Formal concepts are
ordered in the lattice using inclusion of their class set (or
equivalently of their signature set).

Lattices are represented by their Hasse diagram (Figure
2(b)), with upward paths going from more specific to more
general concepts. Concepts are represented in 3-part boxes
containing: the concept name, the intent (shared signa-
tures), the extent (corresponding classes). They are shown
with simplified labeling where a signature is shown only
in the highest concept that introduces it (and inherited by
the subconcepts), while a class is shown only in the lowest
concept that introduces it (and inherited by the supercon-
cepts). Concept SimpSeq 2 has thus its intent composed of
add, isEmpty (both top-to-bottom inherited), and peek,

poll (both introduced locally) and its extent composed of
PrioriyQueue, ArrayDeque (both introduced locally), and
LinkedList (inherited bottom-to-top).

Extracting the interface hierarchy is easy, and shown in
Figure 2(c). Each concept is interpreted as an interface, the
intent gives the set of operations of the interface and we
also show which class will directly implement which inter-
face. The resulting hierarchy has strong theoretical proper-
ties: it is the most compact (in number of interfaces) hierar-
chy that avoids any signature duplication and it contains all
the specialization links (if an interface Isub contains all the
signatures of an interface Isup, Isub necessarily specializes
Isup in the hierarchy). Notice that, due to the compact-
ness property, the resulting structure may group signatures
that correspond to different roles if these roles are always
present together in implementing classes. Thus it may need
to be reworked, in order to divide the signatures declared in
a concept into subsets corresponding to roles. In all known
usages of that technique, the AOC-poset is used rather the
concept lattice. The AOC-poset is restricted to concepts
that introduce at least one signature or at least one class.
Following its definition, its size (#concepts) is bounded by
(#classes + #signatures), which may be large, but very
reasonable compared to the whole concept lattice whose size
may get 2min(#classes,#signatures). Some students used ice-
berg lattices. These structures have been proposed by [8]
for analyzing very large databases and visualizing associa-
tion rules. An iceberg lattice is restricted to the concepts
which have an extent containing more than a certain pro-
portion of the initial class set.

As noticed in [1], this refactoring has similarities with Ex-
tract Superclass refactoring which remains a current concern
[7]. This is why, similar techniques have also been developed
to apply full extract superclass refactoring [4, 5].

Figure 3 shows the AOC-poset extracted from a subset
of six main Java 1.8 concrete classes representing sequences:
ArrayList, Vector, Stack, PriorityQueue, ArrayDeque and
LinkedList. All public signatures (including return type
and parameter type list) have been included, giving an over-
view of a real case. The methods of the Java Object class
have been removed. They are not relevant here because
they appear in all classes (they are not specifically common
to sequences).

All the concepts may be used as interfaces. Several of
them are detailed to illustrate information contained in this
structure. In Fig. 3, the top concept Concept_Coll_12

highlights what is common to all classes. It can be inter-
preted as a ”Sequence” interface. Concept_Coll_11 groups
the sequences (all except PriorityQueue) that have a pub-
lic clone method (it is protected in Object). It corresponds
to a ”CloneableSequence” interface. Concept_Coll_7 can be
called ”Popable” interface. Concept_Coll_6 introduced the
methods common to Vector and ArrayList. As Vector is
introduced in a subconcept of the concept which introduces
ArrayList, this means that its interface includes that of Ar-
rayList, with the additional operations that can be seen in
Concept_Coll_4. The same situation occur for Stack which
is introduced below Vector. But although Stack is a sub-
class of Vector in the Java collection API, Vector is a cousin
class of ArrayList.

Here, the iceberg lattice for a chosen proportion of 50%
of the 6 initial classes contains concepts Concept_Coll_6,
Concept_Coll_7, Concept_Coll_8 and their super-concepts
(extents increase in bottom-up paths) because they contain
3 or more classes in their extent, but not their subconcepts
which have less than 3 classes in their extent.



Figure 2: Full Application of EIR based on Formal Concept Analysis on 4 simplified classes

3. PREPARATION OF THE WORK
The practical work asked to the students consisted in ex-

tracting the collections and the map interface hierarchy (in
Java 1.8). There was no limit in time to do it (the project
lasted during several weeks during which they had other
courses and projects). An introductory course on Formal
Concept Analysis presented the theory and its application
to superclass refactoring. They worked in 11 groups of 3-4
persons.

