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Abstract
Ontology-mediated query answering (OMQA) is a
new paradigm in data management that seeks to
exploit the semantic knowledge expressed in on-
tologies to improve query answering over data.
This paper briefly introduces OMQA and gives an
overview of two recent lines of research.

1 Introduction
In recent years, there has been growing interest both from
academia and from industry in ontology-mediated query an-
swering (OMQA), in which the semantic knowledge provided
by ontologies is used to improve query answering. Ontolo-
gies are used to enrich the vocabulary of data sources, allow-
ing users to formulate their queries in a more familiar vocab-
ulary which abstracts from the specific way data is stored. In
information integration, ontologies serve to relate the vocab-
ularies of different data sources and to provide a unified view
to the user. Finally, ontologies help tackle data incomplete-
ness by allowing inference of new facts from the ontology
and the data, providing a more complete set of query results.

To illustrate the above points, let us consider the applica-
tion of OMQA techniques in medicine. Each hospital will
store its patient data in databases, using terms from a stan-
dardized medical ontology (or linking to these terms via map-
pings). The information in patient records will typically use
specialized terms, for instance, stating that a patient suffers
from Hodgkin’s lymphoma and has been prescribed a drug
for hypertension. A hospital admin may query the system to
find cancer patients being treated for high-blood pressure. In
the absence of an ontology, this query is likely to turn up no
results, as the generic terms ‘cancer’ and ‘high blood pres-
sure’ do not explicitly appear in patient records. However,
the ontology contains a hierarchy of terms, from highly spe-
cialized to generic, and the semantic relationships between
them. OMQA systems will perform the necessary inferences
(e.g. inferring that Hodgkin’s lymphoma is a type of cancer)
in order to obtain all (deducible) answers to the query. More-
over, by utilizing a standardized ontology, patient data from
different hospitals can be seamlessly integrated.

Description logics (DLs) are among the most commonly
used and well-studied ontology languages. Expressive DLs
(like ALC and SHIQ) allow fine-grained modeling and

provide the logical underpinnings for the W3C-standardized
OWL web ontology language. Horn DLs like EL and its ex-
tensions offer better computational properties by forbidding
(implicit or explicit) use of disjunction, and they are a pop-
ular choice for formalizing knowledge in medicine and the
life sciences; the OWL 2 EL profile is based upon such DLs.
The DL-Lite family of DLs (and corresponding OWL 2 QL
profile) were specifically designed with OMQA in mind. To
scale up to large datasets, these languages are quite restricted
in expressivity, but are still able to capture key modeling con-
structs, as illustrated in the next example:
Example 1. Here are some DL-Lite axioms about academia:
(1) Prof v Faculty (2) Fellow v Faculty

(3) Prof v ¬Fellow (4) Prof v ∃Teaches
(5) ∃Teaches v Faculty (6) ∃Teaches− v Course

Axioms (1)-(2) express that professors and research fellows
are both types of faculty members, while (3) states that the
two classes are disjoint. Axiom (4) requires that every pro-
fessor teach at least one course. The final two axioms express
that the relation Teaches links faculty members to courses.

The most commonly used queries in OMQA are conjunc-
tive queries (CQs), which are built from atoms using con-
junction and existential quantifiers, and correspond to the SPJ
fragment of SQL and basic graph patterns in SPARQL.
Example 2. The following CQ can be used to find faculty
members that teach some course:

q1(x) = ∃y.Faculty(x) ∧ Teaches(x, y)

If we use an OMQA system to answer q1 over the dataset
D1 = {Prof(anna),Fellow(tom),Teaches(tom, cs101)}

using axioms (1)-(6) as our ontology, then both anna and tom
will be returned as answers. This is because from (1), (4),and
Prof(anna), we can infer that anna is faculty and teaches, and
from (2) and Fellow(tom), we can derive Faculty(anna).

To give a flavour for OMQA research, this short paper pro-
vides an overview of two recent lines of research to which
the author has contributed. Section 2 is concerned with un-
derstanding the limits and possibilities of query rewriting, a
key algorithmic technique for OMQA, while Section 3 tack-
les the issue of making OMQA robust to data inconsistencies.
Section 4 provides a brief discussion of the future of OMQA
research and pointers to the literature.



