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Introduction

The theory of bidimensionality, was introduced in [START_REF] Demaine | Subexponential parameterized algorithms on graphs of bounded-genus and H-minor-free graphs[END_REF] and has been developed further during the last decade in [START_REF] Demaine | Bidimensionality: new connections between fpt algorithms and ptass[END_REF][START_REF] Demaine | Linearity of grid minors in treewidth with applications through bidimensionality[END_REF][START_REF] Demaine | Bidimensional parameters and local treewidth[END_REF][START_REF] Demaine | The Bidimensional Theory of Bounded-Genus Graphs[END_REF][START_REF] Fomin | Bidimensionality and EPTAS[END_REF][START_REF] Fomin | Bidimensionality and kernels[END_REF][START_REF] Grigoriev | Bidimensionality of geometric intersection graphs[END_REF][START_REF] Fomin | Contraction obstructions for treewidth[END_REF][START_REF] Fomin | Contraction bidimensionality: the accurate picture[END_REF] (see also [START_REF] Demaine | Bidimensional structures: Algorithms, combinatorics and logic (dagstuhl seminar 13121)[END_REF][START_REF] Demaine | The bidimensionality theory and its algorithmic applications[END_REF][START_REF] Fomin | Bidimensionality[END_REF][START_REF] Demaine | Algorithmic graph minors and bidimensionality[END_REF][START_REF] Demaine | Fast algorithms for hard graph problems: Bidimensionality, minors, and local treewidth[END_REF][START_REF] Demaine | Bidimensionality, map graphs, and grid minors[END_REF]). It provides general techniques for designing efficient fixed-parameter algorithms and approximation schemes for NP-hard graph problems in broad classes of graphs.

A parameterized problem on graphs can be seen as a subset Π of G × N where G is some graph class (for instance, planar graphs) and the question is whether an instance (G, k) is a member of Π, where k is the parameter of the problem. The main objective is to design an f (k) • n O (1) -step algorithm that answers this question while keeping the parametric dependence f (k) as low as possible. This implies that, for each fixed value k, the problem can be solved by an algorithm running in polynomial-time where the degree of this polynomial does not depend on the value of k.

The combinatorial base of bidimensionality is the celebrated grid-exclusion theorem from the Graph Minors series of Robertson and Seymour [START_REF] Robertson | Quickly excluding a planar graph[END_REF][START_REF] Robertson | Graph Minors. V. Excluding a planar graph[END_REF]. This theorem states that every graph excluding a (r × r)-grid as a minor should have treewidth bounded by some function of r (see Subsection 2.1 for the formal definition of treewidth and the minor relation). Treewidth is a cornerstone parameter in algorithmic graph theory measuring the topological resemblance of a graph to the structure of a tree.

The central idea of bidimensionality resides in the fact, that for many parameterized graph problems, the presence in their input graphs of a (bidimensional) (Ω( √ k) × Ω( √ k))-grid as a minor is directly providing a positive (or a negative) answer to the problem. The bidimensionality condition, together with certain conditions on G, is able to reduce the problem to the case where the treewidth of the input graph is sublinear in the problem parameter k.

A graph of bounded treewidth can be viewed as a "monodimensional" tree-like structure. According to Courcelle's theorem [START_REF] Courcelle | The monadic second-order logic of graphs. I. Recognizable sets of finite graphs[END_REF], if the problem is expressible in Monadic Second Order Logic (MSO), then it is possible to process this tree-like structure as the input of a tree automaton that can solve the problem in time that is linear in the size of the input graph. If the parametric dependence of this algorithm can be made singly exponential, the sublinear (on k) treewidth of G yields a parameterized algorithm with subexponential parameterized dependence. This simple reasoning, provides a generic way to design parameterized algorithms with subexponential parametric dependence. In many cases, this provides algorithms running in 1) which appears to be the best parametric dependence one may expect, according to the results in [START_REF] Cai | On the existence of subexponential parameterized algorithms[END_REF].
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In Section 2 we provide all definitions and theorems that support the above ideas. The concept of bidimensionality is formally defined in Section 3 and in Section 4 we abstract the above methodology into a single theorem on subexponential parameterized algorithms (Theorem 7).

