
HAL Id: lirmm-01367863
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01367863v1

Submitted on 16 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

First Order-Rewritability and Containment of
Conjunctive Queries in Horn Description Logics

Meghyn Bienvenu, Peter Hansen, Carsten Lutz, Frank Wolter

To cite this version:
Meghyn Bienvenu, Peter Hansen, Carsten Lutz, Frank Wolter. First Order-Rewritability and Con-
tainment of Conjunctive Queries in Horn Description Logics. IJCAI: International Joint Conference
on Artificial Intelligence, Jul 2016, New York, United States. �lirmm-01367863�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01367863v1
https://hal.archives-ouvertes.fr

First Order-Rewritability and Containment of Conjunctive Queries in
Horn Description Logics

Meghyn Bienvenu
CNRS, Univ. Montpellier, Inria, France

meghyn@lirmm.fr

Peter Hansen and Carsten Lutz
University of Bremen, Germany

{hansen, clu}@informatik.uni-bremen.de

Frank Wolter
University of Liverpool, UK

frank@csc.liv.ac.uk

Abstract
We study FO-rewritability of conjunctive queries in
the presence of ontologies formulated in a descrip-
tion logic between EL and Horn-SHIF , along with
related query containment problems. Apart from
providing characterizations, we establish complex-
ity results ranging from EXPTIME via NEXPTIME
to 2EXPTIME, pointing out several interesting ef-
fects. In particular, FO-rewriting is more complex
for conjunctive queries than for atomic queries when
inverse roles are present, but not otherwise.

1 Introduction
When ontologies are used to enrich incomplete and hetero-
geneous data with a semantics and with background knowl-
edge [Calvanese et al., 2009; Kontchakov et al., 2013;
Bienvenu and Ortiz, 2015], efficient query anwering is a pri-
mary concern. Since classical database systems are unaware
of ontologies and implementing new ontology-aware systems
that can compete with these would be a huge effort, a main ap-
proach used today is query rewriting: the user query q and the
ontology O are combined into a new query qO that produces
the same answers as q under O (over all inputs) and can be
handed over to a database system for execution. Popular target
languages for the query qO include SQL and Datalog. In this
paper, we concentrate on ontologies formulated in description
logics (DLs) and on rewritability into SQL, which we equate
with first-order logic (FO).

FO-rewritability in the context of query answering under DL
ontologies was first studied in [Calvanese et al., 2007]. Since
FO-rewritings are not guaranteed to exist when ontologies
are formulated in traditional DLs, the authors introduce the
DL-Lite family of DLs specifically for the purpose of ontology-
aware query answering using SQL database systems; in fact,
the expressive power of DL-Lite is seriously restricted, in this
way enabling existence guarantees for FO-rewritings. While
DL-Lite is a successful family of DLs, there are many appli-
cations that require DLs with greater expressive power. The
potential non-existence of FO-rewritings in this case is not nec-
essarily a problem in practical applications. In fact, ontologies
emerging from such applications typically use the available
expressive means in a harmless way in the sense that efficient
reasoning is often possible despite high worst-case complexity.

One might thus hope that, in practice, FO-rewritings can often
be constructed also beyond DL-Lite.

This hope was confirmed in [Bienvenu et al., 2013;
Hansen et al., 2015], which consider the case where on-
tologies are formulated in a DL of the EL family [Baader
et al., 2005] and queries are atomic queries (AQs) of the
form A(x). To describe the obtained results in more detail,
let an ontology-mediated query (OMQ) be a triple (T ,Σ, q)
with T a description logic TBox (representing an ontology),
Σ an ABox signature (the set of concept and role names that
can occur in the data), and q an actual query. Note that T
and q might use symbols that do not occur in Σ; in this way,
the TBox enriches the vocabulary available for formulating
q. We use (L,Q) to denote the OMQ language that consists
of all OMQs where T is formulated in the description logic
L and q in the query language Q. In [Bienvenu et al., 2013],
FO-rewritability is characterized in terms of the existence of
certain tree-shaped ABoxes, covering a range of OMQ lan-
guages between (EL,AQ) and (Horn-SHI,AQ). On the one
hand, this characterization is used to clarify the complexity
of deciding whether a given OMQ is FO-rewritable, which
turns out to be EXPTIME-complete. On the other hand, it
provides the foundations for developing practically efficient
and complete algorithms for computing FO-rewritings. The
latter was explored further in [Hansen et al., 2015], where
a novel type of algorithm for computing FO-rewritings of
OMQs from (EL,AQ) is introduced, crucially relying on the
previous results from [Bienvenu et al., 2013]. Its evaluation
shows excellent performance and confirms the hope that, in
practice, FO-rewritings almost always exist. In fact, rewriting
fails in only 285 out of 10989 test cases.

A limitation of the discussed results is that they concern
only AQs while in many applications, the more expressive
conjunctive queries (CQs) are required. The aim of the current
paper is thus to study FO-rewritability of OMQ languages
based on CQs, considering ontology languages between EL
and Horn-SHIF . In particular, we provide characterizations
of FO-rewritability in the required OMQ languages that are
inspired by those in [Bienvenu et al., 2013] (replacing tree-
shaped ABoxes with a more general form of ABox), and we
analyze the complexity of FO-rewritability using an automata-
based approach. While practically efficient algorithms are
out of the scope of this article, we believe that our work also
lays important ground for the subsequent development of such

algorithms. Our approach actually does allow the construction
of rewritings, but it is not tailored towards doing that in a
practically efficient way. It turns out that the studied FO-
rewritability problems are closely related to OMQ containment
problems as considered in [Bienvenu et al., 2012; Bourhis and
Lutz, 2016]. In fact, being able to decide OMQ containment
allows us to concentrate on connected CQs when deciding FO-
rewritability, which simplifies technicalities considerably. For
this reason, we also study characterizations and the complexity
of query containment in the OMQ languages considered.

