
HAL Id: lirmm-01360463
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01360463

Submitted on 5 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Graph Constraints Formulation for Contigs
Scaffolding

Eric Bourreau, Annie Chateau, Clément Dallard, Rodolphe Giroudeau

To cite this version:
Eric Bourreau, Annie Chateau, Clément Dallard, Rodolphe Giroudeau. A Graph Constraints Formu-
lation for Contigs Scaffolding. WCB: Workshop on Constraint-Based Methods for Bioinformatics, Sep
2016, Toulouse, France. pp.136-149. �lirmm-01360463�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01360463
https://hal.archives-ouvertes.fr

A Graph Constraints Formulation for Contigs
Scaffolding

Éric Bourreau1, Annie Chateau1,2, Clément Dallard1, Rodolphe Giroudeau1

1 LIRMM - CNRS UMR 5506 - Montpellier, France
2 IBC - Montpellier, France

{eric.bourreau,annie.chateau,clement.dallard,rodolphe.giroudeau}@lirmm.fr

Abstract. This paper presents a constraint-based approach for genome
scaffolding, which is one important step in genome whole sequence pro-
duction. We model it as an optimization problem on a graph built from a
paired-end reads mapping on contigs. We describe our constraint model
using a graph variable representation with classical graph constraints.
We tested our approach together with several search strategies, on a
benchmark of various genomes.

1 Introduction

Last decade was marked by the race to the production of new genomic sequences.
Since new technologies of sequencing, known as High Throughput Sequencing
(HTS) or New Generation Sequencing (NGS), are available, price of genome se-
quencing has consequently dropped. Technological advances in sequencing, but
also in computer science, allow to conduct studies involving tens of thousands
of genomes of the same species or related species. The projects "1000 genomes"
bloom, and necessit a phenomenal processing power. However HTS is mostly
based on a technology which splinters the genomic sequence, resulting in a
large amount of paired-end reads even for quite small genomes. Most sequencing
projects are experiencing bottlenecks in the production of complete sequences
from the sequencing libraries, and produce genomes often in draft form. Hence,
assembling and scaffolding steps have to be as optimized as possible to obtain a
satisfying solution in reasonable time. One of the crucial steps involved in this
process is genome scaffolding. Once sequencing and assembly of DNA molecules
have been performed, we end up with a set of genomic sequences of various
lengths, called contigs, representing pieces of genome. The main goal of scaf-
folding process is to find an order and an orientation on these contigs such that
resulting collections of oriented contigs map as good as possible to the reference
genome. Such collections are named scaffolds and would ideally represent the
genome chromosomes, which could be either linear or circular.

The scaffolding process has been modeled as various combinatorial problems
which are unfortunately computationally hard [1,2]. This observation naturally
encourages to try different ways to solve the problem, from heuristic, approxi-
mation or exact resolution point of view. Most of current scaffolding solvers use
heuristic methods to solve this problem. These solvers, unfortunately, do not

138

propose any confidence on the optimality of the solution they return. Some of
them, like Bambus [3], SSPACE [4] and SSAKE [5], directly solve the graph
problem using greedy algorithms. Their first obvious interest is their time com-
plexity, since the corresponding algorithms are strictly polynomial. However, the
solution may be very faulty since the graph is sometimes simplified and because
it only guarantees a local maximum. Other solvers like Bambus2 [6] uses struc-
tures recognition and NP-hard problem’s approximations to generate scaffolds.
Opera [7] uses a graph contraction method before solving the scaffolding on the
smaller contracted graph. However, the contraction step may alter the original
graph such that the optimal solution on the contracted graph is not optimal on
the original one. SCARPA [8] combines Fixed Parameter Tractable algorithm
(to remove odd cycles on the original graph) and mixed integer programming
(to join contigs in scaffolds). Once again the yielded solution is not necessarily
the optimal solution, because of the odd cycle deletion. GRASS [9] and MIP
Scaffolder [10] use mixed integer programs to solve the scaffolding problem, but
always on a simplified graph and then can not be considered as exact methods
either.
A previous work using an incremental strategy and Integer Linear Programming
(ILP) was proposed in [11]. After several attempts to model the scaffolding prob-
lem with CSP, the authors finally chose a simple ILP formulation instead, in
order to achieve scalability. However, this formulation was not totally satisfying,
since it could not prevent from small circular chromosomes in the solution. Thus,
it has to be cured with an iterative treatment to forbid those cycles. As one can
observe, there is no solver offering exact resolution for the scaffolding problem,
possibly resulting in different solutions from different solvers working on a same
graph. In the present work, we choose the CSP approach, to attack this prob-
lem. Using a recent library, dedicated to graphs, namely Choco-graph3 [12], we
formulate the contig scaffolding problem in a simple manner, given in Section 3.
We discuss how search strategies could have an effect on the efficiency of the
method, and run some experiments on a dataset of small instances, in Section 4.