Another, somehow more technical, application of bidimensionality is kernelization. A kernelization algorithm for a parameterized graph problem Π is a polynomial-time algorithm that reduces every instance (G, k) to an equivalent one (a kernel) whose size is bounded only by a function of k. When this function is linear on k, we say that Π admits a linear kernel (see Subsection 5 for the formal definitions). Kernelization has been a vibrant field of parameterized complexity and a lot of research has been oriented to the derivation of linear kernels for parameterized problems. Bidimensionality theory has meta-algorithmic applications in the derivation of linear kernels. It follows that, given a parameterized problem Π ⊆ G × N where G satisfies certain (topological) conditions, a linear kernel is automatically derived when Π is bidimensional, is expressible in Counting Monadic Second Order Logic, and satisfies some separability condition. We describe this result in Section 5. For this, we present the basic tools supporting it, namely, the notions of protrusion decomposition and protrusion replacement. We also point out some methodological analogies with the previous case of subexponential algorithms, mainly in what concerns the classification of the required tools into algorithmic and combinatorial ones.

In our exposition we present the contributions of bidimensionality theory to parameterized algorithms in their most general, up to now, version. In contrast to previous surveys on this topic [START_REF] Demaine | The bidimensionality theory and its algorithmic applications[END_REF][START_REF] Fomin | Bidimensionality[END_REF], we preferred to insist on the rigorous mathematical formalization of this theory which may require (not only for the unexperienced reader) to go through the definitions of Sections 3 and 4. The exposition concludes by some open problems and further directions in Section 6.

Basic concepts

In this section we give some basic definitions that are necessary for the exposition of the rest of the paper.

Graphs

All graphs in this paper are undirected and without multiple edges or loops. Given a graph G, we use the notation V (G) and E(G) for the vertex set and the edge set of G respectively. We say that a graph Treewidth. A tree decomposition of a graph G is a pair T = (T, {X t } t∈V (T ) ), where T is a tree whose every node t is assigned a vertex subset X t ⊆ V (G), called a bag, such that the following three conditions hold:

H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G).
t∈V (T ) X t = V (G), i.e.
, every vertex of G is in at least one bag. For every {u, v} ∈ E(G), there exists a node t of T such that u, v ∈ X t . For every u ∈ V (G), the graph

T [{t ∈ V (T ) : u ∈ X t }] is connected.
The width of a tree decomposition T = (T, {X t } t∈V (T ) ) equals max t∈V (T ) |X t | -1. The treewidth of a graph G, denoted by tw(G), is the minimum possible width of a tree decomposition of G.

Minors and contractions.

Given an edge e = {x, y} of a graph G, the graph G/e is obtained from G by contracting the edge e, that is, the endpoints x and y are replaced by a new vertex v x,y which is adjacent to the old neighbors of x and y (except from x and y). A graph H obtained by a sequence of edge-contractions is said to be a contraction of G. We denote it by H ≤ c G. A graph H is a minor of a graph G if H is the contraction of some subgraph of G and we denote it by H ≤ m G. We say that a graph G is H-minor-free when it does not contain H as a minor. We also say that a graph class G is H-minor-free (or, excludes H as a minor) when all its members are H-minor-free. A graph G is an apex graph if there exists a vertex v such that G \ v is planar. A graph class G is apex-minor-free if there exists an apex graph H that is not in G. For an integer t > 0, the graph Γ t is obtained from the grid t by adding, for all 1 ≤ x, y ≤ t -1, the edge (x + 1, y), (x, y + 1), and additionally making vertex (t, t) adjacent to all the other vertices (x, y) with x ∈ {1, t} or y ∈ {1, t}, i.e., to the whole border of t . Graph Γ 9 is shown in Fig. 1.

Properties of graph classes

A graph class G is said to be minor-closed/contraction-closed if every minor/contraction of a graph in G also belongs to G.

In general, it is known that there exists a constant c such that any graph G which excludes a t as a minor has treewidth at most O(t c ). The exact value of c remains unknown, but it is more than 2 and at most 36 [START_REF] Chekuri | Polynomial bounds for the grid-minor theorem[END_REF][START_REF] Chuzhoy | Excluded grid theorem: Improved and simplified[END_REF], while it is believed that c ≤ 3 [START_REF] Demaine | Algorithmic graph minor theory: Improved grid minor bounds and Wagner's contraction[END_REF]. We will restrict our attention to graph classes on which c < 2 as it is then when bidimensionality theory applies. In particular we say that a graph class G has the subquadratic grid minor property (SQGM property for short) if there exist constants λ > 0 and 1 ≤ c < 2 such that any graph G ∈ G which excludes t as a minor has treewidth at most λt c .

Problems that are contraction-closed but not minor-closed are considered on more restricted classes of graphs. We say that a graph class G has the subquadratic gamma contraction (SQGC property for short) if there exist constants λ > 0 and 1 ≤ c < 2 such that any connected graph G ∈ G excluding Γ t as a contraction has treewidth at most λt c .

The following proposition, for the case of SQGM, follows directly from the linearity of excluded grid-minor in H-minor-free graphs proven by Demaine and Hajiaghayi [START_REF] Demaine | Linearity of grid minors in treewidth with applications through bidimensionality[END_REF], while for the case if SQGC it follows from [START_REF] Fomin | Contraction obstructions for treewidth[END_REF].