They first had to analyze the existing hierarchy in Java
1.8. They could use any document they want, and they had
as references the Oracle tutorial2 and available source code3.
At the end of this initial step, they had to produce a schema
of what they found in this hierarchy (data types: interfaces,
abstract classes, concrete classes). They had to distinguish
technical classes that were neither a Collection nor a Map
representation and to indicate which data types they will
use to extract interfaces.

The second step consisted in selecting the description of
data types and building it. Suggestions were given: signa-
tures including or not names, return type, parameter type
list, parameter name list, exceptions, public final static at-
tributes, constructors, other Java interfaces implemented
(like Serializable, Cloneable, ...) but they were free
in their selection. It was also suggested to apply some infer-
ence mechanisms on datatypes, for example, in return types:
When a method m returns an object of type T , this object
belongs to all super types of T and this can be included in
the description. At the end of this step, students had to
present a set of formal contexts (the format being the input
format of the targeted tool), with a text explaining their
choices with regard to the final objective. For extracting
data, one group used JDT tools on the source code, while
all other 10 groups chose to use the Java Reflect package.
The reason is not clear. They had been given an example
of an incomplete program using the Java Reflect package,
because the course on that package was given two years be-
fore, during their bachelor studies. The course and another
practical work about JDT tools were given a few weeks be-
fore the project. Thus it was a recent notion for them. With

2https://docs.oracle.com/javase/tutorial/collections/
3http://hg.openjdk.java.net/jdk8u/jdk8u/jdk/file/5910b94ea
083/src/share/classes/java/util/

the Reflect package, they could not have information about
generic types, due to the Java policy of type erasure, but
even the group which used JDT tools did not use generic
type information.

The third step consisted in using RCAexplore4 for build-
ing the AOC-posets. A little documentation and an exam-
ple were given to help them using the tool. RCAexplore
is a tool which implements several algorithms for Formal
Concept Analysis applications, and particularly Relational
Concept Analysis (RCA) which is one of the extensions of
FCA to several sets of objects described by attributes and
relationships to other objects. The tool input is a file con-
taining one or several object/attribute or object/object re-
lations. The output is one or several conceptual structures
(concept lattice, AOC-poset, iceberg lattice), like these ap-
pearing in the figures of this paper, that are presented in
several formats. The XML output can be navigated with a
specific browser of RCAexplore that allows the analyst to
explore her/his data while going from concept to concept.
Using the concept browser, or using the output graphical
structure required to understand the conceptual structure.
We were interested in knowing in which extent software prac-
titioners, as our students are, would be able, after a single
course of one hour and half, to manipulate, analyze and ex-
tract relevant information from the conceptual structure.

Then the fourth step was dedicated to the analysis of the
results. The students had to produce a document showing
the built structures and explaining what they understood.
They were given a few guidelines for this step: compare
the information in the AOC-poset with the initial Java 1.8
interface and class hierarchy, try to name the newly discov-
ered interfaces, build the concept lattice to see the difference
between the lattice and the AOC-poset, extract relevant im-
plication rules from the conceptual structures (AOC-poset
or concept lattice).

4. VARIATION ON THE DATASET
In this section, we present the data types selected by the

students to make their interface extraction, and the descrip-
tion they considered. This was the most surprising result,
as many variations appeared on the selected dataset, and

4http://dolques.free.fr/rcaexplore/



especially on the description. In this section, we use con-
cept lattices to represent the choices of the students, thus
now formal concepts describe student groups (each student
is named in the group with his/her last name initial) by
other information. Thus concept extents are sets of student
groups. The second information is specific and will be ex-
plained hereafter.

4.1 Studied Sets of Classes and Interfaces
Fig. 5 shows which Java interfaces the students selected.

It can be observed that many (but not all) groups considered
Maps (see Concept_interf_2), some considered concurrent
collections (see Concept_interf_0 and Concept_interf_1).
We make the same observation on the selected Java ab-
stract classes (Fig. 6) and concrete classes (Fig. 7). In
concrete classes, where we observe more variation, some stu-
dents added sorting-dedicated classes (like TimSort), helper
classes (like ArrayPrefixHelpers) or internal classes (like
SubList in AbstractList), which is questionable.

Figure 5: The studied interfaces

4.2 Selected Data Description
Here the students were even more creative, while we could

have expected a similar mode of description (mainly based
on public methods signatures). Fig. 4 shows the complexity
of the variations. Here are some clues to read the diagram:

• ”AE” represents the data types analyzed (rows of the
formal contexts). E.g. AE:concrete.classes means
that the students used concrete classes in the rows.