2 Notation and description of the problem

In what follows, we consider G = (V,E) an undirected graph with an even num-
ber 2n of vertices and without self loops. We suppose that there exists a perfect
matching in G, denoted by M∗. Let w : E → IN be a weight function on the
edges. In the bioinformatic context, edges inM∗ represent contigs, and the other
edges figure the ways to link the contigs together, their weight representing the
support of each of these hypotheses (e.g. the number of pairs of reads matching
on both contigs). Figure 1 shows an example of a scaffold graph.

3 https://github.com/chocoteam/choco-graph

139

15

14

1617

18

6

24
25

26
27

20

21

22

23

28
29

1
0

3

2

5

4

7

9

8

1110

13 12

19

31

30

33

32

514

16

1

61
10

22

75

69

15

65

40

78

78

1

7

21

45

100

1

61

2

72

1

37

51

Fig. 1. A scaffold graph with 17 contigs (bold edges) and 26 (weighted) links between
them, corresponding to the ebola data set (see Section 4). Contig-edges in green and
blue correspond to contig of size small enough to be inserted between two other contigs,
leading to possible misplacements in the final scaffolding. Green contigs are still well
placed in the solution, but blue one are ambiguous.

In order to model the genomic structure by fixed numbers of linear (paths)
and circular (cycles) chromosomes, the class of considered problems are param-
eterized by two integers, respectively denoted by σp and σc. These parameters
correspond to what is desired as genomic structure, however it is not always
possible to exactly obtain this structure. Thus we consider a relaxed version of
the problem, called Scaffolding, together with the original one, denoted as
Strict Scaffolding.

We may use the notation Gr(·) to denote the induced graph of an edge set.
For instance, let G = (V,E) be a graph, then Gr(E) = G.

In the following, we call alternating cycle (resp. alternating path) in G, rel-
atively to a perfect matching M∗ of G, a cycle (resp. a path) with edges al-
ternatively belonging to M∗ or not (resp. and where extremal edges belong to
M∗). Notice that an alternating-cycle (resp. alternating-path) has necessarily an
even number of vertices, at least four (resp. two). The class of Scaffolding
problems are defined as follows:

Scaffolding (SCA)
Input: G = (V,E), ω : E → N, perfect matchingM∗ in G, σp, σc, k ∈ N
Question: Is there an S ⊆ E\M∗ such that Gr(S∪M∗) is a collection of
≥ σp alternating paths and ≤ σc alternating cycles and ω(S) ≥ k?

140

The variant of the problem that asks for exactly σp paths and exactly σc cycles
is called Strict Scaffolding (SSCA). When we want to precise particular
values for σp and σc, we refer to the problem as (σp, σc)−Scaffolding. We
refer to the optimization variants of Scaffolding that ask to minimize or
maximize ω(S) as Min Scaffolding and Max Scaffolding, respectively. In
what follows, we mainly focus on both problems Max Scaffolding and Max
Strict Scaffolding, which correspond to the bioinformatic problem.

Problems Strict Scaffolding and Scaffolding received much attention
in the framework of complexity and approximation [2,13]. In these articles, the
authors showed the hardness of Scaffolding even in presence of restricted pa-
rameters or graph classes (cycle length, bipartite planar graph, tree, . . .). Some
lowers bounds according to complexity hypothesis (P 6= NP, ET H) are proposed
using the Gap-reduction, and reduction preserving lower bound in the field of
exact exponential time algorithms. On positive side, some upper bounds with
efficient polynomial-time approximation algorithms are designed. Theoretical as-
pects of Scaffolding are completed by a parameterized complexity approach
in [14] and [13]. In such context, the authors proposed some negative results
about the quest of a polynomial kernel, or a FPT -algorithm.

