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Abstract

Cutwidth is one of the classic layout parameters for graphs. It measures how well one can

order the vertices of a graph in a linear manner, so that the maximum number of edges

between any prefix and its complement suffix is minimized. As graphs of cutwidth at most

k are closed under taking immersions, the results of Robertson and Seymour imply that

there is a finite list of minimal immersion obstructions for admitting a cut layout of width

at most k. We prove that every minimal immersion obstruction for cutwidth at most k has

size at most 2O(k3 log k). For our proof, we introduce the concept of a lean ordering that

can be seen as the analogue of lean decompositions defined by Thomas in [A Menger-like

property of tree-width: The finite case, J. Comb. Theory, Ser. B, 48(1):67–76, 1990] for the

case of treewidth. As an interesting algorithmic byproduct, we design a new fixed-parameter

algorithm for computing the cutwidth of a graph that runs in time 2O(k2 log k) · n, where k is

the optimum width and n is the number of vertices. While being slower by a log k-factor in

the exponent than the fastest known algorithm, given by Thilikos, Bodlaender, and Serna in

[Cutwidth I: A linear time fixed parameter algorithm, J. Algorithms, 56(1):1–24, 2005] and

[Cutwidth II: Algorithms for partial w-trees of bounded degree, J. Algorithms, 56(1):25–49,

2005], our algorithm has the advantage of being simpler and self-contained; arguably, it

explains better the combinatorics of optimum-width layouts.
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1 Introduction

The cutwidth of a graph is defined as the minimum possible width of a linear ordering of its

vertices, where the width of an ordering σ is the maximum, among all the prefixes of σ, of the

number of edges that have exactly one vertex in a prefix. Due to its natural definition, cutwidth

has various applications in a range of practical fields of computer science: whenever data is

expected to be roughly linearly ordered and dependencies or connections are local, one can expect

the cutwidth of the corresponding graph to be small. These applications include circuit design,

graph drawing, bioinformatics, and text information retrieval; we refer to the survey of layout

parameters of Dı́az, Petit, and Serna [6] for a broader discussion.

As finding a layout of optimum width is NP-hard [8], the algorithmic and combinatorial aspects

of cutwidth were intensively studied. There is a broad range of polynomial-time algorithms for

special graph classes [11,12,23], approximation algorithms [15], and fixed-parameter algorithms [19,

20]. In particular, Thilikos, Bodlaender, and Serna [19, 20] proposed a fixed-parameter algorithm

for computing the cutwidth of a graph that runs1 in time 2O(k2) ·n, where k is the optimum width

and n is the number of vertices. Their approach is to first compute the pathwidth of the input

graph, which is never larger than the cutwidth. Then, the optimum layout can be constructed by

an elaborate dynamic programming procedure on the obtained path decomposition. To upper

bound the number of relevant states, the authors had to understand how an optimum layout

can look in a given path decomposition. For this, they borrow the technique of typical sequences

of Bodlaender and Kloks [3], which was introduced for a similar reason, but for pathwidth and

treewidth instead of cutwidth.

Since the class of graphs of cutwidth at most k is closed under immersions, and the immersion

order is a well-quasi ordering of graphs2 [16], it follows that for each k there exists a finite

obstruction set Lk of graphs such that a graph has cutwidth at most k if and only if it does not

admit any graph from Lk as an immersion. However, this existential result does not give any hint

on how to generate, or at least estimate the sizes of the obstructions. The sizes of obstructions

are important for efficient treatment of graphs of small cutwidth; this applies also in practice, as

indicated by Booth et al. [4] in the context of VLSI design.

The estimation of sizes of minimal obstructions for graph parameters like pathwidth, treewidth,

or cutwidth, has been studied before. For minor-closed parameters pathwidth and treewidth,

Lagergren [14] showed that any minimal minor obstruction to admitting a path decomposition

of width k has size at most single-exponential in O(k4), whereas for tree decompositions he

showed an upper bound double-exponential in O(k5) . Less is known about immersion-closed

parameters, like cutwidth. Govindan and Ramachandramurthi [10] showed that the number of

minimal immersion obstructions for the class of graphs of cutwidth at most k is at least 3k−7 + 1,

and their construction actually exemplify minimal obstructions for cutwidth at most k with

(3k−5 − 1)/2 vertices. To the best of our knowledge, nothing was known about upper bounds for

the cutwidth case.

1Thilikos, Bodlaender, and Serna [19,20] do not specify the parametric dependence of the running time of their

algorithm. A careful analysis of their algorithm yields the above claimed running time bound.
2All graphs considered in this paper may have parallel edges, but no loops.
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1.1 Results on obstructions.

Our main result concerns the sizes of obstructions for cutwidth.

Theorem 1. Suppose a graph G has cutwidth larger than k, but every graph with fewer vertices

or edges (strongly) immersed in G has cutwidth at most k. Then G has at most 2O(k3 log k) vertices

and edges.

The above result immediately gives the same upper bound on the sizes of graphs from the minimal

obstruction sets Lk as they satisfy the prerequisites of Theorem 1. This somewhat matches the

(3k−5 − 1)/2 lower bound of Govindan and Ramachandramurthi [10].

Our approach for Theorem 1 follows the technique used by Lagergren [14] to prove that

minimal minor obstructions for pathwidth at most k have sizes single-exponential in O(k4).

Intuitively, the idea of Lagergren is to take an optimum decomposition for a minimal obstruction,

which must have width k + 1, and to assign to each prefix of the decomposition one of finitely

many “types”, so that two prefixes with the same type “behave” in the same manner. If there

were two prefixes, one being shorter than the other, with the same type, then one could replace

one with the other, thus obtaining a smaller obstruction. Hence, the upper bound on the number

of types, being double-exponential in O(k4), gives some upper bound on the size of a minimal

obstruction. This upper bound can be further improved to single-exponential by observing that

types are ordered by a natural domination relation, and the shorter a prefix is, the weaker is its

type. An important detail is that one needs to make sure that the replacement can be modeled by

minor operations. For this, Lagergren uses the notion of linked path decompositions, also known

as lean path decompositions; cf. [21].

To prove Theorem 1, we perform a similar analysis of prefixes of an optimum ordering of a

minimal obstruction. We show that prefixes can be categorized into a bounded number of types,

each comprising prefixes that have the same “behavior”. Provided two prefixes with equally

strong type appear one after the other, we can “unpump” the part of the graph in their difference.

To make sure that unpumping is modeled by taking an immersion, we introduce lean orderings

for cutwidth and prove the analogue of the result of Thomas [21] for treewidth: there is always

an optimum-width ordering that is lean (see also [1]).

The proof of the upper bound on the number of types essentially boils down to the following

setting. We are given a graph G and a subset X of vertices, such that at most ` edges have

exactly one endpoint in X. The question is how X can look like in an optimum-width ordering of

G. We prove that there is always an ordering where X is split into at most O(k`) blocks, where

k is the optimum width. This allows us to store the relevant information on the whole X in one

of a constant number of types (called bucket interfaces). The swapping argument used in this

proof holds the essence of the typical sequences technique of Bodlaender and Kloks [3], while

being, in our opinion, more natural and easier to understand.

As an interesting byproduct, we can also use our understanding to treat the problem of

removing edges to get a graph of small cutwidth. More precisely, for parameters w, k, we consider

the class of all graphs G, such that w edges can be removed from G to obtain a graph of cutwidth

at most k. We prove that for every constant k, the minimal (strong) immersion obstructions for
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this class have sizes bounded linearly in w. Moreover we give an exponential lower bound to the

number of these obstructions. These results are presented in Section 6.

1.2 Algorithmic results.

Consider the following “compression” problem: given a graph G and its ordering σ of width `,

we would like to construct, if possible, a new ordering of the vertices of G of width at most k,

where k < `. Then the types defined above essentially match states that would be associated

with prefixes of σ in a dynamic programming algorithm solving this problem. Alternatively, one

can think of building an automaton that traverses the ordering σ while constructing an ordering

of G of width at most k. Hence, our upper bound on the number of types can be directly used to

limit the state space in such a dynamic programming procedure/automaton, yielding an FPT

algorithm for the above problem.

With this result in hand, it is not hard to design of an exact FPT algorithm for cutwidth.

One could introduce vertices one by one to the graph, while maintaining an ordering of optimum

width. Each time a new vertex is introduced, we put it anywhere into the ordering, and it can be

argued that the new ordering has width at most three times larger than the optimum. Then, the

dynamic programming algorithm sketched above can be used to “compress” this approximate

ordering to an optimum one in linear FPT time.

The above approach yields a quadratic algorithm. To match the optimum, linear running time,

we use a similar trick as Bodlaender in his linear-time algorithm for computing the treewidth

of the graph [2]. Namely, we show that instead of processing vertices one by one, we can

proceed recursively by removing a significant fraction of all the edges at each step, so that their

reintroduction increases the width at most twice. We then run the compression algorithm on

the obtained 2-approximate ordering to get an optimum one. The main point is that, since we

remove a large portion of the graph at each step, the recursive equation on the running time

solves to a linear function, instead of quadratic. This gives the following.

Theorem 2. There exists an algorithm that, given an n-vertex graph G and an integer k, runs

in time 2O(k2 log k) · n and either correctly concludes that the cutwidth of G is larger than k, or

outputs an ordering of G of width at most k.

The algorithm of Theorem 2 has running time slightly larger than that of Thilikos, Bodlaender,

and Serna [19, 20]. The difference is the log k factor in the exponent, the reason for which

is that we use a simpler bucketing approach to bound the number of states, instead of the

more entangled, but finer, machinery of typical sequences. We believe the main strength of

our approach lies in its explanatory character. Instead of relying on algorithms for computing

tree or path decompositions, which are already difficult by themselves, and then designing a

dynamic programming algorithm on a path decomposition, we directly approach cutwidth “via

cutwidth”, and not “via pathwidth”. That is, the dynamic programming procedure for computing

the optimum cutwidth ordering on an approximate cutwidth ordering is technically far simpler

and conceptually more insightful than performing the same on a general path decomposition. We
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also show that the “reduction-by-a-large-fraction” trick of Bodlaender [2] can be performed also

in the cutwidth setting, yielding a self-contained, natural, and understandable algorithm.