Proposition 1. For every graph H, H-minor-free graph class G has the SQGM property

for some λ depending on H and with c = 1. If H is an apex graph, then G has the SQGC property for some λ depending on H and with c = 1.

Notice hat every graph class G with the SQGC property has the SQGM property. Clearly, the class of planar graphs has both above properties as there is an apex graph containing both K 5 and K 3,3 as a minor.

Recently, graph classes with the SQGM property that are not defined in the context of minor exclusion where detected. In [START_REF] Fomin | Bidimensionality and geometric graphs[END_REF] it was proven that unit disk graphs with maximum degree ∆ have the SQGM property for some λ depending on ∆ and with c = 1/2. This result has been extended for more general families of geometric intersection graphs in [START_REF] Grigoriev | Bidimensionality of geometric intersection graphs[END_REF].

Parameterized problems on graphs

Parameterized problems. A parameterized problem Π can be seen as a subset of Σ * ×N (we denote by N the set of all non-negative integers). We say that two instances (x, k) and (x , k ) of some parameterized problem Π are equivalent if and only if (x, k) ∈ Π ⇐⇒ (x , k ) ∈ Π.

Parameterized tractable problems.

Let Π be a parameterized problem. We say that Π is fixed parameter tractable if there exists a function f : N → N and an algorithm deciding whether (x, k) ∈ Π (i.e., whether (x, k) is a yes-instance of Π) in f (k) • |x| O (1) steps. We call such an algorithm FPT-algorithm. A parameterized problem belongs to the parameterized class FPT if it can be solved by an FPT-algorithm. (See the monographs [START_REF] Downey | Parameterized complexity[END_REF][START_REF] Niedermeier | Invitation to fixed-parameter algorithms[END_REF][START_REF] Flum | Parameterized Complexity theory[END_REF][START_REF] Cygan | Parameterized Algorithms[END_REF] on parameterized algorithms and complexity.) Parameterized graph problems. We say that a parameterized problem Π is a parameterized graph problem when in each instance (x, k) ∈ Π, x encodes a graph. From now on, we deal with parameterized graph problems as subsets of G all × N where G all is the set of all graphs. Let G be a class of graphs, i.e, G ⊆ G all . The restriction of a parameterized problem Π to G is defined as

Π G = {(G, k) | (G, k) ∈ Π and G ∈ G}.

Counting Monadic Second Order Logic

The syntax of Monadic Second Order Logic (MSO) of graphs includes the logical connectives ∨, ∧, ¬, ⇔, ⇒, variables for vertices, edges, sets of vertices, and sets of edges, the quantifiers ∀, ∃ that can be applied to these variables, and the following five binary relations:

1. u ∈ U where u is a vertex variable and U is a vertex set variable; 2. d ∈ D where d is an edge variable and D is an edge set variable;

inc(d, u)

, where d is an edge variable, u is a vertex variable, and the interpretation is that the edge d is incident with the vertex u;

4. adj(u, v), where u and v are vertex variables and the interpretation is that u and v are adjacent;

5. equality of variables representing vertices, edges, sets of vertices, and sets of edges.

In addition to the usual features of monadic second-order logic, if we have atomic formulas testing whether the cardinality of a set is equal to q modulo r, where q and r are integers such that 0 ≤ q < r and r ≥ 2, then this extension of the MSO is called counting monadic second-order logic. Thus CMSO is MSO enriched with the following atomic formula for a set S: card q,r (S) = true if and only if |S| ≡ q (mod r). We refer to [START_REF] Arnborg | Easy problems for tree-decomposable graphs[END_REF][START_REF] Courcelle | The monadic second-order logic of graphs. I. Recognizable sets of finite graphs[END_REF][START_REF] Courcelle | The expression of graph properties and graph transformations in monadic second-order logic[END_REF] for a detailed introduction on CMSO and its algorithmic consequences.

Bidimensionality

In this section we define all concepts that are necessary for the definition of the bidimensionality property of parameterized graph problems.

Subset problems

A vertex subset (resp. edge subset) certifying function φ is a computable function which takes as input a graph G and a set S ⊆ V (G) (resp. a set S ⊆ E(G)) and outputs true or false.

A vertex (resp. edge) subset minimization/maximization problem Π is a parameterized problem on graphs for which there exists a vertex (resp. edge) certifying function φ such that for every (G, k) ∈ G × N it holds that (G, k) ∈ Π if and only if there exists a set S ⊆ V (G) (resp. S ⊆ E(G)) such that |S| ≤ k for minimization problems (or |S| ≥ k for maximization problems) so that φ(G, S) = true. If, additionally, there exists a CMSO formula ψ such that φ(G, S) = true if and only if (G, S) |= ψ, then we say that Π is a min-CMSO problem (or a max-CMSO problem).