3 Model and algorithms

In this section, we propose to solve, sometimes to optimality, the Strict Scaf-
folding problem with Constraint Programming. First, we remind some defini-
tions, especially on not so classical graph variables. Then we describe variables
and constraints used to model Strict Scaffolding. Finally we describe search
strategies used to solve the optimization problem.

a - Constraint Programming Definitions

Definition 1. A domain of a variable x, denoted D(x), is a bounded set of
values which can be affected to x. We note x (resp. x) the lower bound (resp.
upper bound) of domain D(x).

Definition 2. A constraint Ci ∈ C on the subset of m variables X (Ci) =
{xi1 , xi2 , . . . , xim} is a subset of D(xi1)×D(xi2)× . . .×D(xim). It determines
the m-tuples of values allowed to be assigned to variables xi1 , xi2 , . . . , xim .

Definition 3. A CSP is a triplet (X ,D,C), where X = {x1, x2, . . . , xn} is a set
of variables, D = {D(x1), D(x2), . . . , D(xn)} is a set of domains describing the
different values which could be assigned to the variables in X and C is a set of
constraints between the variables in X .

Definition 4. A solution of a CSP is a set of assignments of values to vari-
ables, {(x1, a1), (x2, a2), . . . , (xn, an)}, with ∀i ∈ [1, n], ai ∈ D(xi), satisfying all
constraints in C.

141

Let us remark these general definitions related to CSP do not fix the pos-
sible types of variables yet. Classically, we manipulate integer values in integer
domains for integer domain variables, but more recently, set variables were in-
troduced and even graph variables [15,16], yielding easier modeling. We exploit
here those improvements to expressivity.

Concerning a set variable x, there exists a compact representation of the
domain D(x), where we specify two sets of elements [17]: the set of elements
that must belong to the set assigned to x (which we still call the lower bound
x) and the set of elements that may belong to this set (the upper bound x).
The domain itself can be represented as a lattice structure corresponding to the
partial order defined by sets inclusion. When defined in Choco, a set variables
are encoded with two classical bounds: the union of the all set of possible values
called the envelope and the intersection of all set of possible values called the
kernel.

Generalizing this point of view, a graph can be seen as two sets V and E with
an inherent constraint specifying that E ⊆ V ×V . The domain D(G) of a graph
variables G is specified by two graphs: a lower bound graph G and an upper
bound graph G, such that the domain is the set of all subgraphs of the upper
bound which are supergraphs of the lower bound. For a better understanding
of graph variables, we refer to Section "3.10. Graph based Constraints" of the
Global Constraint review [18],

b - Constraint Model

Variables As previously described, we introduce an undirected graph variable
Gv(V v,Ev) (Gv for Graph variable) whose value will represent the underlying
solution. The variable Gv(V v,Ev) is derived from the graph G(V,E) previously
defined in Section 2, with allowed self loops on vertices. Although in the original
formulation of Strict Scaffolding problem, there are no self loops allowed,
here they will help us to differentiate cycles, which do not contain any, and paths
with a final loop on each extremity. A self loop incident to a vertex u counts for
one in its degree. All vertices are mandatory and simply belong to Vv. Edges in
M∗ are also mandatory and belong to Ev. We will look for a solution by adding,
or not, remaining edges to the kernel.

For cost optimisation, we decide to manipulate only |V v| integer variables to
handle the positive weights on a solution. Let’s remark this is a more compact
model than having |Ev| variables to represent null of positive weights on edges.
We denote by wmax the maximum weight of an edge that could be met in the
graph, and E = (Eij) a boolean variable matrix channeling the graph Gv (i.e. if
edge between i and j is in the kernel, Eij = 1; if the edge is out of the envelope,
Eij = 0; else domain is {0, 1}) The integer variables are:

– a vectorWeights of size |V v|. The variableWeights[u] represents the sum of
weights of edges incident to node u in the solution. Its domainD(Weigths[u])
is the set {0, . . . , wmax+1}. In order to count each weight only once in the
solution, we derive from the weight function w defined in Section 2 an upper
triangle weight matrix denoted by w∗.