2 Preliminaries

We denote the set of non-negative integers by N and the set of positive integers by N+. For

r, s ∈ N with r ≤ s, we denote [r] = {1, . . . , r} and [r, s] = {r, . . . , s}. Notice that [0] = ∅.

Graphs. All graphs considered in this paper are undirected, without loops, and may have

multiple edges. The vertex and edge sets of a graph G are denoted by V (G) and E(G), respectively.

For disjoint X,Y ⊆ V (G), by EG(X,Y ) we denote the set of edges of G with one endpoint in X

and one in Y . If S ⊆ V (G), then we denote δG(S) = |EG(S, V (G) \ S)|. We drop the subscript if

it is clear from the context. Every partition (A,B) of V (G) is called a cut of G; the size of the

cut (A,B) is δ(A).

Cutwidth. Let G be a graph and σ an ordering of V (G). For u, v ∈ V (G), we write u <σ v if

u appears before v in σ. Given two disjoint sequences σ1 = 〈x1, . . . , xr1〉 and σ1 = 〈y1, . . . , yr2〉
of vertices in V (G), we define their concatenation as σ1 ◦ σ2 = 〈x1, . . . , xr1 , y1, . . . , yr2〉. For

X ⊆ V (G), let σX be the ordering of X induced by σ, i.e., the ordering obtained from σ if

we remove the vertices that do not belong in X. For a vertex v we denote by V σv the set

{u ∈ V (G) | u ≤σ v}. A σ-cut is any cut of the form (V σv , V (G)\V σv ) for v ∈ V (G). The cutwidth

of an ordering σ of G is defined as cwσ(G) = maxv∈V (G) δ(V
σ
v ). The cutwidth of G, cw(G), is

the minimum of cwσ(G) over all possible orderings of V (G).

Obstructions. Let ≤ be a partial order on graphs. We say that G′ � G if G′ ≤ G and G′ is

not isomorphic to G. A graph class G is closed under ≤ if whenever G′ ≤ G and G ∈ G, we also

have that G′ ∈ G. Given a partial order ≤ and a graph class G closed under ≤, we define the

(minimal) obstruction set of G w.r.t. ≤, denoted by obs≤(G), as the set containing all graphs

where the following two conditions hold:

O1: G 6∈ G, i.e., G is not a member of G, and

O2: for each G′ with G′ � G, we have that G′ ∈ G.

We say that a set of graphs H is a ≤-antichain if it does not contain any pair of comparable

elements wrt. ≤. By definition, for any class G closed under ≤, the set obs≤(G) is an antichain.

Immersions. Let H and G be graphs. We say that G contains H as an immersion if there is

a pair of functions (φ, ψ), called an H-immersion model of G, such that φ is an injection from

V (H) to V (G) and ψ maps every edge uv of H to a path of G between φ(u) and φ(v) so that

different edges are mapped to edge-disjoint paths. Every vertex in the image of φ is called a

branch vertex. If we additionally demand that no internal vertex of a path in ψ(E(H)) is a branch
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vertex, then we say that (φ, ψ) is a strong H-immersion model and H is a strong immersion of G.

We denote by H ≤i G (H ≤si G) the fact that H is an immersion (strong immersion) of G; these

are partial orders. Clearly, for any two graphs H and G, if H ≤si G then H ≤i G. This implies

the following observation:

Observation 3. If G is a graph class closed under ≤i, then obs≤i
(G) ⊆ obs≤si

(G).

Robertson and Seymour proved in [16] that every ≤i-antichain is finite and conjectured the

same for ≤si. It is well-known that for every k ∈ N, the class Ck of graphs of cutwidth at most k

is closed under immersions. It follows from the results of [16] that obs≤i
(Ck) is finite; the goal of

this paper is to provide good estimates on the sizes of graphs in obs≤si
(Ck). As the cutwidth of a

graphs is the maximum cutwidth of its connected components, it follows that graphs in obs≤si
(Ck)

are connected. Moreover, every graph in obs≤si(Ck) has cutwidth exactly k + 1, because the

removal of any of its edges decreases its cutwidth to at most k.

3 Bucket interfaces

Let G be a graph and σ be an ordering of V (G). For a set X ⊆ V (G), the X-blocks in σ are the

maximal subsequences of consecutive vertices of σ that belong to X. Suppose (A,B) is a cut of

G. Then we can write σ = b1 ◦ . . . ◦ bp, where b1, . . . , bp are the A- and B-blocks in σ; these will

be called jointly (A,B)-blocks. The next lemma is the cornerstone of our approach: we prove

that given a graph G and a cut (A,B) of G, there exists an optimum cutwidth ordering of G

where number of blocks depends only on the cutwidth and the size of (A,B).

Lemma 4. Let ` ∈ N+ and G be a graph. If (A,B) is a cut of G of size `, then there is an

optimum cutwidth ordering σ of V (G) with at most (2`+ 1) · (2cw(G) + 3) + 2` (A,B)-blocks.

Proof. Let σ be an optimum cutwidth ordering such that, subject to the width being minimum,

the number of (A,B)-blocks it defines is also minimized. Let σ = b1 ◦ b2 ◦ · · · ◦ br, where

b1, b2, . . . , br are the (A,B)-blocks of σ. If σ defines less than three blocks, then the claim already

follows, so let us assume r ≥ 3.

Consider any ordering σ′ obtained by swapping two blocks, i.e., σ′ = b1 ◦ · · · ◦ bj−1 ◦ bj+1 ◦
bj ◦ bj+2 . . . br, for some j ∈ [r− 1]. Observe that since the blocks b1, . . . , br alternate as A-blocks

and B-blocks, the ordering σ′ has a strictly smaller number of blocks; indeed, either j − 1 ≥ 1, in

which case bj−1 ◦ bj+1 defines a single block of σ′, or j = 1 and hence j + 2 ≤ r, in which case

bj ◦ bj+2 does. Therefore, by choice of σ, for each j ∈ [r − 1], swapping bj and bj+1 in σ must

yield an ordering with strictly larger cutwidth.

We call a block free if it does not contain any endpoint of the cut edges EG(A,B). We now

prove that any run of consecutive free blocks in σ has at most 2cw(G) + 3 blocks. Since the cut

(A,B) has size `, there are at most 2` blocks that are not free. This implies the claimed bound

on the total number of all blocks in σ.

Suppose, to the contrary, that there exists a run of q > 2cw(G) + 3 consecutive free blocks

in σ. Let these blocks be br, br+1, . . . , bs, where s− r + 1 = q. For j ∈ [r, s− 1], we define µ(j)
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· · · · · ·

block j − 1

µ(j − 1)

block j

µ(j)

block j + 1

µ(j + 1)

block j + 2

Figure 1: A cut (A,B) is highlighted (blue, red), with the corresponding blocks underlined and

cuts between them marked with dashed lines. Edges counted as pj and sj are thickened.

to be the size of the cut between all vertices inside or preceding the vertices of block bj and all

vertices inside or following the vertices of block bj+1 in σ; see Figure 1.

Claim 5. For all j ∈ [r + 1, . . . , s− 2], we have that µ(j − 1) > µ(j) or µ(j) < µ(j + 1).

Proof. Suppose that for some j ∈ [r+ 1, s− 2], µ(j) ≥ max(µ(j− 1), µ(j+ 1)). We will then show

that the ordering σ′ obtained by swapping the blocks bj and bj+1 still has optimum cutwidth,

a contradiction to the choice of σ. Notice that for every vertex v preceding all vertices of bj or

succeeding all vertices of bj+1, δ(V σ
′

v ) = δ(V σv ). Thus, it remains to show that for any vertex v

belonging to the block bj or to the block bj+1, also δ(V σ
′

v ) ≤ δ(V σv ).

Let pj be the number of edges of G with one endpoint in the block bj and the other endpoint

preceding (in σ) all vertices of bj . Let also sj be the number of edges of G with one endpoint in

bj and the other endpoint succeeding (in σ) all vertices of bj (and hence succeeding all vertices of

block bj+1, since both bj and bj+1 are free). Notice that µ(j) = µ(j − 1)− pj + sj and recall that

µ(j) ≥ µ(j − 1). This yields that sj ≥ pj .
Similarly, let pj+1 be the number of edges of G with one endpoint in bj+1 and the other

endpoint preceding all vertices of the block bj+1 (and, in particular, all vertices of block bj). Let

also sj+1 be the number of edges of G with one endpoint in bj+1 and the other endpoint succeeding

all vertices of block bj+1. Again, we have µ(j + 1) = µ(j) − pj+1 + sj+1 and µ(j) ≥ µ(j + 1).

This yields that pj+1 ≥ sj+1.

Let v be a vertex of the block bj . Recall that the blocks bj and bj + 1 are free and thus,

there are no edges between them. Observe then that δ(V σ
′

v ) = δ(V σv ) + sj+1 − pj+1 ≤ δ(V σv ).

Symmetrically, for any vertex v in bj+1, observe that δ(V σ
′

v ) = δ(V σv ) + pj − sj ≤ δ(V σv ). Thus,

cwσ′(G) ≤ cwσ(G) = cw(G), a contradiction. y

Claim 5 shows that for all j ∈ [r + 1, s − 2], we have µ(j − 1) > µ(j) or µ(j) < µ(j + 1).