Our main complexity results are that FO-rewritability
and containment are EXPTIME-complete for OMQ lan-
guages between (EL,AQ) and (ELHF⊥,CQ) and 2EXPTIME-
complete for OMQ languages between (ELI,CQ) and
(Horn-SHIF ,CQ). The lower bound for containment applies
already when both OMQs share the same TBox. Replacing
AQs with CQs thus results in an increase of complexity by
one exponential in the presence of inverse roles (indicated by
I), but not otherwise. Note that the effect that inverse roles
can increase the complexity of querying-related problems was
known from expressive DLs of the ALC family [Lutz, 2008],
but it has not previously been observed for Horn-DLs such
as ELI and Horn-SHIF . While 2EXPTIME might appear to
be very high complexity, we are fortunately also able to show
that the runtime is double exponential only in the size of the
actual queries (which tends to be very small) while it is only
single exponential in the size of the ontologies. We also show
that the complexity drops to NEXPTIME when we restrict our
attention to rooted CQs, that is, CQs which contain at least
one answer variable and are connected. Practically relevant
queries are typically of this kind.

A slight modification of our lower bounds yields new lower
bounds for monadic Datalog containment. In fact, we close an
open problem from [Chaudhuri and Vardi, 1994] by showing
that containment of a monadic Datalog program in a rooted CQ
is CONEXPTIME-complete. We also improve the 2EXPTIME
lower bound for containment of a monadic Datalog program
in a CQ from [Benedikt et al., 2012] by showing that it already
applies when the arity of EDB relations is bounded by two,
rule bodies are tree-shaped, and there are no constants (which
in this case correspond to nominals); the existing construction
cannot achieve the latter two conditions simultaneously.

Full proofs are provided at http://www.informatik.uni-
bremen.de/tdki/research/papers.html.

Related work. Pragmatic approaches to OMQ rewriting
beyond DL-Lite often consider Datalog as a target language
[Rosati, 2007; Pérez-Urbina et al., 2010; Eiter et al., 2012;
Kaminski et al., 2014; Trivela et al., 2015]. These approaches
might produce a non-recursive (thus FO) rewriting if it exists,
but there are no guarantees. FO-rewritability of OMQs based
on expressive DLs is considered in [Bienvenu et al., 2014],
and based on existential rules in [Baget et al., 2011]. A prob-
lem related to ours is whether all queries are FO-rewritable
when combined with a given TBox [Lutz and Wolter, 2012;
Civili and Rosati, 2015]. There are several related works
in the area of Datalog; recall that a Datalog program is
bounded if and only if it is FO-rewritable [Ajtai and Gure-
vich, 1994]. For monadic Datalog programs, bounded-

ness is known to be decidable [Cosmadakis et al., 1988]
and 2EXPTIME-complete [Benedikt et al., 2015]; contain-
ment is also 2EXPTIME-complete [Cosmadakis et al., 1988;
Benedikt et al., 2012]. OMQs from (Horn-SHI,CQ) can be
translated to monadic Datalog with an exponential blowup,
functional roles (indicated by F) are not expressible.

2 Preliminaries and Basic Observations
Let NC and NR be disjoint and countably infinite sets of con-
cept and role names. A role is a role name r or an inverse role
r−, with r a role name. A Horn-SHIF concept inclusion (CI)
is of the form L v R, where L and R are concepts defined by
the syntax rules
R,R′ ::= > | ⊥ | A | ¬A | R uR′ | ¬L tR | ∃r.R | ∀r.R
L,L′ ::= > | ⊥ | A | L u L′ | L t L′ | ∃r.L

with A ranging over concept names and r over roles. In DLs,
ontologies are formalized as TBoxes. A Horn-SHIF TBox T
is a finite set of Horn-SHIF CIs, functionality assertions
func(r), transitivity assertions trans(r), and role inclusions
(RIs) r v s, with r and s roles. It is standard to assume that
functional roles are not transitive and neither are transitive
roles included in them (directly or indirectly). We make the
slighty stronger assumption that functional roles do not occur
on the right-hand side of role inclusions at all. This assump-
tion seems natural from a modeling perspective and mainly
serves the purpose of simplifying constructions; all our re-
sults can be extended to the milder standard assumption. An
ELIHF⊥ TBox is a Horn-SHIF TBox that contains neither
transitivity assertions nor disjunctions in CIs, an ELI TBox
is an ELIHF⊥ TBox that contains neither functionality as-
sertions nor RIs, and an ELHF⊥TBox is an ELIHF⊥ TBox
that does not contain inverse roles.

An ABox is a finite set of concept assertions A(a) and role
assertions r(a, b) where A is a concept name, r a role name,
and a, b individual names from a countably infinite set NI. We
sometimes write r−(a, b) instead of r(b, a) and use Ind(A) to
denote the set of all individual names used in A. A signature
is a set of concept and role names. We will often assume that
the ABox is formulated in a prescribed signature, which we
then call an ABox signature. An ABox that only uses concept
and role names from a signature Σ is called a Σ-ABox.