142

– a variable TotalWeight to sum up all the Weights. We can restrict initial
domain of TotalWeight to lower and upper bound computed by any heuristic
described in previous sections. Here it belongs to {0, . . . , |V v| ∗ wmax}.

We define the following constraint model, very simply defining the problem:

CSP Model : Scaffold Problem with Graph Var and Graph Constraints

connected_components(Gv, σp + σc) (1)

minDegree(Gv, 2) (2)

maxDegree(Gv, 2) (3)

nbLoops(Gv, 2σp) (4)

Weights[i] =
∑

j∈V v

(wijEij) ∀ i ∈ V v (5)

TotalWeight =
∑

i∈V v

Weights[i] (6)

In Equation 1, Gv is constrained to have a specific number of connected com-
ponents (σp+σc). By default choco solver use fast filtering rules, first computing
all connected components of G by performing one Depth First Search (using
Tarjan algorithm [19]) where time complexity is O(|V v|+ |Ev|) and check their
number according to the parameters. If necessary, better propagation can be
performed by looking for articulation points in time complexity O(|V v|.|Ev|),
or even better by managing dominator [20]. This was not necessary in choco to
get good performances.

In Equation 2 and Equation 3, we linearly maintain degree for each node
u in Gv by checking size of upper bound and lower bound of variable-set Eu,
designing edges incident to vertex u, and if necessary by applying complete
filtering, removing (or forcing) associated edges. Moreover, since M∗ ⊆ Ev we
necessarily construct alternating paths and cycles when adding consistent edges
to the kernel.

In Equation 4, number of nodes with self loop is linearly maintained to adjust
the parameter with complete filtering when bounds are reached. As explained,
a cycle will not have self loops but paths will have it at extremities (only one
due to upper triangle matrix). Then, without the need to distinguish paths and
cycles, this constraint guarantees the solution to have exactly σp paths. Since
Equation 1 fixes the number of connected components, we also have exactly σc
cycles.

The remaining Equation 5 and Equation 6 are simple scalar constraints.

143

c - Search Strategies

As search implementation, we use different variables families (branching on
edges or directly branching on cost) and we focus on ordering the variables to
be assigned. We test :

1. a static lexicographic strategy assignment on edges (Eij), meaning that vari-
ables are simply not sorted;

2. a random strategy on edges (Eij) with max value first, which help us to have
a median behavior on edges branching;

3. a dynamic variable ordering heuristic, called dom over wdeg, applied to
weight variables (default strategy in our solver). This strategy consists in
ordering the involved variables by increasing size of domain, combined with
a weighted sum on the constraints they belong to. This strategy is supposed
to well behave for a majority of problems [21];

4. a maximum value strategy on cost: as we have to maximize the TotalWeight
variable, we use a standard max domain value strategy first on Weights
variables: by propagation, assigning first edges with biggest weights leads to
connect edges with maximum numbers of pairs of reads mapping on both
contigs;

5. a max-regret strategy: assigning first edge with biggest weight for variable
with biggest difference between maximum and previous value in domain (aka
regret, if not chosen). This last strategy yields usually good results on such
"max

∑
" optimization problem.

4 Experiments

Scaffold graphs used to run our experiments are coming from two sources. A
first dataset, called real instances, has been build using the following pipeline:

1. We choose a reference genome, on a public database, for instance on the
Nucleotide NCBI database4. Table 1 shows the selected genomes used to
perform our experiments. They were chosen because of their various origins:
a virus, an insect, a plant and a yeast; and their small size: two of them
comes from organelles, a mitochondrion and a chloroplast, which have small
genomes.

2. We simulate paired-end reads, using a tool like wgsim [22]. The chosen pa-
rameters are an insert size of 500bp and a read length L of 100bp.

3. We assemble those simulated reads using a de novo assembly tool, based on
a de Bruijn graph efficient representation. This tool is minia [23], and was
used with a size k = 30 for the k-mers stored in the de Bruijn graph.

4. We map the reads on the contigs, using bwa [24]. This mapping tool was
chosen according to results obtained in [25], a survey on scaffolding tools.

5. We generate the scaffold graph from the mapping file. Statistics on number
of vertices and edges in produced scaffold graphs can be viewed on Table 2.

4 http://www.ncbi.nlm.nih.gov/

144

Table 1. Dataset of real instances.