Concept_abstraites_0

java.util.Dictionary

BFM
GMP
BEVB

Concept_abstraites_1

java.util.AbstractMap

BMD
BSZ
VLC
LFB
CVM

Concept_abstraites_2

 

CGW

Concept_abstraites_4

java.util.AbstractCollection

BPGS

Concept_abstraites_3

java.util.AbstractSequentialList
java.util.EnumSet

DMPR

Concept_abstraites_5

java.util.AbstractList
java.util.AbstractQueue

java.util.AbstractSet

 

Figure 6: The studied abstract classes

• Abs.Conc.×.finalStaticFields.methodsNames repre-
sents the formal context whose rows are abstract and
concrete classes and whose columns are final static
fields and method names.

• ”itf” means ”interface”; ”allImplement.itf” means: all
implemented interfaces appear in the columns; ”imple-
mented.itfOutOfCollections”means: only implemented
interfaces that come outside the collections and maps
appear in the columns (e.g. Cloneable, but not List).

• ”excep” means ”exception”.

The figure shows that all students selected the concrete
classes in at least one of their collected datasets. Many
of them used (public) method signature or simply method
names which already gave relevant structuring. It was sur-
prising to see that many students considered private final
static fields, that have a priori no relation with the inter-
face notion. Several groups described their data types with
the implemented interfaces. This has some sense, but is not
clearly an element that we would introduce in an interface
internal, it is rather an information to be used to connect
the interface to existing ones. In addition, there is a varia-
tion about the data types that appear as rows in the formal
contexts. Some groups only use concrete classes to extract



the interfaces, while others also use existing Java interfaces
or abstract classes.

5. VARIATION ON THE ANALYSIS
Disregarding the differences in their datasets and descrip-

tions, the students made the same range of work during anal-
ysis. They tried to name the concepts, to recognize existing
data types in the obtained AOC-posets, they remarked the
high size of the lattices. Six groups did a systematic review
of the built concepts, which may be painful depending of
the size of the AOC-poset. Two groups tried another con-
ceptual structure offered by the tool (Iceberg lattices). One
group suggested to divide the data types by theme (as we
did, by selecting only sequences) to reduce the burden of the
analysis and avoiding non-relevant factorizations.

As said in the previous section, some groups introduced
existing Java interfaces or abstract classes in their formal
contexts. Here again, this may seem strange because the
initial principle is to extract an interface from a concrete
class. Nevertheless, this can be useful to observe in the
conceptual structure where the existing Java interfaces and
abstract classes appear.

This phenomenon can be observed with the help of Fig.
3 (the conceptual structure built from classes and interfaces
can be seen on the webpage of additional documents, see
below). For example, Concept_Coll_9 in Fig. 3 does not
reveal a new interface, it corresponds to the existing Java
List interface which is rediscovered by the approach. Con-

cept_Coll_10 in Fig. 3, which introduces peek, can be in-
terpreted, on the contrary, as a new data type, namely the
type of stack-spirit collections whose top object can be con-
sulted.

6. DISCUSSION
The students also had an individual examination based

on that project (in limited time and without communica-
tion with other students). This allowed to confirm what
was highlighted in their work. Except for a few students,
the individual examination showed that they very well un-
derstood the concept lattices and AOC-posets. They had
to understand and comment the figures that are included in
this paper and this did not pose any problem to the majority
of the students. This was not expected, because we thought
that the conceptual structures could have been difficult to
apprehend for them. They used the conceptual structures
more as an analysis tool than as a turn key solution for ex-
tracting an interface hierarchy, which is an interesting devi-
ation of the initial exercise. They did not discuss about the
way the features (signatures, attributes) are grouped inside
the concepts (but the question was not explicitly asked).

The diversity in analyzed data showed that, to use AOC-
posets for FAEIR, the practitioner has to be guided along
several directions: in the choices of the initial data types (for
using rather concrete data types in a thematic subset) and in
the choice of the description (1) by focusing on what will re-
ally be inside an interface, and discarding other implemented
interfaces, private members, etc., (2) by suggesting several
parameterizations, as including or not thrown exceptions in
the signature, genericity, whole signatures or just method

names, etc. This will guide our future experiences. As noted
by an anonymous reviewer, a practitioner will probably not
make the effort than Master students did to analyze sev-

eral results and select the most appropriate one, thus a tool
should help her/him to focus on what she/he is seeking for.