For an example, for the Dominating Set problem we have that φ(G, S) = true if and only if ∀v ∈ V (G)(v ∈ S ∨ ∃u ∈ V (G) : adj(v, u)). Therefore Dominating Set is a vertex subset minimization problem that is also as min-CMSO problem.

For simplicity, we will also use the term subset problems instead of vertex or edge subset minimization/optimization problems. Let us remark that there are many subset problems which at a first glance do not look as if they could be captured by this definition. An example is the Cycle Packing problem. Here the input is a graph G and integer k, and the task is to determine whether G contains k pairwise vertex-disjoint cycles C 1 , C 2 , . . . , C k . This is a vertex subset maximization problem because G has k vertex-disjoint cycles if and only if there exists a set S ⊆ V (G) of size at least k and φ(G, S) is true, where φ(G, S) is defined such that φ(G, S) = true ⇐⇒ G contains a subgraph G such that each connected component of G is a cycle and each connected component of G contains exactly one vertex from S.

The above definition of Cycle Packing may seem bizarre, since checking whether φ(G, S) is true for a given graph G and set S is NP-complete. In fact this problem is considered as a more difficult problem than Cycle Packing. Nevertheless, this definition shows that Cycle Packing is indeed a subset problem.

Optimality functions

For any vertex or edge subset minimization problem Π we have that (G, k) ∈ Π implies that (G, k ) ∈ Π for all k ≥ k. Similarly, for a vertex or edge subset maximization problem we have that (G, k) ∈ Π implies that (G, k ) ∈ Π for all k ≤ k. Thus the notion of "optimality" is well defined for subset problems. Definition 2. For a vertex or edge subset minimization problem Π, we define

OP T Π (G) = min {k : (G, k) ∈ Π} .
If no k such that (G, k) ∈ Π exists, OP T Π (G) returns +∞. For a vertex or edge subset maximization problem Π,

OP T Π (G) = max {k : (G, k) ∈ Π} .
If no k such that (G, k) ∈ Π exists, OP T Π (G) returns -∞. We define SOL Π (G) to be a function that, given as an input a graph G, returns a set S of size OP T Π (G) such that φ(G, S) = true, and returns null if no such set S exists.

Definition 3. A subset problem Π is contraction-closed (resp. minor-closed) if for any two graphs G 1 and G 2 it holds that G 1 ≤ c G 2 ⇒ OP T Π (G 1 ) ≤ OP T Π (G 1 ) (resp. G 1 ≤ m G 2 ⇒ OP T Π (G 1 ) ≤ OP T Π (G 2 )).

Bidimensional problems

We are now ready to introduce the concept of bidimensionality.

Definition 4 (Bidimensional problem). A subset problem Π is minor-bidimensional if

Π is minor-closed, and It is usually quite easy to determine whether a problem is contraction (or minor) bidimensional. Take as an example Independent Set. Contracting an edge may never increase the size of the maximum independent set, so the problem is contraction-closed. Furthermore it is easy to verify that Γ k contains an independent set of size (k-1) 2

lim k→∞ OP T Π ( k ) k 2 = δ > 0 contraction-bidimensional if Π is contraction-closed,
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. Thus Independent Set is contraction-bidimensional with density 1/4. On the other hand deleting edges may increase the size of a maximum-size independent set in G. Thus Independent Set is not minor-bidimensional.

Subexponential parameterized algorithms

A central problem in parameterized algorithm design is to investigate in which cases and under which input restrictions a parameterized problem belongs to FPT and, if so, to find algorithms with the simplest possible parameter dependence.

Let Π be a parameterized graph problem in FPT that can be solved in f (k) k) we say that Π admits a subexponential parameterized algorithm (see [START_REF] Dorn | Subexponential parameterized algorithms[END_REF] for a survey on subexponential parameterized algorithms).

