M. David, . Blei, Y. Andrew, . Ng, I. Michael et al., Latent dirichlet allocation, Journal of machine Learning research, vol.3, pp.993-1022, 2003.

T. Richard, I. Carback, D. Brad, . Gaynor, R. Nathan et al., Systems and methods for software analytics, US Patent, vol.20150, p.363, 0197.

G. Cleuziou, An extended version of the k-means method for overlapping clustering, 2008 19th International Conference on Pattern Recognition, 2008.
DOI : 10.1109/ICPR.2008.4761079

URL : https://hal.archives-ouvertes.fr/hal-00466009

C. Scott, . Deerwester, T. Susan, T. K. Dumais, G. W. Landauer et al., Indexing by latent semantic analysis, JASIS, issue.6, pp.41391-407, 1990.

C. Joseph and . Dunn, Well-separated clusters and optimal fuzzy partitions, Journal of cybernetics, vol.4, issue.1, pp.95-104, 1974.

S. Gopal and Y. Yang, Von mises-fisher clustering models, Proceedings of the International Conference on Machine Learning (ICML), pp.154-162, 2014.

D. Hall, D. Jurafsky, D. Christopher, and . Manning, Studying the history of ideas using topic models, Proceedings of the Conference on Empirical Methods in Natural Language Processing, EMNLP '08, pp.363-371, 2008.
DOI : 10.3115/1613715.1613763

T. Hofmann, Probabilistic latent semantic analysis, Proceedings of the 15th conference on Uncertainty in Artificial Intelligence, pp.289-296, 1999.

J. Han-lau, T. Baldwin, and D. Newman, On collocations and topic models, ACM Trans. Speech Lang. Process, vol.1010, issue.3, pp.1-1014, 2013.

J. Han-lau, K. Grieser, D. Newman, and T. Baldwin, Automatic labelling of topic models, Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pp.1536-1545, 2011.

J. Antonio-lossio-ventura, C. Jonquet, M. Roche, and M. Teisseire, BIOTEX: A system for biomedical terminology extraction, ranking, and validation, Proceedings of the ISWC 2014 -the 13th International Semantic Web Conference, pp.157-160, 2014.

D. Luo, J. Yang, M. Krstajic, W. Ribarsky, and D. Keim, Eventriver: Visually exploring text collections with temporal references, IEEE Transactions on Visualization and Computer Graphics, vol.18, issue.1, pp.93-105, 2012.

D. Christopher, P. Manning, and . Raghavan, Hinrich Schütze, et al. Introduction to information retrieval, 2008.

A. Mccallum, M. David, . Mimno, M. Hanna, and . Wallach, Rethinking lda: why priors matter, Advances in Neural Information Processing Systems, pp.1973-1981, 2009.

Q. Mei, X. Shen, and C. Zhai, Automatic labeling of multinomial topic models, Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '07, pp.490-499, 2007.
DOI : 10.1145/1281192.1281246

M. Nokel and N. Loukachevitch, A Method of Accounting Bigrams in Topic Models, Proceedings of the 11th Workshop on Multiword Expressions, pp.1-9, 2015.
DOI : 10.3115/v1/W15-0901

O. Derek, D. Callaghan, J. Greene, P. Carthy, and . Cunningham, An analysis of the coherence of descriptors in topic modeling, Expert Systems with Applications, vol.42, issue.13, pp.5645-5657, 2015.

P. Paatero and U. Tapper, Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values, Environmetrics, vol.18, issue.2, pp.111-126, 1994.
DOI : 10.1002/env.3170050203

M. Steyvers, P. Smyth, M. Rosen-zvi, and T. Griffiths, Probabilistic author-topic models for information discovery, Proceedings of the 2004 ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '04, pp.306-315, 2004.
DOI : 10.1145/1014052.1014087

J. Tang, S. Wu, J. Sun, and H. Su, Cross-domain collaboration recommendation, Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '12, pp.1285-1293, 2012.
DOI : 10.1145/2339530.2339730

C. Wagner, V. Liao, P. Pirolli, L. Nelson, and M. Strohmaier, It's Not in Their Tweets: Modeling Topical Expertise of Twitter Users, 2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Confernece on Social Computing, pp.91-100, 2012.
DOI : 10.1109/SocialCom-PASSAT.2012.30

M. Hanna and . Wallach, Topic modeling: beyond bag-of-words, Proceedings of the 23rd International Conference on Machine Learning, pp.977-984, 2006.

X. Wang, A. Mccallum, and X. Wei, Topical N-Grams: Phrase and Topic Discovery, with an Application to Information Retrieval, Seventh IEEE International Conference on Data Mining (ICDM 2007), pp.697-702, 2007.
DOI : 10.1109/ICDM.2007.86

F. Wei, S. Liu, Y. Song, S. Pan, M. X. Zhou et al., TIARA, Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '10, pp.153-162, 2010.
DOI : 10.1145/1835804.1835827

W. Wu, H. Xiong, and S. Shekhar, Clustering and information retrieval, 2013.
DOI : 10.1007/978-1-4613-0227-8

P. Xie, P. Eric, and . Xing, Integrating document clustering and topic modeling, Proceedings of the 29th Conference on Uncertainty in Artificial Intelligence (UAI), 2013.

X. Yan, J. Guo, Y. Lan, and X. Cheng, A biterm topic model for short texts, Proceedings of the 22nd international conference on World Wide Web, WWW '13, pp.1445-1456, 2013.
DOI : 10.1145/2488388.2488514

Y. Zhang, G. Zhang, H. Chen, A. L. Porter, D. Zhu et al., Topic analysis and forecasting for science, technology and innovation: Methodology with a case study focusing on big data research, Technological Forecasting and Social Change, vol.105, 2016.
DOI : 10.1016/j.techfore.2016.01.015

J. Wayne-xin-zhao, J. Jiang, Y. He, P. Song, E. Achananuparp et al., Topical keyphrase extraction from twitter, Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies (ACL-HLT), pp.379-388, 2011.