The reviewers also pointed out some bias in this exper-
iment that are to be said. Students could interact during
the project, even if, looking at the variety of the results, if
they interacted, this seems to have had no significant im-
pact. Besides, students organized themselves to build the
groups, which may have resulted in homogeneous groups
(with similar point of views and similar motivation).

Nevertheless, it was interesting to observe how the stu-
dents managed this project, their autonomy, their findings
and that there are different possible tracks to exploit the
observation to design a tool for FAEIR application.

7. ACKNOWLEDGMENTS
The author warmly thanks the master students (Master

in software engineering studies, last year, Montpellier Uni-
versity, finishing in july 2016) who did the experience with
care and thoroughness. She also would like to thank the
anonymous reviewers of IWoR 2016 for their constructive
remarks that allowed to improve the paper.

8. ADDITIONAL DOCUMENTS
The input files of the students for RCAexplore, that show

which data they extracted, the AOC-poset built from inter-
faces and classes of Java 1.8 sequences and the instructions
that were given to the students (translated from french) are
available here: https://www.lirmm.fr/users/utilisateurs-lirmm/
marianne-huchard/publications/iwor

9. REFERENCES
[1] M. Fowler, K. Beck, J. Brant, W. Opdyke, and

D. Roberts. Refactoring: Improving the Design of
Existing Code. Addison-Wesley Longman Publishing
Co., Inc., 2012.

[2] B. Ganter and R. Wille. Formal Concept Analysis:
Mathematical Foundations. Springer-Verlag New York,
Inc., 1999.

[3] R. Godin and H. Mili. Building and Maintaining
Analysis-Level Class Hierarchies Using Galois Lattices.
In Proc. of OOPSLA1993, pages 394–410, 1993.

[4] R. Godin, H. Mili, G. W. Mineau, R. Missaoui, A. Arfi,
and T. Chau. Design of Class Hierarchies Based on
Concept (Galois) Lattices. TAPOS, 4(2):117–134, 1998.

[5] M. Huchard, H. Dicky, and H. Leblanc. Galois lattice
as a framework to specify building class hierarchies
algorithms. ITA, 34(6):521–548, 2000.

[6] M. Huchard and H. Leblanc. Computing Interfaces in
Java. In Proc. of ASE 2000, pages 317–320, 2000.

[7] K. Lano and S. K. Rahimi. Case study: Class diagram
restructuring. In Proc. Sixth Transformation Tool
Contest, TTC 2013, pages 8–15, 2013.

[8] G. Stumme, R. Taouil, Y. Bastide, N. Pasquier, and
L. Lakhal. Computing iceberg concept lattices with T.
Data Knowl. Eng., 42(2):189–222, 2002.



Concept_Collections_0

class java.lang.Object push(java.lang.Object)
boolean empty()

int search(java.lang.Object)

java.util.Stack

Concept_Collections_4

int indexOf(java.lang.Object, int)
int lastIndexOf(java.lang.Object, int)
void addElement(java.lang.Object)

class java.lang.Object elementAt(int)
interface java.util.Enumeration elements()

int capacity()
void copyInto([Ljava.lang.Object;)

void setSize(int)
class java.lang.Object firstElement()
class java.lang.Object lastElement()

void setElementAt(java.lang.Object, int)
void removeElementAt(int)

void insertElementAt(java.lang.Object, int)
boolean removeElement(java.lang.Object)

void removeAllElements()

java.util.Vector

Concept_Collections_7

class java.lang.Object pop()

 

Concept_Collections_1

interface java.util.Comparator comparator()

java.util.PriorityQueue

Concept_Collections_8

class java.lang.Object remove()
class java.lang.Object poll()

boolean offer(java.lang.Object)
class java.lang.Object element()

 

Concept_Collections_3

class java.util.ArrayDeque clone()

java.util.ArrayDeque

Concept_Collections_5

class java.lang.Object getFirst()
void push(java.lang.Object)

void addFirst(java.lang.Object)
void addLast(java.lang.Object)

boolean offerFirst(java.lang.Object)
boolean offerLast(java.lang.Object)
class java.lang.Object removeFirst()
class java.lang.Object removeLast()

class java.lang.Object pollFirst()
class java.lang.Object pollLast()
class java.lang.Object getLast()

class java.lang.Object peekFirst()
class java.lang.Object peekLast()

boolean removeFirstOccurrence(java.lang.Object)
boolean removeLastOccurrence(java.lang.Object)

interface java.util.Iterator descendingIterator()

 