• n O(1) steps 1 . When f (k) = 2 o(
In [START_REF] Cai | On the existence of subexponential parameterized algorithms[END_REF], Cai and Juedes proved that several parameterized problems do not admit subexponential parameterized algorithms, unless 3-SAT can be solved in time subexponential in the number of its variables 2 . Among them, one can distinguish core problems such as the standard parameterizations of Vertex Cover, Dominating Set, and Feedback Vertex Set. However, it appears that many parameterized problems admit subexponential parameterized algorithms running in 2 O( √ k) • n O (1) steps when their inputs are restricted to planar graphs or other classes of surface embeddable graphs. Moreover, the results of [START_REF] Cai | On the existence of subexponential parameterized algorithms[END_REF] indicated that the parameterized dependence 2 O( √ k) is the best we may expect when the planarity restriction is imposed. The first subexponential parameterized algorithm on planar graphs appeared in [START_REF] Alber | Fixed parameter algorithms for dominating set and related problems on planar graphs[END_REF] for Dominating Set, Independent Dominating Set, and Face Cover. After that, subexponential parameterized algorithms where designed for many other problems [START_REF] Thilikos | Fast sub-exponential algorithms and compactness in planar graphs[END_REF][START_REF] Demaine | Fixed-parameter algorithms for (k, r)-center in planar graphs and map graphs[END_REF][START_REF] Alber | Fixed parameter algorithms for dominating set and related problems on planar graphs[END_REF][START_REF] Kloks | New algorithms for k-face cover, k-feedback vertex set, and k-disjoint cycles on plane and planar graphs[END_REF][START_REF] Chen | Genus characterizes the complexity of certain graph problems: Some tight results[END_REF][START_REF] Demaine | Fixed-parameter algorithms for (k, r)-center in planar graphs and map graphs[END_REF]48,[START_REF] Fernau | A geometric approach to parameterized algorithms for domination problems on planar graphs[END_REF][START_REF] Kanj | Improved parameterized algorithms for planar dominating set[END_REF][START_REF] Fomin | Dominating sets in planar graphs: branch-width and exponential speed-up[END_REF][START_REF] Koutsonas | Planar feedback vertex set and face cover: Combinatorial bounds and subexponential algorithms[END_REF][START_REF] Demaine | Exponential speedup of fixed-parameter algorithms for classes of graphs excluding single-crossing graphs as minors[END_REF][START_REF] Cygan | Fast hamiltonicity checking via bases of perfect matchings[END_REF][START_REF] Fomin | Efficient computation of representative sets with applications in parameterized and exact algorithms[END_REF]. Most of these results are now covered by the main result of this section (Theorem 7).

Singly exponentially solvable problems w.r.t. treewidth

Let Π be a subset problem Π. We say that Π is singly exponentially solvable with respect to treewidth if there exists an algorithm that computes OP T Π (G) in 2 O(tw(G)) n O (1) steps.

Typically, to prove that a subset problem Π is singly exponentially solvable with respect to treewidth requires the design of dynamic programming algorithms on tree decompositions of width at most w whose tables are of singly exponential size on w. The design of such algorithms has occupied a lot of research in parameterized complexity [START_REF] Bodlaender | Dynamic programming on graphs with bounded treewidth[END_REF][START_REF] Van Rooij | Dynamic programming on tree decompositions using generalised fast subset convolution[END_REF]83,[START_REF] Bodlaender | Space-efficient construction variants of dynamic programming[END_REF][START_REF] Alber | Improved tree decomposition based algorithms for dominationlike problems[END_REF][START_REF] Betzler | Tree decompositions of graphs: Saving memory in dynamic programming[END_REF][START_REF] Dorn | Dynamic programming and fast matrix multiplication[END_REF][START_REF] Björklund | Fourier meets Möbius: fast subset convolution[END_REF][START_REF] Cygan | Solving connectivity problems parameterized by treewidth in single exponential time[END_REF][START_REF] Dorn | Efficient exact algorithms on planar graphs: Exploiting sphere cut decompositions[END_REF][START_REF] Dorn | Fast subexponential algorithm for non-local problems on graphs of bounded genus[END_REF][START_REF] Dorn | Catalan structures and dynamic programming in H-minor-free graphs[END_REF][START_REF] Rué | Asymptotic enumeration of non-crossing partitions on surfaces[END_REF]. In most of the cases, such algorithms run in 2 O(tw(G)) n steps. A general meta-algorithmic condition implying that a problem is singly exponentially solvable with respect to treewidth was given in [START_REF] Pilipczuk | Problems parameterized by treewidth tractable in single exponential time: A logical approach[END_REF] and is a model of Modal Logic called Existential Counting Modal Logic (ECM-Logic).

Bidimensionality and subexponential parameterized algorithms

Let Π be a vertex/edge subset minimization (resp. maximization) problem. Consider the following two conditions for Π. A [Algorithmic] Π is singly exponentially solvable with respect to treewidth.

B [Combinatorial] If (G, k) is a yes-(resp. no-) instance of Π, then tw(G) = o(k).
Proposition 5. If Π is a vertex/edge subset minimization (resp. maximization) problem satisfying conditions A and B, then Π admits a subexponential parameterized algorithm.