2 Query Rewriting: Limits and Possibilities
Query rewriting represents one of the most promising algo-
rithmic approaches to ontology-mediated query answering.
The approach consists of a rewriting step in which the in-
put query (typically, a conjunctive query) is transformed into
a new database query (called a rewriting) which encodes the
relevant information from the ontology, followed by a sec-
ond step in which the rewriting is evaluated over the data
using a database system. Thus, query rewriting reduces the
OMQA problem to the simpler problem of database query
evaluation, thereby allowing one to take advantage of the ef-
ficiency and maturity of database systems. In particular, if
one requires that the rewriting is a first-order (FO) query,
then rewritings can be rephrased in SQL and evaluated using
highly-optimized relational database management systems.
Example 3. Consider the DL-Lite ontology O consisting of
axioms (1)-(4). The following query
(Faculty(x) ∨ Fellow(x)) ∧ ∃y.Teaches(x, y)) ∨ Prof(x)

is a rewriting of the query q1 w.r.t. O. If we evaluate the
preceding query over the dataset D1, we obtain both anna
and tom as answers, as expected.

Succinctness and Optimality of Rewritings
The DL-Lite family of DLs [Calvanese et al., 2007] (and cor-
responding OWL 2 QL profile) were specifically designed
to ensure the existence of FO-rewritings for all conjunctive
queries, and several query rewriting algorithms have been de-
veloped and implemented for these languages. However, ex-
perimental evaluation showed that the rewritings produced by
such rewriting engines were often huge, making them diffi-
cult, or even impossible, to evaluate. When rewritings are
given as union of conjunctive queries (UCQs), which is the
case for many rewriting algorithms, it is not difficult to show
that such rewritings can be exponentially large.

A natural question is whether an exponential blowup can be
avoided if rewritings are expressed in richer query languages,
like PE-queries, non-recursive datalog (NDL) queries, or
full FO-queries. More generally, under what conditions can
we ensure polynomial-size rewritings? For ontologies ex-
pressed in DL-LiteR (or OWL 2 QL), a first answer was
given in [Kikot et al., 2012], which proved exponential lower
bounds for the worst-case size of PE- and NDL-rewritings,
as well as a superpolynomial lower bound for FO-rewritings
(assuming NP 6⊆ P/poly). These initial negative results
spurred a systematic parameterized study [Kikot et al., 2014;
Bienvenu et al., 2015; 2016d] of the impact of restricting the
query shape (linear, tree-shaped, bounded treewidth) and/or
ontology depth on the size of rewritings. The resulting suc-
cinctness landscape shows that even in very restricted set-
tings (namely, linear queries and depth 2 ontologies), PE-
rewritings may be of super-polynomial size, whereas, for
many combinations of queries and ontologies (in particular,
for bounded treewidth queries coupled with bounded depth
ontologies), polynomial-size NDL-rewritings are guaranteed
to exist. These results, which were obtained by establish-
ing unexpectedly tight connections between query rewriting
and circuit complexity, provide strong evidence in favour of
adopting NDL as the target language for rewriting algorithms.

The preceding succinctness results have been comple-
mented by a corresponding set of complexity results [Bien-
venu et al., 2015; 2016d]. It turns out that the structural
classes of ontology-query pairs for which query answering
is tractable (more precisely: NL- or LOGCFL-complete) are
also classes admitting polysize NDL-rewritings. Rewriting-
based query answering algorithms that achieve optimal worst-
case complexity for these well-behaved classes have been re-
cently proposed in [Bienvenu et al., 2016e].

We note that all of the results discussed so far apply to
ontologies formulated in DL-LiteR. For the DL-Litecore di-
alect (obtained by disallowing inclusions between binary re-
lations), better results can sometimes be achieved [Bienvenu
et al., 2013b], but much work remains to obtain a complete
picture of the succinctness landscape in DL-Litecore.

Existence of Rewritings
At first glance, the FO query rewriting approach appears to
have limited applicability, since for almost every DL outside
the DL-Lite family (in particular, for EL and its extensions),
we run into the problem that rewritings are not guaranteed to
exist. However, such negative results reflect the worst-case
situation and leave open the possibility that some, perhaps
many, queries encountered in real applications are in fact FO-
rewritable (and hence relational database technology can be
used to answer such queries). Thus, an interesting and po-
tentially quite useful research direction is to develop methods
for identifying the cases where FO-rewriting is possible and
to produce such rewritings when they exist.