The semantics of DLs is given in terms of interpretations
I = (∆I , ·I), where ∆I is a non-empty set (the domain) and
·I is the interpretation function, assigning to each A ∈ NC a
set AI ⊆ ∆I and to each r ∈ NR a relation rI ⊆ ∆I ×∆I .
The interpretation CI ⊆ ∆I of a concept C in I is defined as
usual, see [Baader et al., 2003]. An interpretation I satisfies
a CI C v D if CI ⊆ DI , a functionality assertion func(r)
if rI is a partial function, a transitivity assertion trans(r) if
rI is transitive, an RI r v s if rI ⊆ sI , a concept assertion
A(a) if a ∈ AI , and a role assertion r(a, b) if (a, b) ∈ rI .
We say that I is a model of a TBox or an ABox if it satisfies
all inclusions and assertions in it. An ABox A is consistent
with a TBox T ifA and T have a common model. If α is a CI,
RI, or functionality assertion, we write T |= α if all models
of T satisfy α.

A conjunctive query (CQ) takes the form q = ∃xϕ(x,y)
with x,y tuples of variables and ϕ a conjunction of atoms of

the form A(x) and r(x, y) that uses only variables from x∪y.
The variables in y are called answer variables, the arity of q is
the length of y, and q is Boolean if it has arity zero. An atomic
query (AQ) is a conjunctive query of the form A(x). A union
of conjunctive queries (UCQ) is a disjunction of CQs that
share the same answer variables. Ontology-mediated queries
(OMQs) and the notation (L,Q) for OMQ languages were
already defined in the introduction. We generally assume that
if a role name r occurs in q and T |= s v r, then trans(s) /∈ T .
This is common since allowing transitive roles in the query
poses serious additional complications, which are outside the
scope of this paper; see e.g. [Bienvenu et al., 2010; Gottlob et
al., 2013].

Let Q = (T ,Σ, q) be an OMQ, q of arity n, A a Σ-ABox
and a ∈ Ind(A)n. We write A |= Q(a) if I |= q(a) for all
models I of T and A. In this case, a is a certain answer to
Q on A. We use cert(Q,A) to denote the set of all certain
answers to Q on A.

A first-order query (FOQ) is a first-order formula ϕ con-
structed from atoms A(x), r(x, y), and x = y; here, concept
names are viewed as unary predicates, role names as binary
predicates, and predicates of other arity, function symbols,
and constant symbols are not permitted. We write ϕ(x) to
indicate that the free variables of ϕ are among x and call x
the answer variables of ϕ. The number of answer variables
is the arity of ϕ and ϕ is Boolean if it has arity zero. We use
ans(I, ϕ) to denote the set of answers to the FOQ ϕ on the in-
terpretation I; that is, if ϕ is n-ary, then ans(I, ϕ) contains all
tuples d ∈ (∆I)n with I |= ϕ(d). To bridge the gap between
certain answers and answers to FOQs, we sometime view an
ABox A as an interpretation IA, defined in the obvious way.

For any syntactic object O (such as a TBox, a query, an
OMQ), we use |O| to denote the size of O, that is, the number
of symbols needed to write it (concept and role names counted
as a single symbol).

Definition 1 (FO-rewriting). An FOQ ϕ is an FO-rewriting
of an OMQ Q = (T ,Σ, q) if cert(Q,A) = ans(IA, ϕ) for all
Σ-ABoxes A that are consistent with T. If there is such a ϕ,
then Q is FO-rewritable.

Example 2. (1) Let Q0 = (T0,Σ0, q0(x, y)), where T0 =
{∃r.A v A,B v ∀r.A}, Σ0 = {r,A,B} and q0(x, y) =
B(x) ∧ r(x, y) ∧ A(y). Then ϕ0(x, y) = B(x) ∧ r(x, y) is
an FO-rewriting of Q0.

We will see in Example 10 that the query QA obtained
from Q0 by replacing q0(x, y) with the AQ A(x) is not FO-
rewritable (due to the unbounded propagation ofA via r-edges
by T0). Thus, an FO-rewritable OMQ can give raise to AQ

‘subqueries’ that are not FO-rewritable.
(2) Let Q1 = (T1,Σ1, q1(x)), where T1 = {∃r.∃r.A v

∃r.A}, Σ1 = {r,A}, and q1(x) = ∃y(r(x, y) ∧A(y)). Then
Q1 is not FO-rewritable (see again Example 10), but all AQ
subqueries that Q1 gives raise to are FO-rewritable.

The main reasoning problem studied in this paper is to de-
cide whether a given OMQ Q = (T ,Σ, q) is FO-rewritable.
We assume without loss of generality that every symbol in
Σ occurs in T or in q. We obtain different versions of this
problem by varying the OMQ language used. Note that we
have defined FO-rewritability relative to ABoxes that are con-

sistent with the TBox. It is thus important for the user to know
whether that is the case. Therefore, we also consider FO-
rewritability of ABox inconsistency. More precisely, we say
that ABox inconsistency is FO-rewritable relative to a TBox T
and ABox signature Σ if there is a Boolean FOQ ϕ such that
for every Σ-ABox A, A is inconsistent with T iff IA |= ϕ().

Apart from FO-rewritability questions, we will also study
OMQ containment. Let Qi = (Ti,Σ, qi) be two OMQs over
the same ABox signature. We say that Q1 is contained in Q2,
in symbols Q1 ⊆ Q2, if cert(Q1,A) ⊆ cert(Q2,A) holds for
all Σ-ABoxes A that are consistent with T1 and T2.

We now make two basic observations that we use in an
essential way in the remaining paper. We first observe that
it suffices to concentrate on ELIHF⊥ TBoxes T in normal
form, that is, all CIs are of one of the forms A v ⊥, A v
∃r.B,> v A,B1 u B2 v A,∃r.B v A with A,B,B1, B2

concept names and r a role. We use sig(T) to denote the
concept and role names that occur in T .