It follows that any non-decreasing pair µ(j − 1) ≤ µ(j) must be followed by an increasing pair

µ(j) < µ(j + 1). Hence, if jmin is the minimum index such that µ(jmin) ≤ µ(jmin + 1), then

the sequence µ(j) has to be strictly decreasing up to jmin and strictly increasing from jmin + 1

onward. Since µ(j) ≤ cw(G) for all j, the length q of the sequence of consecutive free blocks

cannot be longer than 2cw(G) + 3 in total, concluding the proof.
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We use the above lemma to bound the number of “types” of prefixes in graph orderings. To

describe such a prefix, i.e., one side of a cut in a graph, we use the following definition.

Definition 6. A k-boundaried graph is a pair G = (G, x̄) where G is a graph and x̄ = (x1, . . . , xk)

is a k-tuple of the graph’s boundary vertices (ordered, not necessarily distinct). The extension of

G is the graph G∗ obtained from G by adding k new vertices x′1, . . . , x
′
k and edges x1x

′
1, . . . , xkx

′
k.

The join A⊕B of two k-boundaried graphs A = (A, x̄),B = (B, ȳ) is the graph obtained from

the disjoint union of A and B by adding an edge xiyi for i ∈ [k].

From Lemma 4 we derive that for any given cut (A,B) of size ` of a graph G with cw(G) ≤ k,

there is an optimum cutwidth ordering in which the vertices of A occur in O(k`) blocks. Our

next goal is to show that the only information about A that can affect the cutwidth of G is: the

placing of the endpoints of each cutedge (xi and x′i) into blocks, and the cutwidth of each block

(as an induced subgraph of A or A∗). Recall that for an ordering σ of V (G), σ-cuts are cuts of

the form (V σv , V (G) \ V σv ), for v ∈ V (G).

Definition 7. Let G be a graph and σ be an ordering of its vertices. An `-bucketing of σ is

a function T : V (G) → [`] such that T (u) ≤ T (v) for any u appearing before v in σ. For every

i ∈ [`], the set T−1(i) will be called a bucket; a bucket is naturally ordered by σ. For every bucket

T−1(i), i ∈ [`], let cuts(G, σ, T, i) be the family of σ-cuts containing on one side all vertices of

buckets appearing before i and a prefix (in σ) of the i-th bucket. For an ordering σ of the vertices

of a graph G, define the width of the bucket i, i ∈ [`], as the maximum width of any cut in the

family cuts(G, σ, T, i). Formally,

cuts(G, σ, T, i) =
{(
T−1([1, i− 1]) ∪ L, R ∪ T−1([i+ 1, `])

)
:

(L,R) is a σ-cut of T−1(i)
}
,

width(G, σ, T, i) = max { |EG(L,R)| : (L,R) ∈ cuts(G, σ, T, i) } .

Notice that every σ-cut of G is in cuts(G, σ, T, i) for at least one bucket i ∈ [`]; since cwσ(G) is

the maximum of |EG(L,R)| over σ-cuts (L,R), we have

cwσ(G) = max
i∈[`]

width(G, σ, T, i). (1)

For two k-boundaried graphs A = (A, x̄),B = (B, ȳ), we slightly abuse notation and understand

the edges x1x
′
1, . . . , xkx

′
k in A∗ to be the same as y′1y1, . . . , y

′
kyk in B∗ and as x1y1, . . . , xkyk in

A⊕B. That is, for an ordering σ of A⊕B with `-bucketing T , we define T |A∗(v) to be T (v) for

v ∈ V (A) and T (yi) for v = x′i. We define σ|A∗ as an ordering that orders x′i just as σ orders yi,

with the order between x′i and x′j chosen arbitrarily when yi = yj . The following lemma shows

that if an `-bucketing respects the sides of a cut, then the width of any bucket can be computed

as the sum of contributions of the sides.

Lemma 8. Let k, ` be positive integers and A = (A, x̄),B = (B, ȳ) be two k-boundaried graphs.

Let also σ be a vertex ordering of A⊕B with `-bucketing T . If T−1(i) does not contain any vertex

of A, for some i ∈ [`], that is, T−1(i) ∩ V (A) = ∅, then it holds that width(A ⊕ B, σ, T, i) =

width(A, σ|A, T |A, i) + width(B∗, σ|B∗ , T |B∗ , i).
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Proof. Consider any cut (L,R) in cuts(G, σ, T, i). Observe that for every edge e of EA⊕B(L,R)

one of the following holds:

1. e ∈ EA(L ∩ V (A), R ∩ V (A)) or

2. e ∈ EB(L ∩ V (B), R ∩ V (B)) or

3. e ∈ EG(L ∩ V (A), R ∩ V (B)), or

4. e ∈ EG(R ∩ V (A), L ∩ V (B)).

Since we do not distinguish between the vertices xi and the vertices y′i, we equivalently obtain

that for every edge e ∈ EA⊕B(L,R), e is either an edge in EA(L∩ V (A), R∩ V (A)) or an edge in

EB∗(L ∩ V (B∗), R ∩ V (B∗)). Observe that (L ∩ V (A), R ∩ V (A)) is a cut in cuts(A, σ|A, T |A, i)
and (L ∩ V (B∗), R ∩ V (B∗)) is a cut in cuts(B∗, σ|B∗ , T |B∗ , i). Therefore, the total number of

edges crossing these cuts is at most width(A, σ|A, T |A, i) + width(B∗, σ|B∗ , T |B∗ , i). This proves

that

width(A⊕B, σ, T, i) ≤ width(A, σ|A, T |A, i) + width(B∗, σ|B∗ , T |B∗ , i).

For the converse inequality, observe that since the bucket T−1(i) does not contain any vertices

of A, we have T |−1A (i) = ∅. Hence there is exactly one cut in cuts(A, σ|A, T |A, i), namely (LA, RA),

where LA = T−1({1, . . . , i− 1}) ∩ V (A) and RA = T−1({i+ 1, . . . , `}) ∩ V (A). Let (LB , RB) be

a cut in cuts(B∗, σ|B∗ , T |B∗ , i) maximizing |EB∗(LB , RB)|. Then, since we assumed that T−1(i)

does not contain any vertices of A (and thus, may only contain vertices of B), it follows that

(LA ∪ LB , RA ∪ RB) is a cut in cuts(G, σ, T, i). As above, every edge of A ⊕ B crossing this

cut is either in EA(LA, RA) or in EB∗(LB , RB), where we again do not distinguish between the

vertices xi and y′i. Hence

width(A⊕B, σ, T, i) ≥ |EA⊕B(L,R)|

= |EA(LA, RA)|+ |EB∗(LB , RB)|

= width(A, σ|A, T |A, i) + width(B∗, σ|B∗ , T |B∗ , i).

Replacing the roles of A and B above, we obtain that if T−1(i) does not contain any vertex

of B, then

width(A⊕B, σ, T, i) = width(A∗, σ|A∗ , T |A∗ , i) + width(B, σ|B , T |B , i).

Intuitively, this implies that the cutwidth of A⊕B depends on A only in the widths of each block

relative to A and A∗ (in any bucketing where buckets are either A-blocks or B-blocks). Therefore,

replacing A with another boundaried graph whose extension has an ordering and bucketing with

the same widths preserves cutwidth (as long as endpoints of the cut edges are placed in the same

buckets too). This is formalized in the next definition.

Definition 9. For k, ` ∈ N, an (k,`)-bucket interface consists of functions:
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• b, b′ : [k]→ [`] identifying the buckets which contain xi and x′i, respectively and

• µ, µ∗ : [`]→ [0, k] corresponding to the widths of buckets.

A k-boundaried graph G conforms with a (k, `)-bucket interface if there exists an ordering σ of

the vertices of G∗ and an `-bucketing T such that:

• T (v) is odd for v ∈ V (G) and even for v ∈ {x′1, . . . , x′k},

• T (xi) = b(i) and T (x′i) = b′(i), for each i ∈ [k],

• width(G, σ|G, T |G, j) ≤ µ(j), for each j ∈ [`],

• width(G∗, σ, T, j) ≤ µ∗(j), for each j ∈ [`].

Observation 10. For all k, ` ∈ N+ there are ≤ 22(k log `+` log(k+1)) (k, `)-bucket interfaces.

We call two k-boundaried graphs G1,G2 (k,`)-similar if the sets of (k, `)-bucket interfaces

they conform with are equal. The following lemma subsumes the above ideas. The proof follows

easily from Lemma 8 and the fact that cwσ(G) = maxi∈[`] width(G, σ, T, i) (Eq. (1)).

Theorem 11. Let k, r be two positive integers. Let also A1 and A2 be two k-boundaried graphs

that are (k, `)-similar, where ` = (2k + 1) · (2r + 4). Then for any k-boundaried graph B where

cw(A1 ⊕B) ≤ r, it holds that cw(A2 ⊕B) = cw(A1 ⊕B).

Proof. Let Ai = (Ai, x̄
i),B = (B, ȳ) and suppose that cw(A1 ⊕B) ≤ r. By Lemma 4, there is

an optimum cutwidth ordering σ1 of the vertices of A1⊕B that has at most `− 1 (V (A1), V (B))-

blocks. In particular cwσ1
(A1 ⊕B) = cw(A1 ⊕B) ≤ r. By adding an empty block at the front,

if necessary, we may assume that the number of blocks is at most `, while odd-indexed blocks are

V (A1)-blocks and even-indexed blocks are V (B)-blocks. Then, there is an `-bucketing T1 of σ1

such that T1(v) is odd for v ∈ A1 and even for v ∈ B. Therefore σ1|A∗1 and T1|A∗1 certify that the

following (k, `)-bucket interface conforms with A1:

• b(i) = T1(x1i ) and b′(i) = T1|A∗1 (x1i
′
) = T1(yi) for i ∈ [k],

• µ(i) = width(A1, σ1|A1
, T1|A1

, i) and µ∗(i) = width(A∗1, σ1|A∗1 , T1|A∗1 , i) for i ∈ [`].