Concept_Collections_2

 

java.util.LinkedList

Concept_Collections_9

void add(int, java.lang.Object)
class java.lang.Object remove(int)

class java.lang.Object get(int)
int indexOf(java.lang.Object)

int lastIndexOf(java.lang.Object)
void replaceAll(java.util.function.UnaryOperator)

interface java.util.List subList(int, int)
boolean addAll(int, java.util.Collection)

class java.lang.Object set(int, java.lang.Object)
interface java.util.ListIterator listIterator()

interface java.util.ListIterator listIterator(int)
void sort(java.util.Comparator)

 

Concept_Collections_6

void ensureCapacity(int)
void trimToSize()

java.util.ArrayList

Concept_Collections_10

class java.lang.Object peek()

 

Concept_Collections_11

class java.lang.Object clone()

 

Concept_Collections_12

boolean add(java.lang.Object)
boolean remove(java.lang.Object)

void clear()
boolean isEmpty()

boolean contains(java.lang.Object)
int size()

class [Ljava.lang.Object; toArray([Ljava.lang.Object;)
class [Ljava.lang.Object; toArray()
interface java.util.Iterator iterator()

interface java.util.Spliterator spliterator()
boolean addAll(java.util.Collection)

boolean containsAll(java.util.Collection)
boolean removeAll(java.util.Collection)
boolean retainAll(java.util.Collection)

interface java.util.stream.Stream stream()
boolean removeIf(java.util.function.Predicate)

interface java.util.stream.Stream parallelStream()
void forEach(java.util.function.Consumer)

 

Figure 3: Conceptual structure extracted from 6 main concrete classes of sequences of Java 1.8



Co
nc

ep
t_

A
na

ly
ze

dD
at

a_
0

A
bs

.C
on

c.
X

.m
et

ho
dN

am
es

A
bs

.C
on

c.
X

.m
et

ho
dS

ig
Co

nc
.X

.m
et

ho
dS

ig

 

Co
nc

ep
t_

A
na

ly
ze

dD
at

a_
4

A
bs

.C
on

c.
X

.fi
na

lS
ta

tic
Fi

el
ds

A
bs

.C
on

c.
X

.m
et

ho
dS

ig
.e

xc
ep

A
bs

.C
on

c.
X

.it
f

Co
nc

.X
.fi

na
lS

ta
tic

Fi
el

ds
Co

nc
.X

.it
f

Co
nc

.X
.m

et
ho

dS
ig

.e
xc

ep

G
M

P

Co
nc

ep
t_

A
na

ly
ze

dD
at

a_
6

Co
nc

.X
.fi

na
lS

ta
tic

Fi
el

ds
.m

et
ho

dS
ig

.it
f.e

xc
ep

BF
M

Co
nc

ep
t_

A
na

ly
ze

dD
at

a_
3

Itf
.A

bs
.C

on
c.

X
.m

et
ho

dS
ig

Itf
.A

bs
.C

on
c.

X
.it

f

D
M

PR

Co
nc

ep
t_

A
na

ly
ze

dD
at

a_
1

Itf
.X

.m
et

ho
dN

am
es

A
bs

.X
.m

et
ho

dN
am

es

BE
V

B

Co
nc

ep
t_

A
na

ly
ze

dD
at

a_
5

A
bs

.C
on

c.
X

.fi
na

lS
ta

tic
Fi

el
ds

.m
et

ho
dN

am
es

A
bs

.C
on

c.
X

.fi
na

lS
ta

tic
Fi

el
ds

.m
et

ho
dS

ig
A

bs
.C

on
c.

X
.fi

na
lS

ta
tic

Fi
el

ds
.m

et
ho

dS
ig

.it
f

BS
Z

Co
nc

ep
t_

A
na

ly
ze

dD
at

a_
2

Co
nc

.X
.m

et
ho

dN
am

es
.it

f

CG
W

Co
nc

ep
t_

A
na

ly
ze

dD
at

a_
7

Itf
.A

bs
.C

on
c.