Proof. Let (G, k) be an input for Π. If the treewidth of the input graph exceeds the upper bound of the combinatorial condition B, then we can safely report that (G, k) is a no-(resp.

1 From now on, we use n to denote the number of vertices of the input graph G, i.e., n = |V (G)|. 2 This is hypothesis is also known as the Exponential Time Hypothesis (ETH).

yes-) instance and we are done. This step can be supported by the algorithm in [START_REF] Bodlaender | An O(c k n) 5-approximation algorithm for treewidth[END_REF] that, given a graph G and an integer w, either returns that tw(G) > w, or outputs a tree-decomposition of G of width ≤ 5w. If now the bound of the combinatorial condition B holds, we have a tree-decomposition of G of width 5 • tw(G) = o(k) and the result follows directly from the algorithmic condition A.

The following is an important combinatorial consequence of bidimensionality. It reflects the original idea of [START_REF] Demaine | Subexponential parameterized algorithms on graphs of bounded-genus and H-minor-free graphs[END_REF]. Proposition 6. If Π is a subset problem that is minor (resp. contraction) bidimensional and G is a graph class with the SQGM (resp. SQGC) property, then Π G satisfies the combinatorial condition B.

Proof. We give the proof in the case where Π is a vertex/edge subset minimization problem. For this, we have to show

that if k) is a yes-instance of Π G, then tw(G) = o(k). Indeed, if (G, k) ∈ Π then OP T Π (G) ≤ k. ( 1 
) If r ≤ m G, then OP T Π ( r ) ≤ OP T Π (G). ( 2 
)
As Π is minor (resp. contraction) bidimensional, then

OP T Π ( r ) = Ω(r 2 ). (3) From (1), (2), and (3) 
, it follows that if r ≤ m G, then r = O( √ k) which, from the SQGM (resp. SQGC) property of G implies that tw(G) = o(k).
Using Propositions 5 and 6, we easily conclude with the following. Theorem 7. Let Π be a vertex/edge subset minimization (resp. maximization) problem that i. is singly exponentially solvable with respect to treewidth and ii. is minor-(resp. contraction-) bidimensional and let G be a graph class with the SQGM (resp. SQGC) property. Then the restriction of Π to G admits a subexponential parameterized algorithm.

Notice that the above theorem can become purely meta-algorithmic if we replace condition i. by the expressibility of Π in ECM-Logic, as indicated by the results in [START_REF] Pilipczuk | Problems parameterized by treewidth tractable in single exponential time: A logical approach[END_REF]. Clearly, for the applicability of the above approach, it is important to detect graph classes with the SQGM (resp. SQGC) property. Historically, this was first done for bounded genus graphs in [START_REF] Demaine | Subexponential parameterized algorithms on graphs of bounded-genus and H-minor-free graphs[END_REF] and in [START_REF] Demaine | The Bidimensional Theory of Bounded-Genus Graphs[END_REF], for H-minor free graphs in [START_REF] Demaine | Linearity of grid minors in treewidth with applications through bidimensionality[END_REF], [START_REF] Demaine | Bidimensional parameters and local treewidth[END_REF], and [START_REF] Fomin | Contraction obstructions for treewidth[END_REF], and for families of geometric graphs in [START_REF] Fomin | Bidimensionality and geometric graphs[END_REF] and [START_REF] Grigoriev | Bidimensionality of geometric intersection graphs[END_REF]. Finally, results that either use ideas similar to bidimensionality o provide alternative techniques for the derivation of subexponential (or low-exponential) parameterized algorithms have been examined in [START_REF] Dragan | Spanners in sparse graphs[END_REF][START_REF] Fomin | Subexponential algorithms for partial cover problems[END_REF][START_REF] Pilipczuk | Subexponential-time parameterized algorithm for steiner tree on planar graphs[END_REF][START_REF] Dorn | Beyond bidimensionality: Parameterized subexponential algorithms on directed graphs[END_REF][START_REF] Pilipczuk | Network sparsification for steiner problems on planar and bounded-genus graphs[END_REF][START_REF] Golovach | Induced packing of odd cycles in a planar graph[END_REF].

Kernelization

Kernelization has been extensively studied in parameterized complexity. It can be seen as the strategy of analyzing preprocessing or data reduction routines from a parameterized complexity perspective.

Kernelization algorithms

The notion of kernelization is formally defined as follows.

Definition 8. A kernelization algorithm, or simply a kernel, for a parameterized problem Π is an algorithm A that, given an instance (x, k) of Π, runs in polynomial, on |x|, time and outputs an equivalent instance (x , k ) of Π where |x | + k ≤ g(k) for some computable function g : N → N called the size of the kernel. In this case we say that Π admits a g kernel and if the size g is a polynomial (resp. linear) function of the parameter k, then we say that Π admits a polynomial (resp. linear) kernel. As we agreed for parameterized graph problems, we will assume that x corresponds to a graph and we treat the size of a kernel as a function on the number of vertices of the graph in the equivalent instance.