By (k, `)-similarity there is an ordering σ2 of A∗2 and its `-bucketing T2 such that:

• each bucket T−12 (i) is contained in A2 for odd i ∈ [`] and in {x21
′
, . . . , x2k

′} for even i ∈ [`]

• b(i) = T2(x2i ) and b′(i) = T2(x2i
′
) for i ∈ [k],

• µ(i) ≥ width(A2, σ2|A2 , T2|A2 , i) and µ∗(i) ≥ width(A∗2, σ2|A∗2 , T2|A∗2 , i) for i ∈ [`].

Given this, we define an assignment of vertices into buckets Π: V (A2 ⊕B)→ [`] as follows.

• Π(v) = T1(v) for v ∈ V (B) and

• Π(v) = T2(v) for v ∈ V (A2).
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Clearly,

Π|B = T1|B and (2)

Π|A2
= T2|A2

. (3)

We claim that Π|A∗2 = T2|A∗2 and Π|B∗ = T1|B∗ also hold. Indeed,

Π|A∗2 (x2
′

i ) = Π(yi) (we consider x2
′

i as yi)

= T1(yi) (by definition)

= b′(i) ((k, `)-bucket interface)

= T2(x2
′

i ) ((k, `)-similarity)

and, similarly,

Π|B∗(y′i) = Π(x2i ) (we consider y′i as x2i )

= T2(x2i ) (by definition)

= b(i) ((k, `)-bucket interface)

= T1(x1i ) ((k, `)-similarity)

= T1|B∗(y′i) (by definition).

Thus, we obtain that

Π|A∗2 = T2|A2
(4)

Π|B∗ = T1|B∗ . (5)

Note also that vertices of A2 are mapped to odd buckets and vertices of B are mapped to

even buckets. We use Π to define an ordering π of the vertices of A2 ⊕B as follows. Formally,

we let u <π u if and only if one of the following conditions hold:

1. Π(u) < Π(v),

2. u <σ2 v and Π(u) = Π(v) is odd, or

3. u <σ1
v and Π(u) = Π(v) is even.

Note that this is a linear ordering as it first sorts the vertices according to the bucket they

belong to and then according to the ordering induced in this bucket by the orderings σ1 and σ2.

Note also that by definition Π is an `-bucketing of π. Recall that, from Eq. (4), Π|A∗2 = T2|A2 .

This, together with the observation that the vertices of A2 are mapped to odd buckets of Π,

implies that

π|A∗2 = σ2|A∗2 and that (6)

π|A2 = σ2|A2 . (7)
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Moreover, recall that Π|B∗ = T1|B∗ . This, together with the fact that the vertices of B are

mapped to even buckets of Π, implies that

π|B∗ = σ1|B∗ and that (8)

π|B = σ1|B . (9)

We now bound the width of each bucket. Let i ∈ [`]. Notice that if i is even the by construction

Π−1(i) contains only vertices from B. Therefore,

width(A2 ⊕B, π,Π, i) = width(A2, π|A2
,Π|A2

, i) + width(B∗, π|B∗ ,Π|B∗ , i)

= width(A2, σ2|A2
, T2|A2

, i) + width(B∗, σ1|B∗ , T1|B∗ , i)

≤ µ(i) + width(B∗, σ1|B∗ , T1|B∗ , i)

= width(A1, σ1|A1
, T1|A1

, i) + width(B∗, σ1|B∗ , T1|B∗ , i)

= width(A1 ⊕B, σ1, T1, i), (10)

where the first equality follows from Lemma 8, the second equality holds by Eq. (3), (7), (8), and (5),

the third inequality follows from the (k, `)-bucket interface, and the fifth equality follows from

Lemma 8. We similarly argue, using µ∗ instead of µ, that for odd i ∈ [`], width(A2⊕B, π,Π, i) =

width(A1 ⊕B, σ1, T1, i). In particular,

width(A2 ⊕B, π,Π, i) = width(A∗2, π|A∗2 ,Π|A∗2 , i) + width(B, π|B ,Π|B , i)

= width(A∗2, σ2|A∗2 , T2|A∗2 , i) + width(B, σ1|B , T1|B , i)

≤ µ∗(i) + width(B, σ1|B , T1|B , i)

= width(A∗1, σ1|A∗1 , T1|A∗1 , i) + width(B, σ1|B , T1|B , i)

= width(A1 ⊕B, σ1, T1, i). (11)

Similarly, to Eq. 10, we get that the first equality follows from Lemma 8, the second equality

holds by Eq. (4), (6), (2), and (9), the third inequality follows from the (k, `)-bucket interface,

and the fifth equality follows from Lemma 8.

Therefore, from Eq. (10) and (11) we obtain that

cwπ(A2 ⊕B) = max
i∈[`]

width(A2 ⊕B, π,Π, i) ≤ max
i∈[`]

width(A1 ⊕B, σ1, T1, i) = cwσ1
(A1 ⊕B).

Moreover, since cw(A2⊕B) ≤ cwπ(A2⊕B) and σ1 is an optimum cutwidth ordering for A‘⊕B,

it follows that

cw(A2 ⊕B) ≤ cw(A1 ⊕B) ≤ r.

So in particular cw(A2⊕B) ≤ r. By applying the same reasoning, but with A1 and A2 reversed,

we obtain also the converse inequality cw(A2 ⊕ B) ≤ cw(A1 ⊕ B). This proves that indeed

cw(A2 ⊕B) = cw(A1 ⊕B).
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u u′A1 A2 ∪B1 B2

u u′A1 A2 B1
B2

Figure 2: An ordering of vertices with the minimum cut (A,B) between A1 and B2 of size

i highlighted in blue and red. Below, the modified ordering, with cutwidth bounded using

submodularity.

4 Obstruction sizes and lean orderings

In this section we establish the main result on sizes of obstructions for cutwidth. We first introduce

lean orderings and prove that there is always an optimum ordering that is lean.

Definition 12 (lean ordering). An ordering σ of V (G) is lean if for any two vertices u ≤σ u′,
there exist min{δ(V σv ) | u ≤σ v ≤σ u′} edge-disjoint paths between V σu and V (G) \ V σu′ in G.

Lemma 13. For every graph G, there is a lean ordering σ of V (G) with cwσ(G) = cw(G).

Proof. Without loss of generality, we may assume that the graph is connected. Let σ be an

optimum cutwidth ordering of V = V (G). Subject to the optimality of σ, we choose σ so that∑
v∈V δ(V

σ
v ) is minimized. We prove that σ defined in this manner is in fact lean.

Assume the contrary. Then by Menger’s theorem, there exist vertices u <σ u′ in V and

i ∈ N such that δ(V σv ) > i for every u ≤σ v ≤σ u′, but a minimum cut (A,B) of G with

V σu ⊆ A and V \ V σu′ ⊆ B has size δ(A) ≤ i. We partition A into sets A1 and A2, where

A1 = V σu and A2 = A \ A1, and we partition B into sets B1 and B2, where B2 = V \ V σu′
and B1 = B \ B2 (see Figure 2). Notice that A2 = A \ V σu = {v | u <σ v ≤σ u′} ∩ A and

that B1 = B \ (V \ V σu′) = {v | u <σ v ≤σ u′} ∩ B. Let σ′ be the ordering of V obtained by

concatenating σ|A1
, σ|A2

, σ|B1
, and σ|B2

.

We prove that δ(V σ
′

v ) ≤ δ(V σv ), for every v ∈ V . Observe first that for every vertex v ∈ A1∪B2

it holds that V σ
′

v = V σv and thus, δ(V σ
′

v ) = δ(V σv ). Let now v ∈ A2. Then V σ
′

v = V σv ∩ A. By

the submodularity of cuts it follows that δ(V σv ∪ A) + δ(V σv ∩ A) ≤ δ(A) + δ(V σv ). Notice that

(V σv ∪A, V \ (V σv ∪A)) is also a cut separating A1 = V σu and B2 = V \ V σu′ . From the minimality

of (A,B) it follows that δ(A) ≤ δ(V σv ∪A). Therefore, δ(V σv ∩A) ≤ δ(V σv ). As V σ
′

v = V σv ∩A, we

obtain that δ(V σ
′

v ) ≤ δ(V σv ).

Symmetrically, let now v ∈ B1. Then V σ
′

v = V σv ∪ A. By the submodularity of cuts we

have δ(V σv ∪ A) + δ(V σv ∩ A) ≤ δ(A) + δ(V σv ). Notice that (V σv ∩ A, V \ (V σv ∩ A)) is a cut

separating A1 and B2. From the minimality of (A,B) it follows that δ(A) ≤ δ(V σv ∩A). Therefore,

δ(V σv ∪A) ≤ δ(V σv ). As V σ
′

v = V σv ∪A, we obtain that δ(V σ
′

v ) ≤ δ(V σv ).

Thus, δ(V σ
′

v ) ≤ δ(V σv ) ≤ cw(G) for every v ∈ V , and hence cwσ′(G) = cw(G). Finally,

note that δ(V σ
′

v ) = δ(A) ≤ i < δ(V σv ) for the last vertex v in A. Thus
∑
v δ(V

σ′

v ) <
∑
v δ(V

σ
v ),

contradicting the choice of σ. Therefore, σ is a lean ordering of V with cwσ(G) = cw(G).
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The rest of Section 4 is devoted to the proof of Theorem 1. Before we proceed with this proof,

we need a series of auxiliary lemmas.

For every s, r ∈ N+, we set As,r = [s, s+ r − 1]. We prove the following.

Lemma 14. Let N be a positive integer. For every s, r ∈ N+ and every word w over As,r of

length Nr there is a symbol k ∈ As,r and a subword u of w such that (a) u contains only numbers

not smaller than k, and (b) u contains the number k at least N times.