X
.fi

na
lS

ta
tic

Fi
el

ds
.m

et
ho

dN
am

es
Itf

.A
bs

.C
on

c.
X

.fi
na

lS
ta

tic
Fi

el
ds

.m
et

ho
dS

ig
Itf

.A
bs

.C
on

c.
X

.fi
na

lS
ta

tic
Fi

el
ds

.m
et

ho
dS

ig
.it

f

BG
PS

Co
nc

ep
t_

A
na

ly
ze

dD
at

a_
13

 

BM
D

V
LC

CV
M

Co
nc

ep
t_

A
na

ly
ze

dD
at

a_
10

th
ro

w
nE

xc
ep

tio
ns

 

Co
nc

ep
t_

A
na

ly
ze

dD
at

a_
16

A
E:

ab
str

ac
t.c

la
ss

es

 

Co
nc

ep
t_

A
na

ly
ze

dD
at

a_
18

im
pl

em
en

te
d.

itf
O

ut
O

fC
ol

le
ct

io
ns

 

Co
nc

ep
t_

A
na

ly
ze

dD
at

a_
9

 

LF
B

Co
nc

ep
t_

A
na

ly
ze

dD
at

a_
8

Itf
.A

bs
.C

on
c.

X
.m

et
ho

dN
am

es

 

Co
nc

ep
t_

A
na

ly
ze

dD
at

a_
12

al
lIm

pl
em

en
te

d.
itf

 

Co
nc

ep
t_

A
na

ly
ze

dD
at

a_
20

m
et

ho
dN

am
es

 

Co
nc

ep
t_

A
na

ly
ze

dD
at

a_
11

Co
nc

.X
.m

et
ho

dN
am

es

 

Co
nc

ep
t_

A
na

ly
ze

dD
at

a_
17

Co
nc

.X
.fi

na
lS

ta
tic

Fi
el

ds
.m

et
ho

dS
ig

 

Co
nc

ep
t_

A
na

ly
ze

dD
at

a_
14

A
E:

in
te

rfa
ce

s

 

Co
nc

ep
t_

A
na

ly
ze

dD
at

a_
19

fin
al

St
at

ic
Fi

el
ds

 

Co
nc

ep
t_

A
na

ly
ze

dD
at

a_
15

Co
nc

.X
.fi

na
lS

ta
tic

Fi
el

ds
.m

et
ho

dN
am

es
Co

nc
.X

.fi
na

lS
ta

tic
Fi

el
ds

.m
et

ho
dS

ig
.it

f

 

Co
nc

ep
t_

A
na

ly
ze

dD
at

a_
21

m
et

ho
dS

ig

 

Co
nc

ep
t_

A
na

ly
ze

dD
at

a_
22

A
E:

co
nc

re
te

.c
la

ss
es

 

Figure 4: Variation in the description



Concept_concrete_2

java.util.ArrayPrefixHelpers
java.util.ArraysParallelSortHelpers

BFM

Concept_concrete_8

java.util.BitSet
java.util.ComparableTimSort
java.util.DualPivotQuicksort

java.util.TimSort

BSZ
BEVB

Concept_concrete_1

java.util.concurrent.ConcurrentHashMap
java.util.concurrent.ConcurrentSkipListMap
java.util.concurrent.CopyOnWriteArrayList

java.util.jar.Attributes

VLC

Concept_concrete_4

java.util.Properties

LFB

Concept_concrete_3

java.util.RandomAccessSubList
java.util.SubList

CVM

Concept_concrete_5

java.util.concurrent.ConcurrentLinkedQueue

 

Concept_concrete_6

java.util.concurrent.ConcurrentSkipListSet
java.util.concurrent.CopyOnWriteArraySet

DMPR

Concept_concrete_9

 

GMP

Concept_concrete_10

java.util.Hashtable
java.util.JumboEnumSet
java.util.RegularEnumSet

 

Concept_concrete_7

java.util.concurrent.ArrayBlockingQueue
java.util.concurrent.ConcurrentLinkedDeque

java.util.concurrent.DelayQueue
java.util.concurrent.LinkedBlockingDeque
java.util.concurrent.LinkedBlockingQueue
java.util.concurrent.LinkedTransferQueue

java.util.concurrent.PriorityBlockingQueue
java.util.concurrent.SynchronousQueue

 

Concept_concrete_13

java.util.PriorityQueue

 

Concept_concrete_14

 

BPGS

Concept_concrete_15

java.util.Stack
java.util.Vector

 

Concept_concrete_17

java.util.HashSet

 

Concept_concrete_11

 

BMD

Concept_concrete_12

java.util.EnumMap
java.util.HashMap

java.util.IdentityHashMap
java.util.LinkedHashMap

java.util.TreeMap
java.util.WeakHashMap

 

Concept_concrete_16

java.util.TreeSet

 

Concept_concrete_18

java.util.ArrayDeque
java.util.ArrayList

java.util.LinkedHashSet
java.util.LinkedList

 

Concept_concrete_0

javax.management.relation.RoleUnresolvedList

CGW

Figure 7: The studied concrete classes