Notable examples of known kernels are a 2k kernel for Vertex Cover [START_REF] Chen | Vertex cover: further observations and further improvements[END_REF], a 355k kernel for Dominating Set on planar graphs [START_REF] Alber | Polynomial-time data reduction for dominating sets[END_REF], which later was improved to a 67k kernel [START_REF] Chen | Parametric duality and kernelization: Lower bounds and upper bounds on kernel size[END_REF] and an O(k 2 ) kernel for Feedback Vertex Set [START_REF] Thomassé | A 4•k 2 kernel for feedback vertex set[END_REF] parameterized by the solution size. One of the most intensively studied directions in kernelization is the study of problems on planar graphs and other classes of sparse graphs. This study was initiated by Alber et al. [START_REF] Alber | Polynomial-time data reduction for dominating sets[END_REF] who gave the first linear-sized kernel for the Dominating Set problem on planar graphs. The work of Alber et al. [START_REF] Alber | Polynomial-time data reduction for dominating sets[END_REF] triggered an explosion of papers on kernelization, and kernels of linear sizes were obtained for a variety of parameterized problems on planar graphs including Connected Vertex Cover, Minimum Edge Dominating Set, Maximum Triangle Packing, Efficient Edge Dominating Set, Induced Matching, Full-Degree Spanning Tree, Feedback Vertex Set, Cycle Packing, Blue-Red Dominating Set, and Connected Dominating Set [START_REF] Alber | Polynomial-time data reduction for dominating sets[END_REF][START_REF] Bodlaender | A linear kernel for planar feedback vertex set[END_REF][START_REF] Bodlaender | A linear kernel for the k-disjoint cycle problem on planar graphs[END_REF][START_REF] Chen | Parametric duality and kernelization: Lower bounds and upper bounds on kernel size[END_REF][START_REF] Fomin | Linear kernels for (connected) dominating set on H-minor-free graphs[END_REF][START_REF] Guo | Fixed-parameter tractability results for fulldegree spanning tree and its dual[END_REF][START_REF] Kanj | On the induced matching problem[END_REF][START_REF] Lokshtanov | Linear kernel for planar connected dominating set[END_REF][START_REF] Moser | The parameterized complexity of the induced matching problem in planar graphs[END_REF][START_REF] Garnero | A linear kernel for planar red-blue dominating set[END_REF][START_REF] Fomin | Linear kernels for (connected) dominating set on graphs with excluded topological subgraphs[END_REF]. Most of these results are now covered by the main result of this section (Theorem 13). We refer to the surveys [START_REF] Kratsch | Recent developments in kernelization: A survey[END_REF][START_REF] Lokshtanov | Kernelization -preprocessing with a guarantee[END_REF] for a detailed exposition of the area of kernelization.

Separability

We now restrict our attention to problems Π that are somewhat well-behaved in the sense that whenever we have a small separator in the graph that splits the graph in two parts L and R, the intersection |X ∩ L| of L with any optimal solution X to the entire graph is a good estimate of OP T Π (G[L]). This behavior is called separability and variants of it have been used, combined with bidimensionality, for the derivation of Efficient Polynomial Time Approximation Schemes (EPTAS), see [START_REF] Demaine | Bidimensionality: new connections between fpt algorithms and ptass[END_REF][START_REF] Fomin | Bidimensionality and EPTAS[END_REF].

Definition 9 (Separability). Let f : N → N. We say that a subset problem Π is f -separable if for any graph G and L ⊆ V (G) such that |∂ G (L)| ≤ t, it holds that |SOL Π (G) ∩ L| -f (t) ≤ OP T Π (G[L]) ≤ |SOL Π (G) ∩ L| + f (t).
Π is called separable if there exists a function f such that Π is f -separable. Π is called linearly separable if it is f -separable for some linear function f .

Protrusion decompositions and replacements

We introduce the notions of protrusion, protrusion decomposition, and protrusion replacement.