Proof. We prove the lemma by induction on r. Notice that for r = 1, As,r = {s} and thus the

only word w of length N is sN . Thus, the lemma holds with k = s and u = w. We proceed to

the inductive step for r > 1.

Let now s ∈ N and let w be a word over As,r of length Nr. If s occurs at least N times, then

again, the lemma holds with k = s and u = w. Thus, we may assume that s occurs at most N − 1

times. Then, since w has length at least Nr, there exists a subword w′ of w of length at least

Nr−1 over As,r \{s} = As+1,r−1. From the inductive hypothesis, there exists k ∈ As+1,r−1 ⊆ As,r
and a subword u of w′ such that k occurs at least N times in u and u contains only numbers at

least k. Since w′ is a subword of w, u is also a subword of w. This completes the inductive step

and the proof of the lemma.

We use Lemma 14 only for s = 1, giving the following corollary.

Corollary 15. Let r,N be positive integers and let w be a word of length Nr over the alphabet

[r]. Then there is a number k ∈ [r] and a subword u of w such that (a) u contains only numbers

not smaller than k, and (b) u contains the number k at least N times.

We also need one additional statement about boundaried graphs and bucket interfaces.

Lemma 16. Let k, ` ∈ N. Suppose A = (A, x̄) and B = (B, ȳ) are two k-boundaried graphs, and

suppose further that there is an immersion model (φ, ψ) of A in B such that φ(xi) = yi, for all

i = 1, 2, . . . , k. Then for every (k, `)-bucket interface (b, b′, µ, µ∗), if B conforms to (b, b′, µ, µ∗)

then also A conforms to (b, b′, µ, µ∗).

Proof. First, we extend the immersion model (φ, ψ) to an immersion model (φ∗, ψ∗) of A∗ in B∗

by putting φ∗(x′i) = y′i and ψ∗(xix
′
i) = yiy

′
i for all i ∈ [k]. Suppose that ordering σ of V (B∗) and

its `-bucketing T certify that B conforms to (b, b′, µ, µ∗). We define ordering σ′ of V (A∗) and its

`-bucketing T ′ as follows:

• For u, v ∈ V (A∗), we put u <σ′ v if and only if φ∗(u) <σ′ φ
∗(v).

• For u ∈ V (A∗), we put T ′(u) = T (φ∗(u)).

It is easy to see that T ′ is an `-bucketing of σ′. We now verify that σ′ and T ′ certify that A

conforms to (b, b′, µ, µ∗). The first two conditions of conforming follow directly from the definition

of σ′ and T ′, so we are left with the third and the fourth condition.

For the third condition, take any j ∈ [`]. It suffices to show that for any cut (L′, R′) ∈
cuts(A, σ′|A, T ′|A, j), we have that |EA(L′, R′)| ≤ µ(j). By the construction of (σ′, T ′) it follows
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that there is a cut (L,R) ∈ cuts(B, σ|B , T |B , j) such that φ(L′) ⊆ L and φ(R′) ⊆ R. Since

(σ, T ) certified that B conforms to (b, b′, µ, µ∗), we have that |EB(L,R)| ≤ µ(j). Take any

uv ∈ EA(L′, R′), and observe that ψ(uv) is a path in B leading from φ(u) ∈ L to φ(v) ∈ R.

Consequently, one of the edges of this path must belong to EB(L,R). Since paths ψ(uv) are

pairwise edge-disjoint for different edges uv ∈ EA(L′, R′), we infer that

|EA(L′, R′)| ≤ |EB(L,R)| ≤ µ(j).

This establishes the third condition. The fourth condition follows by the same argument applied

to graphs A∗ and B∗, instead of A and B.

The following theorem is the technical counterpart of Theorem 1. Its proof is based on

Theorem 11, Lemma 13, Observation 10 and the idea of “unpumping” repeating types, presented

in the introduction. The leanness is used to make sure that within the unpumped segment of the

ordering, one can find the maximum possible number of edge-disjoint paths between the parts

of the graph on the left side and on the right side of the segment. This ensures that the graph

obtained from unpumping can be immersed in the original one.

Theorem 17. Let k be a positive integer. If G ∈ obs≤si
(Ck), then |V (G)| ≤ Nk+1, where

N = 22((k+1) log `+` log(k+2)) + 2 and ` = (2k + 3) · (2k + 6).

Proof. Take any G ∈ obs≤si
(Ck) and assume, towards a contradiction, that |V (G)| > Nk+1. Let

σ = 〈v1, v2, . . . , v|V (G)|〉 be a lean optimum cutwidth ordering of G, which exists by Lemma 13.

We define ci = δ(V σvi), that is, ci is the size of the cut between the vertices of G up to vi and

the rest of the graph. Notice that since G ∈ obs≤si
(Ck), we have that cw(G) = k + 1 and G is

connected. This implies that ci ∈ [k + 1], for every i ∈ [|V (G)| − 1].

Observe that c1c2 . . . c|V (G)|−1 is a word of length at least Nk+1 over the alphabet [k + 1].

From Corollary 15, it follows that there exist 1 ≤ s ≤ t < |V (G)| and q ∈ [k + 1] such that for

every s ≤ i ≤ t we have ci ≥ q, and there also exist N distinct indices s ≤ i1 < i2 < · · · < iN ≤ t
such that cij = q, for every j ∈ [N ]. Without loss of generality we may assume that i1 = s and

iN = t.

For each j ∈ [N ], we can define a q-boundaried graph Gj = (Gj , (z
1
j , z

2
j , . . . , z

q
j )) in the

following way. First, by leanness, we find edge-disjoint paths P1, . . . , Pq between V σvi1 and

V \ V σviN . Notice that for each j ∈ [N ] the cut EG(V σvij
, V (G) \ V σvij ) contains exactly one edge of

each path Pi. Denote this edge by eij , for i ∈ [q]. For i ∈ [q], let xij be the endpoint of eij that

belongs to V σvij
, and let yij be the endpoint that does not belong to V σvij

. We construct Gj by

taking G[V σvij
], adding fresh boundary vertices (z1j , z

2
j , . . . , z

q
j ), and adding one fresh edge xijz

i
j

for each i ∈ [q].

Now consider any pair of indices 1 ≤ j1 < j2 ≤ N . Observe that there exists an immersion

model (φ, ψ) of Gj1 in Gj2 such that φ(zij1) = zij2 for each i ∈ [q]. Indeed, we can put φ(u) = u for

each u ∈ V (Gj1) and φ(zij1) = zij2 for each i ∈ [q]. Then ψ can be defined by taking ψ(e) = e for

each e ∈ E(Gj1) and mapping each edge xij1z
i
j1

to an appropriate infix of the path Pi, extended

by the edge xij2z
i
j2

. Consequently, Gj1 and Gj2 satisfy the prerequisites of Lemma 16. We infer
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that if by ζ(j) we denote the set of (q, `)-bucket interfaces to which Gj conforms, then

ζ(1) ⊇ ζ(2) ⊇ . . . ⊇ ζ(N − 1) ⊇ ζ(N).

Observation 10 implies that N is larger by more than 1 than the total number of (q, `)-bucket

interfaces. It follows that there exists an index j, 1 ≤ j < N , such that

ζ(j) = ζ(j + 1).

In other words, the q-boundaried graphs Gj and Gj+1 are (q, `)-similar.

Define a q-boundaried graph G′ = (G′, (y1j+1, . . . , y
q
j+1)) by taking G′ = G[V (G)\V σij+1

]. It can

be now seen that Gj+1⊕G′ is exactly the graph G with every edge of the cut EG(V σvij
, V (G)\V σvij )

subdivided once. Since subdividing edges does not change the cutwidth of the graph, we have

that

cw(Gj+1 ⊕G′) = cw(G) > k. (12)

On the other hand, q-boundaried graphs Gj and Gj+1 are (q, `)-similar. Since ` ≥ (2q+3)·(2q+6),

by Theorem 11 we conclude that

cw(Gj ⊕G′) = cw(Gj+1 ⊕G′). (13)

Examine the graph Gj ⊕G′. In the join operation, we added an edge zijy
i
j+1 for each i ∈ [q],

which means each vertex zij has exactly two incident edges in Gj ⊕G′: one connecting it to

xij and one connecting it to yij+1. Let H be the graph obtained from Gj ⊕G′ by dissolving

every vertex zij , i.e., removing it and replacing edges xijz
i
j and zijy

i
j+1 with a fresh edge xijy

i
j+1.

Subdividing edges does not change the cutwidth of a graph, so we obtain that:

cw(H) = cw(Gj ⊕G′) (14)

Finally, it is easy to see that G admits H as a strong immersion: a strong immersion model of H

in G can be constructed by mapping the vertices and edges of Gj and G′ identically, and then

mapping each of the remaining edges xijy
i
j+1 to a corresponding infix of the path Pi. Also, since

ij < ij+1, the graph H has strictly less vertices than G. However, from Eq. (12), (13), and (14) we

conclude that cw(H) = cw(G) > k. This contradicts the assumption that G ∈ obs≤si(Ck).

Proof of Theorem 1. Theorem 17 provides an upper bound on the number of vertices of a graph

in obs≤si(Ck). Observe that since such a graph has cutwidth k+ 1, each it its vertices has degree

at most 2(k + 1). It follows that any graph from obs≤si(Ck) has 2O(k3 log k) vertices and edges.

Finally, by Observation 3 we have obs≤i
(Cq) ⊆ obs≤si

(Cq), so the same bound holds also for

immersions instead of strong immersions. This concludes the proof of Theorem 1.

5 An algorithm for computing cutwidth

In this section we present an exact FPT algorithm for computing the cutwidth of the graph.