Proposition 3. Given a Horn-SHIF (resp. ELHF⊥)
TBox T1 and ABox signature Σ, one can construct in poly-
nomial time an ELIHF⊥ (resp. ELHF⊥) TBox T2 in normal
form such that for every Σ-ABox A,

1. A is consistent with T1 iff A is consistent with T2;

2. if A is consistent with T1, then for any CQ q that
does not use symbols from sig(T2) \ sig(T1), we have
cert(Q1,A) = cert(Q2,A) where Qi = (Ti,Σ, q).

Theorem 3 yields polytime reductions of FO-rewritability
in (Horn-SHIF ,Q) to FO-rewritability in (ELIHF⊥,Q) for
any query language Q, and likewise for OMQ containment
and FO-rewritability of ABox inconsistency. It also tells us
that, when working with ELHF⊥ TBoxes, we can assume
normal form. Note that transitioning from (Horn-SHF ,Q)
to (ELHF⊥,Q) is not as easy as in the case with inverse roles
since universal restrictions on the right-hand side of concept
inclusions cannot easily be eliminated; for this reason, we
do not consider (Horn-SHF ,Q). From now on, we work
with TBoxes formulated in ELIHF⊥ or ELHF⊥ and assume
without further notice that they are in normal form.

Our second observation is that, when deciding FO-
rewritability, we can restrict our attention to connected queries
provided that we have a way of deciding containment (for
potentially disconnected queries). We use conCQ to denote
the class of all connected CQs.

Theorem 4. Let L ∈ {ELIHF⊥, ELHF⊥}. Then FO-
rewritability in (L,CQ) can be solved in polynomial time
when there is access to oracles for containment in (L,Q) and
for FO-rewritability in (L, conCQ).

To prove Theorem 4, we observe that FO-rewritability of
an OMQ Q = (T ,Σ, q) is equivalent to FO-rewritability
of all OMQs Q = (T ,Σ, qc) with qc a maximal connected
component of q, excluding certain redundant such compo-
nents (which can be identified using containment). Backed
by Theorem 4, we generally assume connected queries when
studying FO-rewritability, which allows to avoid unpleasant
technical complications and is a main reason for studying
FO-rewritability and containment in the same paper.

3 Main Results
In this section, we summarize the main results established in
this paper. We start with the following theorem.
Theorem 5. FO-rewritability and containment are

1. 2EXPTIME-complete for any OMQ language between
(ELI,CQ) and (Horn-SHIF ,CQ), and

2. EXPTIME-complete for any OMQ language between
(EL,AQ) and (ELHF⊥,CQ).

Moreover, given an OMQ from (Horn-SHIF ,CQ) that is
FO-rewritable, one can effectively construct a UCQ-rewriting.

Like the subsequent results, Theorem 5 illustrates the strong
relationship between FO-rewritability and containment. Note
that inverse roles increase the complexity of both reasoning
tasks. We stress that this increase takes place only when the
actual queries are conjunctive queries, since FO-rewritability
for OMQ languages with inverse roles and atomic queries is
in EXPTIME [Bienvenu et al., 2013].

The 2EXPTIME-completeness result stated in Point 1 of
Theorem 5 might look discouraging. However, the situation is
not quite as bad as it seems. To show this, we state the upper
bound underlying Point 1 of Theorem 5 a bit more carefully.
Theorem 6. Given OMQs Qi = (Ti,Σi, qi), i ∈ {1, 2}, from
(Horn-SHIF ,CQ), it can be decided

1. in time 22
p(|q1|+log(|T1|))

whether Q1 is FO-rewritable and

2. in time 22
p(|q1|+|q2|+log(|T1|+|T2|))

whether Q1 ⊆ Q2,
for some polynomial p.

Note that the runtime is double exponential only in the
size of the actual queries q1 and q2, while it is only single
exponential in the size of the TBoxes T1 and T2. This is
good news since the size of q1 and q2 is typically very small
compared to the sizes of T1 and T2. For this reason, it can
even be reasonable to assume that the sizes of q1 and q2 are
constant, in the same way in which the size of the query is
assumed to be constant in data complexity. Note that, under
this assumption, Theorem 6 yields EXPTIME upper bounds.

One other way to relativize the seemingly very high com-
plexity stated in Point 1 of Theorem 5 is to observe that the
lower bound proofs require the actual query to be Boolean
or disconnected. In practical applications, though, typical
queries are connected and have at least one answer variable.
We call such CQs rooted and use rCQ to denote the class of
all rooted CQs. Our last main result states that, when we re-
strict our attention to rooted CQs, then the complexity drops
to CONEXPTIME.
Theorem 7. FO-rewritability and containment are
CONEXPTIME-complete in any OMQ language between
(ELI, rCQ) and (Horn-SHIF , rCQ).

4 Semantic Characterization
The upper bounds stated in Theorems 5 and 6 are established in
two steps. We first give characterizations of FO-rewritability in
terms of the existence of certain (almost) tree-shaped ABoxes,
and then utilize this characterization to design decision pro-
cedures based on alternating tree automata. The semantic
characterizations are of independent interest.

An ABox A is tree-shaped if the undirected graph with
nodes Ind(A) and edges {{a, b} | r(a, b) ∈ A} is acyclic and
connected and r(a, b) ∈ A implies that (i) s(a, b) /∈ A for
all s 6= r and (ii) s(b, a) /∈ A for all role names s. For tree-
shaped ABoxes A, we often distinguish an individual used as
the root, denoted with ρA. A is ditree-shaped if the directed
graph with nodes Ind(A) and edges {(a, b) | r(a, b) ∈ A} is
a tree and r(a, b) ∈ A implies (i) and (ii). The (unique) root
of a ditree-shaped ABox A is also denoted with ρA.