A first step in this direction was made by [Bienvenu et
al., 2013a], who established decidability and complexity re-
sults for FO-rewritability of AQs in the presence of Horn DL
ontologies, showing the problem to be EXPTIME-complete
for DLs ranging from basic EL to the much more expressive
Horn-SHI. While these results were quite positive (simi-
lar problems in databases are known to be undecidable), the
automata-based decision procedures used to show the upper
bounds were ill-suited for implementation. However, by com-
bining these theoretical results with an existing backward-
chaining rewriting procedure, an efficent algorithm for test-
ing FO-rewritability of atomic queries w.r.t. ontologies in
ELHdr (the basis for OWL 2 EL) was obtained [Hansen et
al., 2015]. Experimental results on real-world ontologies are
very encouraging: the vast majority of AQs do possess FO-
rewritings, and the computed rewritings (represented as NDL
programs) are typically quite small.

A serious limitation of the preceding results is that they
concern AQs, while CQs are required in many applications.
A recent work [Bienvenu et al., 2016c] addresses this gap by
providing decision procedures and complexity results (rang-
ing from EXPTIME- to 2EXPTIME-complete) for testing
FO-rewritability of CQs in various Horn DLs. The next
step will be to exploit these results to develop practical FO-
rewritability algorithms for CQs, as was done for AQs.

For expressive DLs likeALC, the first decision procedures
for FO- and Datalog-rewritability of AQs were provided in
[Bienvenu et al., 2014b]. The latter work studied the expres-
sive power of OMQA and established a surprising connection
to constraint satisfaction problems (CSPs), which enabled the



transfer of deep results on FO- and Datalog-expressibility of
CSPs to OMQA. Here also the design of practical algorithms
for identifying rewritable queries and producing the corre-
sponding rewritings constitutes an important challenge.

3 Inconsistency Handling in OMQA
In applications involving large datasets or multiple data
sources, it is very likely that the data will be inconsistent with
the ontology, rendering standard querying algorithms useless
(as everything is entailed from a contradiction). Appropriate
mechanisms for dealing with inconsistent data are thus cru-
cial to the successful use of OMQA in practice.

Ideally, one would restore consistency by identifying and
correcting the errors, but when this is not possible, a sensible
strategy is to adopt an inconsistency-tolerant semantics which
allows reasonable answers to be obtained despite the incon-
sistencies. The most well-known, and arguably the most nat-
ural, such semantics is the AR semantics [Lembo and Ruzzi,
2007], inspired by work on consistent query answering in
databases. The semantics is based upon the notion of a re-
pair, defined as an inclusion-maximal subset of the data that
is consistent with the ontology. Intuitively, repairs capture
the different ways of achieving consistency while retaining as
much of the original data as possible. Query answering un-
der AR semantics amounts to computing those query answers
that hold for every repair (under standard semantics):

Example 4. Let O be as before, and let D2 = D1 ∪
{Prof(tom)}. The dataset D2 is inconsistent w.r.t. O, as it
violates axiom (3). There are two repairs of D2 w.r.t. O:

R1 = {Prof(anna),Fellow(tom),Teaches(tom, cs101)}
R2 = {Prof(anna),Prof(tom),Teaches(tom, cs101)}

obtaining by removing one of Fellow(tom) and Prof(tom).
By computing the answers to q1 for each of the two repairs,
one can show that anna and tom are both answers to q1 under
AR semantics, while cs101 is not an AR-answer.

Unfortunately, query answering under AR semantics is
known to be intractable (more precisely: coNP-hard in the
size of the data) even for lightweight ontology languages like
DL-Lite. In fact, a single class disjointness axiom suffices to
show intractability [Bienvenu, 2012], so there is no hope of
regaining tractability by restricting the ontology language.

Coping with Intractability through Approximation
To cope with the intractability of the AR semantics, one can
turn to approximations. A natural over-approximation of the
AR semantics is given by the brave semantics [Bienvenu and
Rosati, 2013], which returns all query answers that can be
obtained from at least one repair (i.e., they are supported by
some internally consistent set of facts). The more cautious
IAR semantics [Lembo et al., 2015], which queries the inter-
section of all repairs, provides a natural under-approximation.
Both semantics have appealing computational properties: for
most DL-Lite dialects, query answering using these seman-
tics is tractable in data complexity and can be implemented
by first-order query rewriting.