First, we need to give a dynamic programming algorithm that given an approximate ordering σ

of width r, finds, if possible, an ordering of width at most k, where k ≤ r is given.
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Our algorithm takes advantage of the given ordering σ and essentially computes, for each

subgraph of G induced by a prefix of σ, the (r, `)-bucket interfaces it conforms to. More precisely,

in Lemma 18 we show that if G has an optimum ordering of width k, then there is an optimum

ordering were each of these induced subgraphs occupies at most ` = O(rk) buckets, allowing

to restrict our search to (r, `)-bucket profiles (a variant of bucket interfaces to be defined later,

refined so as to consider border vertices more precisely). The proof slightly strengthens that of

Lemma 4.

Lemma 18. Let G be a graph with an ordering σ of width r. Then there exists also an ordering

τ of optimum width, i.e., with cwτ (G) = cw(G), that has the following property: for every prefix

X of σ, the number of X-blocks in τ is at most 2r · cw(G) + cw(G) + 4r + 2.

Proof. Lemma 4 asserts that for each cut (A,B) of G of size at most r, there exists an optimum-

width ordering of V (G) where the number of (A,B)-blocks is at most

(2r + 1) · (2cw(G) + 3) + 2r = 4r · cw(G) + 2cw(G) + 8r + 3.

As A-blocks and B-blocks appear alternately, at most half rounded up of the (A,B)-blocks can

be A-blocks. Hence, the number of A-blocks in such an optimum-width ordering is at most

2r · cw(G) + cw(G) + 4r + 2; we denote this quantity by λ.

The proof of Lemma 4 in fact shows that for any ordering σ of V (G) and any cut (A,B)

of G of size at most r, either σ already has at most 2λ − 1 (A,B)-blocks, or an ordering σ′

can be obtained from σ by swapping its (A,B)-blocks so that σ′ has strictly less (A,B)-blocks.

Therefore, by reordering (A,B)-blocks of σ, we eventually get a new ordering which has at most

2λ− 1 (A,B)-blocks, and hence at most λ A-blocks.

For i = 1, 2, . . . , |V (G)| − 1, let (Ai, Bi) be the cut of G, where Ai is the prefix of σ of length

i, while Bi is the suffix of σ of length |V (G)| − i. Let τ0 be any optimum-width ordering of G.

We now inductively construct orderings τ1, τ2, . . . , τ|V (G)|−1, as follows: once τi is constructed, we

apply the above reordering procedure to τi and cut (Ai+1, Bi+1). This yields a new ordering τi+1

of optimum width such that the number of Ai+1-blocks in τi+1 is at most λ. Furthermore, τi+1 is

obtained from τi by reordering Ai+1- and Bi+1-blocks in τi. Hence, whenever X is a subset of

Ai+1, then any X-block in τi remains consecutive in τi+1, as it is contained in one Ai+1-block

in τi that is moved as a whole in the construction of τi+1. Consequently, if for all j ≤ i we

had that the number of Aj-blocks in τi is at most λ, then this property is also satisfied in τi+1.

It is now clear that a straightforward induction yields the following invariant: for each j ≤ i,

then number of Aj-blocks in τi is at most λ. Therefore τ = τ|V (G)|−1 gives an ordering with the

claimed properties.

Bucket profiles. We now define a refinement of the widths of the buckets of a bucket interface as

well as a refinement of the notion of bucket interfaces. They are used in the dynamic programming

algorithm of Lemma 22.

Definition 19. Let (G, x̄) be a k-boundaried graph and let S = {x1, . . . , xk, x′1, . . . , x′k} ⊆ V (G∗).

Let now σ be an ordering of V (G∗) and T be an `-bucketing of σ. For every bucket T−1(i), i ∈ [`],
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let T−1(i) ∩ S = {v1, v2, . . . , vp} for some v1 <σ v2 <σ · · · <σ vp; we then define

T−1j (i) =


{v ∈ T−1(i) : v <σ v1} for j = 0,

{v ∈ T−1(i) : vj <σ v <σ vj+1} for j ∈ [p− 1],

{v ∈ T−1(i) : vp <σ v} for j = p.

Let also cuts(G, σ, T, i, j) be the family of σ-cuts containing on one side all vertices appearing

before vj−1 (or, if j = 0, all vertices of buckets appearing before bucket i) and a prefix (in σ) of

T−1j (i). For an ordering σ of the vertices of a graph G, define the width of j-th segment T−1j (i)

of the bucket i, i ∈ [`], j ∈ [0, p], as the maximum width of any cut in the family cuts(G, σ, T, i, j).

Formally,

cuts(G, σ, T, i, j) =
{(
T−1({1, . . . , i− 1}) ∪ L, T−1({i+ 1, . . . , `}) ∪R

)
:

(L,R) is a σ-cut of T−1(i) with vj ∈ L and vj+1 ∈ R
}
,

width(G, σ, T, i, j) = max { |EG(L,R)| : (L,R) ∈ cuts(G, σ, T, i, j) } .

We also need to refine the notion of a (k, `)-bucket interface.

Definition 20. For k, ` ∈ N, a (k,`)-bucket profile consists of functions:

• b, b′ : [k]→ [`] identifying the buckets which contain xi and x′i, respectively,

• p, p′ : [k] → [k] highlighting the ordering between the vertices xi and x′i inside a bucket,

respectively,

• ν : [`] × [0, k] → [0, k] corresponding to the widths of segments of buckets defined by the

vertices xi, respectively.

A k-boundaried graph G conforms with a (k, `)-bucket profile, if there exists an ordering σ of

the vertices of G∗ and an `-bucketing T such that:

• T (v) is odd for v ∈ V (G) and even for v ∈ {x′1, . . . , x′k},

• T (xi) = b(i) and T (x′i) = b′(i), for each i ∈ [k],

• p(i) < p(j), if b(i) = b(j) and xi <σ xj, and p′(i) < p′(j) if b′(i) = b′(j) and x′i <σ x
′
j,

• width(G, σ|G, T |G, j, s) = ν(j, s), for each j ∈ [`] and s ∈ [0, k].

From the fact that the boundary vertices of a k-boundaried graph G split the buckets defined

by T into at most 2k segments in total it follows that:

Observation 21. For any pair (k, `) of positive integers, there is a set of at most

22k(log `+log k)+(`+2k) log(k+1)

(k, `)-bucket profiles that a k-boundaried graph G can possibly conform with, and this set can be

constructed in time polynomial in its size.
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The (k, `)-bucket profiles that Observation 21 refers to will be called valid. By making use of

these two notions we ensure that we will be able to update the widths of each bucket every time

a new vertex is processed by the dynamic programming algorithm. We are now ready to prove

Lemma 22.

Lemma 22. Let r ∈ N+. Given a graph G and an ordering σ of its vertices with cwσ(G) ≤ r, an

ordering τ of the vertices of G with cwτ (G) = cw(G) can be computed in time 2O(r2 log r) · |V (G)|.

Proof. The algorithm attempts to compute an ordering of width k for consecutive k = 0, 1, 2, . . ..

The first value of k for which the algorithms succeeds is equal to the value of the cutwidth, and

then the constructed ordering may be returned. Since there is an ordering of width r, we will

always eventually succeed for some k ≤ r, which implies that we will make at most r+1 iterations.

Hence, from now on we may assume that we know the target width k ≤ r for which we try to

construct an ordering.

Given a graph G and an ordering σ of its vertices with cwσ(G) ≤ r we denote by Gw the

graph induced by the vertices of the prefix of σ of length w. Then we naturally define the

boundaried graph Gw, where we introduce a boundary vertex xi for each edge ei of the cut

EG(V (Gw), V (G) \ V (Gw). Note that this cut has at most r edges.

By Lemma 18, we know that there is an optimum-width ordering τ such that every prefix

V (Gw) of σ has at most ` blocks in τ . Our dynamic programming algorithm will simply

inductively reconstruct all (k, `)-bucket profiles that may correspond to V (Gw)-blocks in τ , for

each consecutive w in the ordering σ, eventually reconstructing τ , if cwτ (G) ≤ k.

We now construct an auxiliary directed graph D that will model states and transitions of our

dynamic programming algorithm. Let ` = 4rk + 2k + 8r + 4. First, for every w ∈ [0, |V (G)|] and

every valid (k, `)-bucket profile P , we add a vertex (w,P ) to D. Thus, by Observation 21, the

digraph D has at most

22k(log `+log k)+(`+2k) log(k+1) · (|V (G)|+ 1) = 2O(r2 log r) · |V (G)|

vertices. We add an edge ((w,P ), (w + 1, P ′)), whenever the (k, `)-bucket profile P can be

expanded to the (k, `)-bucket profile P ′ in the sense that we explain now.

We describe which bucket profiles P ′ expand P by guessing where the new vertex would land

in the bucket profile P , assuming that Gw conforms to P . After the guess is made, the updated

profile P becomes the expanded profile P ′. Different guesses lead to different profiles P ′ which

extend P ; this corresponds to different ways in which the construction of the optimum ordering

can continue. As describing the details of this expansion relation is a routine task, we prefer to

keep the description rather informal, and leave working out all the formal details to the reader.

Let vw+1 be the (w + 1)-st vertex in the ordering σ, that is, vw+1 ∈ V (Gw+1) \ V (Gw). We

construct (by guessing) a (k, `)-bucket profile P ′ from the (k, `)-bucket profile P in the following

way. First, we guess an even bucket of P to place each one of the vertices in V (G∗w+1) \ V (G∗w):

the new vertices of the extension that correspond to new edges of the cut EG(V (Gw+1), V (G) \
V (Gw+1)) that are incident to vw+1. Notice that each bucket contains, at any moment, at most

r vertices. Therefore, we have at most r + 1 possible choices about where each vertex will land in
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each bucket (including the placing in the order, as indicated by the function p′(·). Notice also that

there are at most r + 1 vertices in V (G∗w+1) \ V (G∗w). Therefore we have at most (`(r + 1))r+1

options for this guess.