An ABox A is a pseudo tree if it is the union of ABoxes
A0, . . . ,Ak that satisfy the following conditions:

1. A1, . . . ,Ak are tree-shaped;
2. k ≤ |Ind(A0)|;
3. Ai ∩ A0 = {ρAi} and Ind(Ai) ∩ Ind(Aj) = ∅, for

1 ≤ i < j ≤ k.
We call A0 the core of A and A1, . . . ,Ak the trees of A. The
width of A is |Ind(A0)|, its depth is the depth of the deepest
tree of A, and its outdegree is the maximum outdegree of the
ABoxes A1, . . . ,Ak. For a pseudo tree ABox A and ` ≥ 0,
we write A|≤` to denote the restriction of A to the individuals
whose minimal distance from a core individual is at most `,
and analogously for A|>`. A pseudo ditree ABox is defined
analogously to a pseudo tree ABox, except that A1, . . . ,Ak

must be ditree-shaped.
When studying FO-rewritability and containment, we can re-

strict our attention to pseudo tree ABoxes, and even to pseudo
ditree ABoxes when the TBox does not contain inverse roles.
The following statement makes this precise for the case of
containment. Its proof uses unraveling and compactness.
Proposition 8. Let Qi = (Ti,Σ, qi), i ∈ {1, 2}, be OMQs
from (ELIHF⊥, CQ). ThenQ1 6⊆ Q2 iff there is a pseudo tree
Σ-ABox A of outdegree at most |T1| and width at most |q1|
that is consistent with both T1 and T2 and a tuple a from the
core of A such that A |= Q1(a) and A 6|= Q2(a).

If Q1, Q2 are from (ELHF⊥,CQ), then we can find a
pseudo ditree ABox with these properties.

We now establish a first version of the announced charac-
terizations of FO-rewritability. Like Proposition 8, they are
based on pseudo tree ABoxes.
Theorem 9. Let Q = (T ,Σ, q) be an OMQ from (ELIHF⊥,
conCQ). If the arity of q is at least one, then the following
conditions are equivalent:

1. Q is FO-rewritable;

2. there is a k ≥ 0 such that for all pseudo tree Σ-ABoxesA
that are consistent with T and of outdegree at most |T |
and width at most |q|: if A |= Q(a) with a from the core
of A, then A|≤k |= Q(a);

If q is Boolean, this equivalence holds with (2.) replaced by
2′. there is a k ≥ 0 such that for all pseudo tree Σ-ABoxesA

that are consistent with T and of outdegree at most |T |
and of width at most |q|: if A |= Q, then A|>0 |= Q or
A|≤k |= Q.

If Q is from (ELHF⊥, conCQ), then the above equivalences
hold also when pseudo tree Σ-ABoxes are replaced with
pseudo ditree Σ-ABoxes.

The proof of Proposition 8 gives a good intuition of why
FO-rewritability can be characterized in terms of ABoxes that
are pseudo trees. In fact, the proof of “2⇒ 1” of Theorem 9
is similar to the proof of Proposition 8. The proof of “1⇒ 2”
uses locality arguments in the form of Ehrenfeucht-Fraı̈ssé
games. The following examples further illustrate Theorem 9.

Example 10. (1) Non FO-rewritability of the OMQs QA and
Q1 from Example 2 is shown by refuting Condition 2 in Theo-
rem 9: let Ak = {r(a0, a1), . . . , r(ak, ak+1), A(ak+1)}, for
all k ≥ 0. Then Ak |= Q(a0) but Ak|≤k 6|= Q(a0) for
Q ∈ {QA, Q1}.

(2) Theorem 9 only holds for connected CQs: consider
Q2 = (T2,Σ2, q2), where T2 is the empty TBox, Σ2 =
{A,B}, and q2 = ∃x∃y(A(x) ∧B(y)). Q2 is FO-rewritable
(q2 itself is a rewriting), but Condition 2′ does not hold:
for Bk = {A(a0), R(a0, a1, . . . , R(ak, ak+1), B(ak+1)} we
have Bk |= Q2 but Bk|>0 6|= Q2 and Bk|≤k 6|= Q2.

(3) The modification 2′ of Condition 2 is needed to charac-
terize FO-rewritability of Boolean OMQs: obtain QB from
Q2 by replacing q2 with ∃xB(x). Then QB is FO-rewritable,
but the ABoxes Bk show that Condition 2 does not hold.

Theorem 9 does not immediately suggest a decision proce-
dure for FO-rewritability since there is no bound on the depth
of the pseudo tree ABoxes A used. The next result establishes
such a bound.

Theorem 11. Let T be an ELIHF⊥ TBox. Then Theorem 9
still holds with the following modifications:

1. if q is not Boolean or T is an ELHF⊥ TBox, “there is a
k ≥ 0” is replaced with “for k = |q|+ 24(|T |+|q|)

2

”;

2. if q is Boolean, “there is a k ≥ 0” is replaced with “for
k = |q|+ 24(|T |+2|q|)2”.

The proof of Theorem 11 uses a pumping argument based
on derivations of concept names in the pumped ABox by T .
Due to the presence of inverse roles, this is not entirely triv-
ial and uses what we call transfer sequences, describing the
derivation history at a point of an ABox. Together with the
proof of Theorem 9, Theorem 11 gives rise to an algorithm
that constructs actual rewritings when they exist.