Species (Alias) Size (bp) Type Accession number
Zaire ebolavirus (ebola) 18959 Complete genome NC_002549.1

Danaus plexippus (monarch) 15314 Mitochondrion NC_021452.1
Oryza sativa Japonica (rice) 134525 Chloroplast X15901.1

Saccharomyces cerevisiae (sacchr3) 316613 Chromosome 3 X59720.2
Saccharomyces cerevisiae (sacchr12) 1078177 Chromosome 12 NC_001144.5

Since it is quite complicated to find real instances through fully meeting
needed parameters, especially size of the scaffold graphs, and to perform av-
erage analysis on classes with only one element, a second dataset of gener-
ated scaffold graphs was used to complete the size gap between our real in-
stances: the rice scaffold graph counts 84 contigs, but sacchr3 counts 296, and
sacchr12 counts 889. Instances were generated by the tool Grimm [26]. The pa-
rameters used to generate this dataset were chosen to be similar to the ones
observed on real instances. However we are conscious that they do not exactly
meet the reality. A set of thirty instances were generated by pair of parameters
(#vertices,#edges): these pairs come from real instances parameters, completed
by {(200, 300), (300, 450), (400, 600), (500, 750)}.

We run experiments on a MacBook Pro with Intel i7 2.8Ghz processor and
4 Go RAM. First we evaluate each of the previously described strategies. Then,
using the best strategy, we solve the real instances and discuss the convenience of
such modeling. Finally, we compare obtained results to previous ILP approach.

5 Results

Testing search strategies.

Figure 2 shows the comparison between the different tested search strategies
on a generated instance with 200 vertices. Scores shown on this figure is simply
the total weight of the current solution. As expected, lexicographic and random
strategies on edges do not perform well. This is due to the fact that scaffold
graph have a very peculiar structure. They are sparse, and as one can see on
Figure 1, the degree of vertices is quite small. For cost based strategies, surpris-
ingly the standard max value performs very well contrary to max regret. We can
explain this by the correlation between weight value (based on the number of
bridging reads) and the probability that this will be a good link. Weight value
are not randomly distributed but are extracted from partial information (reads)
coming from a precise structure (the underlying connected structuration of the
chromosome).

Let’s remark that default dom/wdeg shows its classical robust good behavior
without any knowledge !

In what follows, all experiments were performed using the max value strategy.

Results on real instances.

145

0 200 400 600 800

0
50

0
10

00
15

00
20

00

Solving time (s)

Sc
or
e

Lexicographic
Random
Max regret
Dom over wdeg
Max value

Fig. 2. Comparison of search strategies.

Table 2. Search for optimal solutions on real instances.

Instances parameters first sol optimality
name nbContigs nbEdges σp σc value searchNodes time (s) value searchNodes time (s)

monarch 14 19 5 0 520 16 0.013 520 16 0.013
ebola 17 26 3 1 793 20 0.026 793 20 0.026
ebola 17 26 4 0 707 42 0.040 707 56 0.123
rice 84 139 12 0 4377 106 0.091 4382 147k 177

sacch3 296 527 36 0 14845 406 0.48 > 1M >3600
sacch12 889 1522 118 1 Out of Memory

146

As one can observe in Table 2, we tested our program on several scaffold
graphs produced from biological data. It is interesting to note that the first
solution has already a high score and is found very quickly (less than one second
with very few backtracks). Having a closer look to ebola, we noticed that scaffold
graphs may contain what we call bad contig jumps, meaning there exists a contig
a which should appear between two contigs b and c in the genome but such that
the optimal solution does not contain {a, b, c} in any scaffold. When the contig a
is not included in the solution at its place in a path, we say that it is a forgotten
contig. Necessarily, the length of a is small enough to be inserted in the gap
between b and c, the latter being smaller than the insert size of the library.
For instance, the ebola graph should ideally contain one unique linear scaffold
representing the linear chromosome of ebola. Nevertheless, the optimal solution
contains at least four scaffolds because it exists forgotten contigs which can be
considered as scaffolds on their owns. On Figure 1, two small contigs appear
without any bad consequence, namely 0-1 and 32-33. Indeed, the optimal path
includes them. However, other cases are not so easy to solve: for instance the
ambiguity between paths 31-30-16 and 13-12-16 leads to choose the latter one,
only considering weights. But it is a hidden contig jump, and further examination
of inter-contig distances should be included to disambiguate and include both
contigs 12-13 and 30-31 in a same path of the solution. Same situation occurs for
paths 4-5-3 and 10-11-4. Case of contig jump 14-15 is quite different: the sums
of weights on side edges 6-15 and 14-17 is less that the weight of the "by-pass"
edge 6-17. In such case, contig 14-15 is not included in the solution. In a nutshell,
contigs 30-31, 4-5 and 14-15 are forgotten contigs, explaining the four scaffolds
instead of only one expected. Here, we express the necessity to pre-process the
graph to treat such contigs and we will consider it as a priority in our future
works.