Next, we choose the place vw+1 is going to be put in. If vw+1 is an endpoint of an edge from

the cut EG(V (Gw), V (G) \ V (Gw)), then this place is already indicated by functions b′(·) and

p′(·) in the bucket profile P ; if there are multiple edges in the cut EG(V (Gw), V (G) \ V (Gw))

that have vw+1 as an endpoint, then all of them must be placed next to each other in the same

even bucket (otherwise P has no extension). Otherwise, if vw+1 is not an endpoint of an edge

from EG(V (Gw), V (G) \ V (Gw)), we guess the placing of vw+1 by guessing an even bucket (one

of at most `+ 1 options) together with a segment between two consecutive extension vertices in

this bucket (one of at most r + 1 options).

The placing of vw+1 may lead to one of three different scenarios; we again guess which one

applies. First, vw+1 can establish a new odd bucket and split the even bucket into which it

was put into two new even buckets, one on the left and one on the right of the new odd bucket

containing vw+1; the other extension vertices placed in this bucket are split accordingly. Second,

vw+1 can be present at the leftmost or rightmost end of the even bucket it is placed in, so it gets

merged into the neighboring odd bucket. Finally, if the even bucket in which vw+1 is placed did

not contain any other extension vertices of G∗w, then vw+1 can be declared to be the last vertex

placed in this bucket, in which case we merge it together with both neighboring odd buckets. In

these scenarios, whenever the extended profile turns out to have more than ` buckets, we discard

this option.

Having guessed how the placing of vw+1 will affect the configuration of buckets, we proceed

with updating the sizes of cuts, as indicated by function ν(·). For this, we first examine all the

edges of the cut EG(V (Gw), V (G) \ V (Gw)) that have vw+1 as an endpoint. These edges did not

contribute to the values of ν(·) in the bucket profile P , but should contribute in P ′. Note that

given the placement of vw+1, for each such edge we exactly see over which segments this edge

“flies over”, and therefore we can update the values of ν(·) for these segments by incrementing

them by one. Finally, when vw+1 got merged to a neighboring odd bucket (or to two of them),

we may also need to take into account one more cut in the value of ν(·) for the last/first segment

of this bucket: the one between vw+1 and the vertices placed in this bucket. It is easy to see

that from the value of ν(·) for the segment in which vw+1 is placed, and the exact placement of

the endpoints of all the boundary edges, we can deduce the exact size of this cut. Hence, the

relevant value of ν(·) can be efficiently updated by taking the maximum of the old value and the

deduced size of the cut. We update the function ν in a similar fashion when vw+1 merges with

both neighboring odd buckets. If at any point any of the values of ν(·) exceeds k, we discard this

guess.

This concludes the definition of the extension. For every (k, `)-bucket profile P and every

(k, `)-bucket profile P ′ that extends it, we add to D an arc from (w,P ) to (w + 1, P ′). It is easy

to see from the description above that, given P and P ′, it can be verified in time polynomial in r

whether such an arc should be added.

Finally, in the graph D we determine using, say, depth-first search, whether there is a directed
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path from node (0, P∅) to node (|V (G)|, Pfull), where P∅ is an empty bucket profile and Pfull is a

bucket profile containing just one odd bucket. It is clear from the construction that if we find

such a path, then by applying operations recorded along such a path we obtain an ordering of

the vertices of G of width at most k. On the other hand, provided k = cw(G), by Lemma 18 we

know that there is always an optimum-width ordering τ such that every prefix of σ has at most `

blocks in τ . Then the (k, `)-bucket profiles naturally defined by the prefixes of σ in τ define a

path from (0, P∅) to (|V (G)|, Pfull) in D.

The graph D has 2O(r2 log r) · |V (G)| vertices and arcs, and the depth-first search runs in time

linear in its size. It is also trivial to reconstruct the optimum-width ordering of the vertices of G

from the obtained path in linear time. This yields the promised running time bounds.

Having the algorithm of Lemma 22, a standard application of the iterative compression

technique immediately yields a 2O(k2 log k) ·n2 time algorithm for computing cutwidth, as sketched

in Section 1. Simply add the vertices of G one by one, and apply the algorithm of Lemma 22

at each step. However, we can make the dependence on n linear by adapting the approach of

Bodlaender [2]; more precisely, we make bigger steps. Such a big step consists of finding a graph

H that can be immersed in the input graph G, which is smaller by a constant fraction, but whose

cutwidth is not much smaller. This is formalised in Lemma 25. For its proof we we need the

following definition and a known result about obstacles to small cutwidth.

Definition 23. A perfect binary tree is a rooted binary tree in which all interior nodes have two

children and all leaves have the same distance from its root. The height of a perfect binary tree is

the distance between its root and one of its leaves.

Lemma 24 ( [10,13,18]). If T is a perfect binary tree of height 2k, then cw(T ) ≥ k.

Lemma 25. There is an algorithm that given a positive integer k and a graph G, works in time

2O(k log k) · |V (G)| and either concludes that cw(G) > k, or finds a graph H immersed in G such

that |E(H)| ≤ |E(G)| · (1 − 1/(2k + 1)4(k+1)+3) and cw(G) ≤ 2cw(H). Furthermore, in the

latter case, given an ordering σ of the vertices of H, an ordering τ of the vertices of G with

cwτ (G) ≤ 2cwσ(H) can be computed in O(|V (G)|) time.

Proof. Without loss of generality we assume that G is connected, because we can apply the

algorithm on the connected components of G separately and then take the disjoint union of the

results.

Observe first that we may assume that every vertex in G is incident to at most 2k edges,

as otherwise, we could immediately conclude that cw(G) > k. This also implies that every

vertex in G has at most 2k neighbors; by N(v) we denote the set of neighbors of a vertex v,

and N(X) = (
⋃
v∈X N(v)) \X for a vertex subset X. Let G′ be the graph obtained from G by

exhaustively dissolving any vertices of degree 2 whose neighbors are different. That is, having such

a vertex v, we delete it from the graph and replace the two edges incident to it with a fresh edge

between its neighbors, and we proceed doing this as long as there are such vertices in the graph.

Clearly, the eventually obtained graph G′ can be immersed in G, we have |E(G′)| ≤ |E(G)|, the

degree of every vertex in G′ is the same to its degree in G, and cw(G′) ≤ cw(G). However,
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observe that any ordering of the vertices of G′ can be turned into an ordering of the vertices of

G with the same width by placing each dissolved vertex in any place between its two original

neighbors. Thus, cw(G′) = cw(G).

Moreover, G′ can be constructed in linear time by inspecting, in any order, all the vertices

that have degree 2 in the original graph G. It is also easy to see that, given an ordering of vertices

of G′, one can reconstruct in linear time an ordering of G of at most the same width.

Altogether, it is now enough to either conclude that cw(G′) > k or find a graph H immersed

in G′ such that

|E(H)| ≤ |E(G′)| · (1− 1/(2k + 1)4(k+1)+2)

and cw(G′) ≤ 2cw(H ′). Therefore, from now on we may assume that if the graph G′ con-

tains a vertex that is incident to two edges then this vertex is incident to an edge of multiplicity

2. Let V1 be the set of vertices of degree 1 in G′. We consider two cases depending on the size of V1.

Case 1. |V1| ≥ |E(G′)|/(2k + 1)4(k+1)+2. Notice first that V1 ⊆ N(N(V1)), and recall that

every vertex in G′ is incident to at most 2k edges and therefore has at most 2k neighbors. It

follows then that |V1| ≤ 2k · |N(V1)| and hence |N(V1)| ≥ |E(G′)|/(2k+ 1)4(k+1)+3. Let H be the

graph obtained from G′ by removing, for each vertex in N(V1), one of its neighbors in V1. Then

|E(H)| ≤ |E(G′)| ·(1−1/(2k+1)4(k+1)+3) and H is immersed in G′ (as it is an induced subgraph).

Hence, H is also immersed in G. Furthermore, let σ be any ordering of the vertices of H. Then,

we can obtain an ordering of the vertices of G′ by placing each deleted vertex next to its original

neighbors. Notice that this placement increases the width of σ by at most 1 in total, and thus by a

multiplicative factor of at most 2. As we already showed how to obtain an ordering of V (G) from

a given ordering of V (G′), the lemma follows for the case where |V1| ≥ |E(G′)|/(2k + 1)4(k+1)+2.

Case 2. |V1| < |E(G′)|/(2k + 1)4(k+1)+2. For every v ∈ V (G′) and every positive integer s, we

define Bs(v) to be the ball of radius s around v, that is, the set of vertices at distance at most

s from v in G′. Recall that every vertex of G′ has at most 2k neighbors and observe then that

|Bs(v)| ≤ (2k + 1)s. We construct a set of vertices v1, v2, . . . , v` ∈ V (G′) whose pairwise distance

is greater than 4(k+1) in the following greedy way. Having chosen v1, . . . , vi, if B4(k+1)(v1)∪· · ·∪
B4(k+1)(vi) 6= V (G′) then let vi+1 be any vertex outside of B4(k+1)(v1)∪ · · · ∪B4(k+1)(vi). If such

a vertex does not exist, we stop by putting ` = i and consider the set v1, v2, . . . , v`. Observe here

that we can calculate B4(k+1)(vi) by breadth-first search in O((2k+ 1)4(k+1)+1) time, by stopping

the search at depth 4(k + 1). Hence, sequence v1, . . . , v` can be computed in 2O(k log k) · |V (G)|
time by examining vertices one by one in any order, and marking those already covered by some

ball. When the next vertex is uncovered, we set it as the next vi+1, run the breadth-first search

from it, and mark all vertices in the ball of radius 4(k + 1) around it.