5 Constructing Automata
We show that Proposition 8 and Theorem 11 give rise to
automata-based decision procedures for containment and FO-
rewritability that establish the upper bounds stated in Theo-
rems 5 and 6. By Theorem 4, it suffices to consider connected
queries in the case of FO-rewritability. We now observe that
we can further restrict our attention to Boolean queries. We
use BCQ (resp. conBCQ) to denote the class of all Boolean
CQs (resp. connected Boolean CQs).

Lemma 12. Let L ∈ {ELIHF⊥, ELHF⊥}. Then

1. FO-rewritability in (L, conCQ) can be reduced in poly-
time to FO-rewritability in (L, conBCQ);

2. Containment in (L,CQ) can be reduced in polytime to
containment in (L,BCQ).

The decision procedures rely on building automata that
accept pseudo tree ABoxes which witness non-containment
and non-FO-rewritability as stipulated by Proposition 8 and
Theorem 11, respectively. We first have to encode pseudo tree
ABoxes in a suitable way.

A tree is a non-empty (and potentially infinite) set T ⊆ N∗
closed under prefixes. We say that T is m-ary if for every
x ∈ T , the set {i | x · i ∈ T} is of cardinality at most m. For
an alphabet Γ, a Γ-labeled tree is a pair (T, L) with T a tree
and L : T → Γ a node labeling function. Let Q = (T ,Σ, q)
be an OMQ from (ELIHF⊥, conBCQ). We encode pseudo
tree ABoxes of width at most |q| and outdegree at most |T | by
(|T | · |q|)-ary Σε ∪ΣN -labeled trees, where Σε is an alphabet
used for labeling root nodes and ΣN is for non-root nodes.

The alphabet Σε consists of all Σ-ABoxes A such that
Ind(A) only contains individual names from a fixed set Indcore
of size |q| andA satisfies all functionality statements in T . The
alphabet ΣN consists of all subsets Θ ⊆ (NC ∩ Σ)] {r, r− |
r ∈ NR ∩ Σ}] Indcore that contain exactly one (potentially
inverse) role and at most one element of Indcore. A (|T | · |q|)-
ary Σε∪ΣN -labeled tree is proper if (i) the root node is labeled
with a symbol from Σε, (ii) each child of the root is labeled
with a symbol from ΣN that contains an element of Indcore,
(iii) every other non-root node is labeled with a symbol from
ΣN that contains no individual name, and (iv) every non-root
node has at most |q| successors and (v) for every a ∈ Indcore,
the root node has at most |q| successors whose label includes a.

A proper Σε ∪ ΣN -labeled tree (T, L) represents a pseudo
tree ABox A(T,L) whose individuals are those in the ABox
A that labels the root of T plus all non-root nodes of T , and
whose assertions are

A ∪ {A(x) | A ∈ L(x)}
∪ {r(b, x) | {b, r} ⊆ L(x)} ∪ {r(x, b) | {b, r−} ⊆ L(x)}
∪ {r(x, y) | r ∈ L(y), y is a child of x, L(x) ∈ ΣN}
∪ {r(y, x) | r− ∈ L(y), y is a child of x, L(x) ∈ ΣN}.

As the automaton model, we use two-way alternating parity
automata on finite trees (TWAPAs). As usual, L(A) denotes
the tree language accepted by the TWAPA A. Our central
observation is the following.

Proposition 13. For every OMQ Q = (T ,Σ, q) from
(ELIHF⊥,BCQ), there is a TWAPA

1. AQ that accepts a (|T | · |q|)-ary Σε ∪ ΣN -labeled tree
(T, L) iff it is proper, A(T,L) is consistent with T , and
A(T,L) |= Q;

AQ has at most 2p(|q|+log(|T |)) states, and at most p(|q|+
|T |) states if T is an ELHF⊥ TBox, p a polynomial.

2. AT that accepts a (|T | · |q|)-ary Σε ∪ ΣN -labeled tree
(T, L) iff it is proper and A(T,L) is consistent with T .
AT has at most p(|T |) states, p a polynomial.

We can construct AQ and AT in time polynomial in their size.

The construction of the automata in Proposition 13 uses
forest decompositions of the CQ q as known for example
from [Lutz, 2008]. The difference in automata size between
ELIHF⊥ and ELHF⊥ is due to the different number of
tree-shaped subqueries that can arise in these decompositions.

To decideQ1 ⊆ Q2 for OMQsQi = (Ti,Σ, qi), i ∈ {1, 2},
from (ELIHF⊥,BCQ), by Proposition 8 it suffices to decide
whether L(AQ1

) ∩ L(AT2) ⊆ L(AQ2
). Since this question

can be polynomially reduced to a TWAPA emptiness check
and the latter can be executed in time single exponential in the
number of states, this yields the upper bounds for containment
stated in Theorems 5 and 6.

To decide non-FO-rewritability of an OMQ Q = (T ,Σ, q)
from (ELIHF⊥, conBCQ), by Theorem 11 we need to de-
cide whether there is a pseudo tree Σ-ABox A of outdegree
at most |T | and width at most |q| that is consistent with T
and satisfies (i) A |= Q, (ii) A|>0 6|= Q, and (iii) A|≤k 6|= Q

where k = |q| + 24(|T |+2|q|)2 . For consistency with T and
for (i), we use the automaton AQ from Proposition 13. To
achieve (ii) and (iii), we amend the tree alphabet Σε∪Σn with
additional labels that implement a counter which counts up to
k and annotate each node in the tree with its depth (up to k).
We then complement AQ (which for TWAPAs can be done
in polynomial time), relativize the resulting automaton to all
but the first level of the input ABox for (ii) and to the first
k levels for (iii), and finally intersect all automata and check
emptiness. This yields the upper bounds for FO-rewritability
stated in Theorems 5 and 6.