Comparison to previous ILP approach In [11], we proposed an ILP based in-
cremental approach, which was able to heuristically handle large instances. The
underlying idea is very simple and consists in optimizing the score, under con-
straints on degrees, and use an external treatment to forbid detected cycles. We
ran this tool on our real dataset. The main difference with actual model is that
we considered only cases with paths, and systematically forbade cycles. Thus,
the actual model is more expressive, since it allows a given number of cycles.

Table 3. Comparison with previous ILP approach.

Instances first sol optimality ILP [11]
name value time (s) value time (s) value time (s)

monarch 520 0.013 520 0.013 507 0.00025
ebola 793 0.026 793 0.026 776 0.00028
rice 4377 0.091 4382 177 4320 0.00036

sacch3 14845 0.48 >3600 14616 0.0071

147

Table 3 shows comparison of solving time and scores between Choco-graph
and ILP heuristic. What is noticeable is that, as expected, computation time
stays very low when the size of instances increases, and that ILP does not provide
an optimal score on these instances. More surprisingly, the score given by first
solution is better than ILP score, meaning that efforts made on modelization are
somehow rewarded.

6 Conclusion and future works

Classically, modeling real problems brings a gap between customers and mod-
elers. Here, a first gap exist between biologist researchers and bioinformatic
researchers to express biological problem into graph modeling problem. Con-
straint Programming provides a natural declarative way to express constraints
on a given problem without worsen the modeling gap between combinatorial
problem description and combinatorial solvers resolution, contrary to what hap-
pened with previous attempts using SMT, SAT or ILP models. Moreover, the
Graph variable development are absolutely convenient to the modeling of com-
binatorial problems on graphs and we present here a typical example where its
usefulness is demonstrated. Although the underlying problem is NP-hard, and
there is no hope to quickly solve very large instances in a reasonable time, we
could improve solving time by introducing more constraints to help propagation
efficiency. For instance, by considering contig lengths and expected lengths of
chromosome, if it is known, we could set the minimum length of a cycle or a
path. Or, considering that we could not guarantee that all linking information
are provided by the original scaffold graph, we could consider only a maximum
number of cycles, but allows the number of paths to be itself a variable. Finally,
it would be interesting to embed the solver in an interactive tool which allows
an expert user to solve and visualize on a given instance.

Acknowledgements

We want to thanks Valentin Pollet for an early version of the Choco graph code.

References

1. Daniel H. Huson, Knut Reinert, and Eugene W. Myers. The greedy path-merging
algorithm for contig scaffolding. Journal of the ACM (JACM), 49(5):603–615,
2002.

2. Annie Chateau and Rodolphe Giroudeau. A complexity and approximation frame-
work for the maximization scaffolding problem. Theor. Comput. Sci., 595:92–106,
2015.

3. Mihai Pop, Daniel S Kosack, and Steven L. Salzberg. Hierarchical scaffolding with
bambus. Genome research, 14(1):149–159, 2004.

4. Marten Boetzer, Christiaan V. Henkel, Hans J. Jansen, Derek Butler, and Wal-
ter Pirovano. Scaffolding pre-assembled contigs using sspace. Bioinformatics,
27(4):578–579, 2011.

148

5. René L Warren, Granger G Sutton, Steven JM Jones, and Robert A Holt. Assem-
bling millions of short dna sequences using ssake. Bioinformatics, 23(4):500–501,
2007.

6. Sergey Koren, Todd J. Treangen, and Mihai Pop. Bambus 2: scaffolding
metagenomes. Bioinformatics, 27(21):2964–2971, 2011.