Example 5. The intersection of the repairsR1 andR2 yields
R∩ = {Prof(anna),Teaches(tom, cs101)}. As Prof(anna)
belongs to R∩, anna is an answer to q1 under IAR seman-
tics, but tom is not an IAR-answer, as we cannot derive
Faculty(tom) from the facts in R∩. For the query q2(x) =
Prof(x), both anna and tom are brave answers, while only
anna is an answer under AR and IAR semantics.

The CQAPri system [Bienvenu et al., 2014a], which is the
first to implement the AR semantics for DL-LiteR ontolo-
gies, adopts a hybrid approach in which the brave and IAR
semantics serve to efficiently identify a large portion of the
(non)answers to a query under AR semantics, and then a SAT
solver is used to decide the status of the remaining candi-
date answers. This approach appears quite promising, as the
tractable approximations do most of the work, and the gener-
ated SAT instances are rather small and easy to solve.

To obtain more fine-grained approximations, [Bienvenu
and Rosati, 2013] introduced two new parameterized families
of inconsistency-tolerant semantics, called k-defeater and k-
support semantics, that approximate the AR semantics from
above and from below, respectively, and converge to the AR
semantics in the limit. These new semantics appear quite
promising, as they generalize the IAR and brave semantics,
while retaining the same desirable computational properties.
It will be interesting to see whether these new semantics can
be profitably exploited to further reduce the number of calls
to SAT solvers needed to identifying AR query answers.

At present, most of the practical work on inconsistency-
tolerant OMQA has focused on DLs of the DL-Lite family, so
an important challenge for future work is to design efficient
methods for other popular ontology languages.

User-in-the-Loop: Explanation and Interaction
The need to equip reasoning systems with explanation ser-
vices is widely acknowledged, and such facilities are all the
more essential when using inconsistency-tolerant semantics.
Indeed, the brave, AR, and IAR semantics allow one to clas-
sify query answers into three categories of increasing reliabil-
ity, and a user may naturally wonder why a given tuple was
assigned to, or excluded from, one of these categories. This
problem was recently tackled by [Bienvenu et al., 2016a],
who devised a framework for explaining query (non-)answers
in this setting and explored the computational properties of
explanations when the ontology is given in DL-LiteR. While
many of the explanation tasks proved to be intractable, they
can nonetheless be solved quickly by making use of the facil-
ities of modern SAT solvers.

In addition to helping users understand query results, an
OMQA system should also provide users with a way of giving
feedback on missing or erroneous results, thereby involving
them in the effort to improve data quality. In [Bienvenu et
al., 2016b], a formal framework for query-driven repairing is
proposed, in which the aim is to find a set of elementary data
modifications (deletions and additions), called a repair plan,
that addresses as many of the defects as possible, subject to
the condition that all changes must be validated by the user.
Different notions of optimality are introduced to define what
it means for a repair plan to the best possible, and interactive
algorithms are proposed for computing optimal repair plans.



4 Future of OMQA Research: An Invitation
Over the past decade, OMQA has grown into a very active
area of research, bringing together researchers from knowl-
edge representation, databases, and the Semantic Web. Rea-
soning techniques are becoming increasingly mature, allow-
ing OMQA techniques to be experimented in real-world ap-
plications. For example, in the EU-funded Optique project,
industrial partners Statoil and Siemens are adopting OMQA
to make it possible for end users to formulate their queries
over multiple complex data sources. Beyond their use in next-
generation enterprise information systems, OMQA also holds
much promise in the areas of medicine and the life sciences,
where significant energy has already been spent in develop-
ing high-quality ontologies, the large-scale medical ontology
SNOMED being the most prominent example.

Despite significant recent progress, there still remains
much to be done to ensure the widespread adoption of OMQA
in practice, and researchers from other AI areas have a lot to
contribute. For instance, natural language processing meth-
ods could help make OMQA systems more accessible to in-
experienced users, allowing them to interact with the system
using natural language (both for posing queries and when
trying to understand or debug the output). Machine learn-
ing techniques could be used to support the semi-automatic
construction of both ontologies and queries, or used in con-
junction with OMQA to support hybrid exploration of data.
Combining the strengths of different AI subcommunities will
allow us to get even more from data.
To learn more Readers can consult [Bienvenu and Ortiz,
2015] for a detailed introduction to OMQA and an overview
of recent research directions. The tutorial [Kontchakov et al.,
2013] focuses on DL-Lite / OWL 2 QL ontologies and pro-
vide more details on the use of database systems, whereas
[Ortiz and Šimkus, 2012] provides a detailed treatment of
OMQA with more expressive DLs.
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