As remarked in the introduction, apart from FO-rewritability
of an OMQ (T ,Σ, q) we should also be interested in FO-
rewritability of ABox inconsistency relative to T and Σ. We
close this section with noting that an upper bound for this
problem can be obtained from Point 2 of Proposition 13 since
TWAPAs can be complemented in polynomial time. A match-
ing lower bound can be found in [Bienvenu et al., 2013].

Theorem 14. In ELIHF⊥, FO-rewritability of ABox incon-
sistency is EXPTIME-complete.

6 Rooted Queries and Lower Bounds
We first consider the case of rooted queries and establish the
upper bound in Theorem 7.

Theorem 15. FO-rewritability and containment in
(ELIHF⊥, rCQ) are in CONEXPTIME.

Because of space limitations, we confine ourselves to a
brief sketch, concentrating on FO-rewritability. By Point 1 of
Theorem 11, deciding non-FO-rewritability of an OMQ Q =
(T ,Σ, q) from (ELIHF⊥, rCQ) comes down to checking the
existence of a pseudo tree Σ-ABoxA that is consistent with T
and such that A |= Q(a) and A|≤k 6|= Q(a) for some tuple of
individuals a from the core of A, for some suitable k. Recall
thatA |= Q(a) if and only if there is a homomorphism h from
q to the pseudo tree-shaped canonical model of T and A that
takes the answer variables to a. Because a is from the core
of A and q is rooted, h can map existential variables in q only
to individuals from A||q| and to the anonymous elements in
the subtrees below them. To decide the existence of A, we
can thus guess A||q| together with sets of concept assertions
about individuals in A||q| that can be inferred from A and T ,
and from A|≤k and T . We can then check whether there is
a homomorphism h as described, without access to the full
ABoxes A and A|≤k. It remains to ensure that the guessed
initial part A|q| can be extended to A such that the entailed

concept assertions are precisely those that were guessed, by
attaching tree-shaped ABoxes to individuals on level |q|. This
can be done by a mix of guessing and automata techniques.

We next establish the lower bounds stated in Theorems 5
and 7. For Theorem 5, we only prove a lower bound for Point 1
as the one in Point 2 follows from [Bienvenu et al., 2013].
Theorem 16. Containment and FO-rewritability are

1. CONEXPTIME-hard in (ELI, rCQ) and

2. 2EXPTIME-hard in (ELI,CQ).

The results for containment apply already when both OMQs
share the same TBox.

Point 1 is proved by reduction of the problem of tiling a
torus of exponential size, and Point 2 is proved by reduction of
the word problem of exponentially space-bounded alternating
Turing machines (ATMs). The proofs use queries similar to
those introduced in [Lutz, 2008] to establish lower bounds on
the complexity of query answering in the expressive OMQ
languages (ALCI, rCQ) and (ALCI,CQ). A major differ-
ence to the proofs in [Lutz, 2008] is that we represent torus
tilings / ATM computations in the ABox that witnesses non-
containment or non-FO-rewritability, instead of in the ‘anony-
mous part’ of the model created by existential quantifiers.

The proof of Point 2 of Theorem 16 can be modified to
yield new lower bounds for monadic Datalog containment.
Recall that the rule body of a Datalog program is a CQ. Tree-
shapedness of a CQ q is defined in the same way as for an
ABox in Section 4, that is, q viewed as an undirected graph
must be a tree without multi-edges.
Theorem 17. For monadic Datalog programs which contain
no EDB relations of arity larger than two and no constants,
containment

1. in a rooted CQ is CONEXPTIME-hard;

2. in a CQ is 2EXPTIME-hard, even when all rule bodies
are tree-shaped.

Point 1 closes an open problem from [Chaudhuri and Vardi,
1994], where a CONEXPTIME upper bound for containment
of a monadic Datalog program in a rooted UCQ was proved
and the lower bound was left open. Point 2 further improves
a lower bound from [Benedikt et al., 2012] which also does
not rely on EDB relations of arity larger than two, but requires
that rule bodies are not tree-shaped or constants are present
(which, in this case, correspond to nominals in the DL world).

7 Conclusion
A natural next step for future work is to use the techniques
developed here for devising practically efficient algorithms
that construct actual rewritings, which was very successful in
the AQ case [Hansen et al., 2015].

An interesting open theoretical question is the complexity
of FO-rewritability and containment for the OMQ languages
considered in this paper in the special case when the ABox
signature contains all concept and role names.
Acknowledgements. Bienvenu was supported by ANR
project PAGODA (12-JS02-007-01), Hansen and Lutz by ERC
grant 647289, Wolter by EPSRC UK grant EP/M012646/1.

References
[Ajtai and Gurevich, 1994] Miklós Ajtai and Yuri Gurevich.

Datalog vs First-Order Logic. J. Comput. Syst. Sci.,49(3):
562–588, 1994.

[Baader et al., 2003] Franz Baader, Diego Calvanese, Deb-
orah L. McGuinness, Daniele Nardi, and Peter F. Patel-
Schneider, editors. The Description Logic Handbook: The-
ory, Implementation, and Applications. Cambridge Univer-
sity Press, 2003.

[Baader et al., 2005] Franz Baader, Sebastian Brandt, and
Carsten Lutz. Pushing the EL envelope. In Proc. of IJ-
CAI, pages 364–369, 2005.

[Baget et al., 2011] Jean-François Baget, Michel Leclère,
Marie-Laure Mugnier, and Eric Salvat. On rules with exis-
tential variables: Walking the decidability line. Artif. Intell.,
175(9-10):1620–1654, 2011.