7. Song Gao, Wing-Kin Sung, and Niranjan Nagarajan. Opera: reconstructing op-
timal genomic scaffolds with high-throughput paired-end sequences. Journal of
Computational Biology, 18(11):1681–1691, 2011.

8. Nilgun Donmez and Michael Brudno. Scarpa: scaffolding reads with practical
algorithms. Bioinformatics, 29(4):428–434, 2013.

9. Alexey A Gritsenko, Jurgen F. Nijkamp, Marcel J. T. Reinders, and Dick de Ridder.
Grass: a generic algorithm for scaffolding next-generation sequencing assemblies.
Bioinformatics, 28(11):1429–1437, 2012.

10. Leena Salmela, Veli Mäkinen, Niko Välimäki, Johannes Ylinen, and Esko Ukkonen.
Fast scaffolding with small independent mixed integer programs. Bioinformatics,
27(23):3259–3265, 2011.

11. Nicolas Briot, Annie Chateau, Rémi Coletta, Simon De Givry, Philippe Leleux,
and Thomas Schiex. An Integer Linear Programming Approach for Genome Scaf-
folding. In Workshop Constraints in Bioinformatics, 2014.

12. Jean-Guillaume Fages, Narendra Jussien, and Xavier Lorca a nd
Charles Prud’homme. Choco3: an open source java constraint programming
library, 2013.

13. Mathias Weller, Annie Chateau, Clément Dallard, and Rodolphe Giroudeau.
Scaffolding problems revisited: Complexity, approximation and fixed parameter
tractable algorithms, and some specials cases. submited to Algorithmica, 2016.

14. Mathias Weller, Annie Chateau, and Rodolphe Giroudeau. Exact approaches for
scaffolding. BMC Bioinformatics, 16(Suppl 14):S2, 2015.

15. Jean-Charles Régin. Modeling problems in constraint programming. Tutorial CP,
4, 2004.

16. Grégoire Dooms, Yves Deville, and Pierre Dupont. CP (graph): Introducing a
graph computation domain in constraint programming. In Principles and Practice
of Constraint Programming-CP 2005, pages 211–225. Springer, 2005.

17. Carmen Gervet. Interval propagation to reason about sets: definition and imple-
mentation of a practical language. Constraints, pages 191–244, 1997.

18. Jean-Charles Regin. Global constraints: A survey. In Pascal van Hentenryck and
Michela Milano, editors, Hybrid Optimization, volume 45 of Springer Optimization
and Its Applications, pages 63–134. Springer New York, 2011.

19. Robert Endre Tarjan. Depth-first search and linear graph algorithms. SIAM
Journal on Computing, 1(2):146–160, 1972.

20. Luis Quesada, Peter Van Roy, Yves Deville, and Raphaël Collet. Using dominators
for solving constrained path problems. In Practical Aspects of Declarative Lan-
guages, 8th International Symposium, PADL 2006, Charleston, SC, USA, January
9-10, 2006, Proceedings, pages 73–87, 2006.

21. Fred Hemery, Christophe Lecoutre, and Lakhdar Sais. Boosting systematic search
by weighting constraints. In In Proceedings of ECAI’04. Citeseer, 2004.

22. Heng Li, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils Homer,
Gabor T. Marth, Gonçalo R. Abecasis, and Richard Durbin. The sequence align-
ment/map format and samtools. Bioinformatics, 25(16):2078–2079, 2009.

149

23. Rayan Chikhi and Guillaume Rizk. Space-efficient and exact de bruijn graph
representation based on a bloom filter. In Algorithms in Bioinformatics - 12th
International Workshop, WABI 2012, Ljubljana, Slovenia, September 10-12, 2012.
Proceedings, pages 236–248, 2012.

24. Heng Li and Richard Durbin. Fast and accurate long-read alignment with burrows-
wheeler transform. Bioinformatics, 26(5):589–595, 2010.

25. Martin Hunt, Chris Newbold, Matthew Berriman., and Thomas D. Otto. A com-
prehensive evaluation of assembly scaffolding tools. Genome Biology, 15(3):R42,
2014.

26. Adel Ferdjoukh, Eric Bourreau, Annie Chateau, and Clémentine Nebut. A Model-
Driven Approach for the Generation of Relevant and Realistic Test Data. In SEKE
2016, page to appear, 2016.

150