Protrusion decompositions. Given a graph G, we say that a set

X ⊆ V (G) is an t-protru- sion of G if |∂(X)| ≤ t and tw(G[X]) ≤ t. An (α, β)-protrusion decomposition of a graph G is a partition P = {R 0 , R 1 , . . . , R ρ } of V (G) such that I P E C ' 1 5 max{ρ, |R 0 |} ≤ α, each R + i = N G [R i ], i ∈ {1, . . . , ρ}, is a β-protrusion of G, and for every i ∈ {1, . . . , ρ}, N G (R i ) ⊆ R 0 .
Protrusion replacement algorithms. Let Π be a parameterized graph problem and let f : Z + → Z + be a non-decreasing function. An f -protrusion replacement family for Π is a collection A = {A i | i ≥ 0} of algorithms, such that algorithm A i receives as input a pair (I, X), where I = (G, k) is an instance of Π and X is an i-protrusion of G with at least f (i) vertices and outputs an equivalent instance

I * = (G * , k * ) where |V (G * )| < |V (G)| and k * ≤ k.
We say that Π has a protrusion replacement family if it has a f -protrusion replacement family for some f : Z + → Z + .

Meta-algorithmic results for kernels

Let Π be a vertex/edge subset minimization (resp. maximization) problem. The following two conditions for such a problem Π were defined in [10,[START_REF] Bodlaender | Meta) kernelization[END_REF]. They can be seen as the "kernelization counterparts" of the properties A and B that we introduced in Subsection 4. The following result is based on the property that a problem has Finite Integer Index (FII). In [10, Lemma 5.19] it was proved that this problem property is able to yield property A and, as it has recently been proved in [START_REF] Fomin | Bidimensionality and kernels[END_REF], FII is a consequence of CMSO expressibility and the separability property. Proposition 11. Every min/max-CMSO subset problem Π that is linearly separable has property A.

We now present one of the main combinatorial consequences of bidimensionality. It has been proved in [START_REF] Fomin | Bidimensionality and kernels[END_REF][START_REF] Fomin | Bidimensionality and kernels[END_REF].

Proposition 12. Let G be a graph class with the SQGM (resp. SQGC) property and let Π be a subset problem that is minor-(resp. contraction-) bidimensional and linear-separable. Then Π G satisfies property B.

Using Propositions 10, 11, and 12, one can easily derive the following meta-algorithmic result.

Theorem 13. Let Π be a subset problem that i. is a min/max-CMSO problem, ii. is minor-(resp. contraction-) bidimensional, iii. is linearly separable, and let G is a graph class with the SQGM (resp. SQGC) property. Then the restriction of Π to G admits a linear kernel.

Further extensions

In this paper we presented two consequences of bidimensionality, namely Theorem 7 (subexponential parameterized algorithms) and 13 (linear kernelization). Further applications of bidimensionality on the automatic derivation of EPTAS can be found in [START_REF] Demaine | Bidimensionality: new connections between fpt algorithms and ptass[END_REF] and [START_REF] Fomin | Bidimensionality and EPTAS[END_REF]. It is an interesting question whether this problem property can be exploited to other algorithmic paradigms.

For the existing applications, there are two main directions. The first is to enlarge the set of graph classes satisfying the SQGM or the SQGC property. A first step, escaping from the graph minors framework, are the results of [START_REF] Fomin | Bidimensionality and geometric graphs[END_REF] and [START_REF] Grigoriev | Bidimensionality of geometric intersection graphs[END_REF] on geometric graphs. Another direction is to make the constants involved in Theorems 7 and 13 explicit so as to optimize the running times of the derived algorithms. A step is this direction was taken in [START_REF] Garnero | Explicit linear kernels via dynamic programming[END_REF] using dynamic programming for certain families of problems. It is also interesting to build extensions of bidimensionality for problems that instead of being closed under minors or contractions are closed under some other partial ordering on graphs such as topological minors, immersions, induced minors and others. We believe that recent results such as those in [START_REF] Giannopoulou | Optimizing the graph minors weak structure theorem[END_REF][START_REF] Wollan | The structure of graphs not admitting a fixed immersion[END_REF][START_REF] Chekuri | Degree-3 treewidth sparsifiers[END_REF]] might be helpful starting points in this direction.

  Given a set S ⊆ V (G) we denote by G[S] the subgraph G of G where V (G ) = S and E(G ) = {{x, y} ∈ E(G) | {x, y} ⊆ S} and we call G the subgraph of G induced by S or we simply say that G is an induced subgraph of G. Given a set S ⊆ V (G), we denote by ∂ G (S) the set of all vertices in S that are adjacent in G with vertices not in S. We also define the neighborhood of S in G by N G (S) = ∂ G (V (G) \ S).

Figure 1

 1 Figure 1The graph Γ9.

2 .A

 2 [Algorithmic] Π has a protrusion replacement family. B [Combinatorial ] If (G, k) is a yes-(resp. no-) instance of Π, then G has an (O(k), O(1))protrusion decomposition. The next result is a special case of Theorem 4.6 in [10, 7]. Proposition 10. If a parameterized graph problem Π has properties A and B, then Π admits a linear kernel.
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