[Benedikt et al., 2012] Michael Benedikt, Pierre Bourhis,
and Pierre Senellart. Monadic Datalog Containment. In
Proc. of ICALP, pages 79–91, 2012.

[Benedikt et al., 2015] Michael Benedikt, Balder ten Cate,
Thomas Colcombet, and Michael Vanden Boom. The Com-
plexity of Boundedness for Guarded Logics. In Proc. of
LICS, pages 293–304, 2015.

[Bienvenu and Ortiz, 2015] Meghyn Bienvenu and Magdale-
na Ortiz. Ontology-mediated query answering with data-
tractable description logics. In Proc. of Reasoning Web,
volume 9203 of LNCS, pages 218–307, 2015.

[Bienvenu et al., 2010] Meghyn Bienvenu, Thomas Eiter,
Carsten Lutz, Magdalena Ortiz, and Mantas Simkus. Query
answering in the description logic S. In Proc. of DL, volume
573 of CEUR-WS, 2010.

[Bienvenu et al., 2012] Meghyn Bienvenu, Carsten Lutz, and
Frank Wolter. Query containment in description logics
reconsidered. In Proc of KR, pages 221–231, 2012.

[Bienvenu et al., 2013] Meghyn Bienvenu, Carsten Lutz, and
Frank Wolter. First order-rewritability of atomic queries in
Horn description logics. In Proc. of IJCAI, pages 754–760,
2013.

[Bienvenu et al., 2014] Meghyn Bienvenu, Balder ten Cate,
Carsten Lutz, and Frank Wolter. Ontology-based data ac-
cess: a study through disjunctive datalog, CSP, and MM-
SNP. Proc. of TODS, 39, 2014.

[Bourhis and Lutz, 2016] Pierre Bourhis and Carsten Lutz.
Containment in monadic disjunctive datalog, MMSNP, and
expressive description logics. In Proc. of KR, 2016.

[Calvanese et al., 2007] Diego Calvanese, Giuseppe De Gia-
como, Domenico Lembo, Maurizio Lenzerini, and Ric-
cardo Rosati. Tractable reasoning and efficient query an-
swering in description logics: The DL-Lite family. J. Autom.
Reasoning, 39(3):385–429, 2007.

[Calvanese et al., 2009] Diego Calvanese, Giuseppe De Gia-
como, Domenico Lembo, Maurizio Lenzerini, Antonella
Poggi, Mariano Rodriguez-Muro, and Riccardo Rosati. On-
tologies and databases: The DL-Lite approach. In Proc.

of Reasoning Web, volume 5689 of LNCS, pages 255–356,
2009.

[Chaudhuri and Vardi, 1994] Surajit Chaudhuri and Moshe Y.
Vardi. On the complexity of equivalence between recursive
and nonrecursive datalog programs In Proc. of PODS,
pages 107–116, 1994.

[Civili and Rosati, 2015] Cristina Civili and Riccardo Rosati.
On the first-order rewritability of conjunctive queries over
binary guarded existential rules. In Proc. of CILC, volume
1459 of CEUR-WS, pages 25–30, 2015.

[Cosmadakis et al., 1988] Stavros S. Cosmadakis, Haim
Gaifman, Paris C. Kanellakis, and Moshe Y. Vardi. De-
cidable optimization problems for database logic programs
(preliminary report). In Proc. of STOC, pages 477–490,
1988.

[Eiter et al., 2012] Thomas Eiter, Magdalena Ortiz, Mantas
Simkus, Trung-Kien Tran, and Guohui Xiao. Query rewrit-
ing for Horn-SHIQ plus rules. In Proc. of AAAI, 2012.

[Gottlob et al., 2013] Georg Gottlob, Andreas Pieris, and
Lidia Tendera. Querying the guarded fragment with tran-
sitivity. In Proc. of ICALP, volume 7966 of LNCS, pages
287–298, 2013.

[Hansen et al., 2015] Peter Hansen, Carsten Lutz, Inanç Sey-
lan, and Frank Wolter. Efficient query rewriting in the
description logic EL and beyond. In Proc. of IJCAI, pages
3034–3040, 2015.

[Kaminski et al., 2014] Mark Kaminski, Yavor Nenov, and
Bernardo Cuenca Grau. Computing datalog rewritings for
disjunctive datalog programs and description logic ontolo-
gies. In Proc. of RR, pages 76–91, 2014.

[Kontchakov et al., 2013] Roman Kontchakov, Mariano
Rodriguez-Muro, and Michael Zakharyaschev. Ontology-
based data access with databases: A short course. In Proc.
of Reasoning Web, pages 194–229, 2013.

[Lutz and Wolter, 2012] Carsten Lutz and Frank Wolter. Non-
uniform data complexity of query answering in description
logics. In Proc. of KR, 2012.

[Lutz, 2008] Carsten Lutz. The complexity of conjunctive
query answering in expressive description logics. In Proc.
of IJCAR, volume 5195 of LNCS, pages 179–193, 2008.

[Pérez-Urbina et al., 2010] Héctor Pérez-Urbina, Boris
Motik, and Ian Horrocks. Tractable query answering and
rewriting under description logic constraints. J. Applied
Logic, 8(2):186–209, 2010.

[Rosati, 2007] Riccardo Rosati. On conjunctive query an-
swering in EL. In Proc. of DL, pages 451–458, 2007.

[Trivela et al., 2015] Despoina Trivela, Giorgos Stoilos,
Alexandros Chortaras, and Giorgos B. Stamou. Optimising
resolution-based rewriting algorithms for OWL ontologies.
J. Web Sem., 33:30–49, 2015.