We now estimate the length ` of the sequence. Recall that for every i ∈ [`], |B4(k+1)(vi)| ≤
(2k + 1)4(k+1) and that V (G) =

⋃
i∈[`]B4(k+1)(vi). From the above and the fact that |E(G′)| ≤

2k · |V (G′)| (as every vertex of G′ is incident to at most 2k edges of G′), it follows that

` ≥ |V (G′)|/(2k + 1)4(k+1) ≥ |E(G′)|/(2k + 1)4(k+1)+1.
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By construction, the distance between vi and vj is greater than 4(k + 1), for distinct i, j ∈ [`].

Therefore, the balls B2(k+1)(v1), . . . , B2(k+1)(v`) are vertex-disjoint. Moreover, since we have that

|V1| < |E(G′)|/(2k + 1)4(k+1)+2, at most |E(G′)|/(2k + 1)4(k+1)+2 of those balls contain a vertex

of degree 1. Therefore, the remaining `− |E(G′)|/(2k + 1)4(k+1)+2 balls are disjoint with V1. Let

I ⊆ [`] be the set of indices for which the balls B2(k+1)(vi), i ∈ I, are disjoint from V1. Observe

that

|I| ≥ `− |E(G′)|/(2k + 1)4(k+1)+2 ≥ |E(G′)|/(2k + 1)4(k+1)+2.

Claim 26. In time O(|E(G′)|) we can either conclude that cw(G′) > k, or for each i ∈ I find a

cycle in G′ passing only through the vertices of the ball B2(k+1)(vi).

Proof. Suppose for some i ∈ I, B2(k+1)(vi) does not contain a cycle. We will prove that every

vertex in G′[B2(k+1)(vi)] has degree at least 3 in G′, and that every edge appears with multiplicity 1.

Notice first that every edge of the graph G′[B2(k+1)(vi)] has multiplicity 1, as otherwise an edge

with multiplicity at least 2 would form a cycle, a contradiction. Notice also that B2(k+1)(vi)

does not have any vertex that has degree 2 in G. Indeed, recall that by the construction of the

graph G′ any vertex of degree 2 is incident only to one edge of multiplicity 2, which is again

a contradiction. Moreover, by the choice of i ∈ [I], we obtain that B2(k+1)(vi) ∩ V1 = ∅ and

therefore, G′[B2(k+1)(vi)] does not have any vertex that has degree 1 in G. We conclude that every

vertex in G′[B2(k+1)(vi)] has degree at least 3 in G, and every edge appears with multiplicity 1.

Recall that the subgraph of G′ induced by B2(k+1)(vi) contains the full breadth-first search tree

of vertices at distance at most 2(k+ 1) from vi. If G′[B2(k+1)(vi)] did not contain any cycle, then

it would be equal to this breadth-first search tree, and in this tree all vertices except possibly the

last layer would have degrees at least 3. Hence, G′ would contain as a subgraph a perfect binary

tree of height 2(k+ 1). From Lemma 24, this tree has cutwidth at least k+ 1. The algorithm can

thus check (by breadth-first search) for a cycle in the subgraph induced by B2(k+1)(vi). If it does

not find any such cycle it immediately concludes that cw(G) = cw(G′) > k.

If for every i ∈ I, the breadth-first search in G′[B2(k+1)(vi)] finds a cycle, then the algorithm

obtained, in total time O(|E(G′)|), a set of at least |I| ≥ E(G′)/(2(k+ 1))4(k+1)+2 vertex-disjoint

(and hence edge-disjoint) cycles. y

Let us assume that the algorithm has now found a set C of at least E(G′)/(2k + 1)4(k+1)+2

edge-disjoint cycles and let H be the subgraph obtained from G′ by removing one, arbitrarily

chosen, edge eC from each cycle C ∈ C. Then H can be immersed in G′ and |E(H)| ≤
|E(G′)| · (1− 1/(2k + 1)4(k+1)+2). To complete the proof of the lemma we will prove that if σ

is any ordering of the vertices of H then σ is also an ordering of the vertices of G′ such that

cwσ(G′) ≤ 2cwσ(H). Notice that by reintroducing an edge eC of G′ to H we increase the width

of the σ-cuts separating its endpoints by exactly 1. Observe also that since eC belongs to the

cycle C, the rest of the cycle forms a path PC in H that connects the endpoints of eC . Therefore,

each of the σ-cuts separating the endpoints of eC has to contain at least one edge of PC . Since

for different edges eC , for C ∈ C, the corresponding paths PC are pairwise edge-disjoint and they

are present in H, it follows that the size of each σ-cut in G′ is at most twice the size of this σ-cut

in H. Therefore cwσ(G′) ≤ 2cwσ(H). Thus, H can be returned, concluding the algorithm.
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We are now ready to put all the pieces together.

Proof of Theorem 2. Given an n-vertex graph G and an integer k, one can in time 2O(k2 log k) · n
either conclude that cw(G) > k, or output an ordering of G of width at most k. The proof

follows the same recursive Reduction&Compression scheme as the algorithm of Bodlaender [2].

By applying Lemma 25, we obtain a significantly smaller immersion H, and we recurse on H.

This recursive call either concludes that cw(H) > k, which implies cw(G) > k, or it produces an

ordering of H of optimum width cw(H) ≤ k. This ordering can be lifted, using Lemma 25 again,

to an ordering of G of width ≤ 2k. Given this ordering, we apply the dynamic programming

procedure of Lemma 22 to construct an optimum ordering of G in time 2O(k2 log k) · |V (G)|.
Since at each recursion step the number of edges of the graph drops by a multiplicative factor

of at least 1/(2k + 1)4(k+1)+3, we see that the graph Gi at level i of the recursion will have at

most (1 − 1/(2k + 1)4(k+1)+3)i · |E(G)| edges. Hence, the total work used by the algorithm is

bounded by the sum of a geometric series:

∞∑
i=0

2O(k2 log k) · |E(Gi)| ≤ 2O(k2 log k) · |E(G)| ·
∞∑
i=0

(1− 1/(2k + 1)4k+7)i

= 2O(k2 log k) · |E(G)| · (2k + 1)4k+7 (15)

= 2O(k2 log k) · |E(G)|.

6 Obstructions to edge-removal distance to cutwidth

Throughout this section, by Ok(w) we mean a quantity bounded by ck ·w+ dk, for some constant

ck, dk depending on k only.

Given a graph G and a k ∈ N, we define the parameter dcwk(G) as the minimum number of

edges that can be deleted from G so that the resulting graph has cutwidth at most k. In other

words:

dcwk(G) = min{|F | : F ⊆ E(G) and cw(G \ F ) ≤ k}

Let Cw,k = {G | dcwk(G) ≤ w}. Notice that Ck = C0,k.

In this section, we provide bounds to the sizes of the obstruction sets of the class of graphs G

with dcwk(G) ≤ w, for each k,w ∈ N. Our results are the following.

Theorem 27. For every w, k ∈ N, every graph in obs≤si(Cw,k) has Ok(w) vertices.

Theorem 28. For every k,w ∈ N where k ≥ 7, the set obs≤i(Cw,k) contains at least
(
3k−7+w+1

w+1

)
non-isomorphic graphs.

From Observation 3, both bounds of Theorems 27 and 28 holds for both immersions and

strong immersions as well.

Given a collection H of graphs, we define the parameter aicH(G) as the minimum number of

edges whose removal from G creates an H-immersion free graph, that is, a graph that does not
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admit any graph from H as an immersion. In both subsections that follow, we need the following

observation.

Observation 29. For every graph G and every w ∈ N, it holds that dcww(G) = aicobs(Cw)(G).

We remark that, within the same set of authors, we have recently studied kernelization

algorithms for edge removal problems to immersion-closed classes. The following result has been

obtained in a yet unpublished manuscript [9]: Whenever a finite collection of graphs H contains

at least one planar subcubic graph, and all graphs from H are connected, then the problem of

computing aicH(G), parameterized by the target value, admits a linear kernel. These prerequisites

are satisfied for H = obs(Cw), and hence the problem of computing dcww(G), parameterized by

the target value k, admits a linear kernel.

The connections between kernelization procedures and upper bounds on minimal obstruction

sizes have already been noticed in the literature; see e.g. [7]. Intuitively, whenever the kernelization

rules apply only minor or immersion operations, the kernelization algorithm can be turned

into a proof of an upper bound on the sizes of minimal obstacles for the corresponding order.

Unfortunately, this is not the case for the results of [9]: the main problem is the lack of lean

decompositions for parameter tree-cut width, which plays the central role. Here, the situation

is different, as we know that there are always lean orderings of optimum width. We therefore

showcase how to use the leanness to obtain a linear upper bound on the sizes of obstructions for

Cw,k. The arguments are somewhat similar as in [9]: we use the idea of protrusions, adapted to

the setting of edge cuts, and we try to replace protrusions with smaller ones having the same

behavior. The main point is that leanness ensures us that the replacement results in an immersion

of the original graph.

6.1 Upper bound

A partial q-boundaried graph is a pair G = (G, x̄) where G is a graph and x̄ = (x1, . . . , xk) is

a k-tuple that consists either from vertices of G or from empty slots (that is indices that to

not correspond to vertices of G). If xi is an empty slot, we denote it by xi = �. The extension

of such G is defined just as for q-boundaried graphs, but we put xi = � iff x′i = �′. Given a

q-boundaried graph F = (F, x̄) we denote by P(F ) the set containing every partial q-boundaried

graph F′ = (F ′, x̄′) such that F ′ is a subgraph of F and a vertex xi in x̄′ is an empty slot iff

xi ∈ V (F ) \ V (F ′). Intuitively a partial q-boundaried graph extends the notion of a boundaried

graph by demanding that the vertices in their boundary carry indices from a set whose cardinality

might be bigger than the boundary.

Let H be a graph and let (X1, X2) be its cut where q = δ(X1). Let EH(X1, X2) = {e1, . . . , eq}
where ei = {x1i , x2i }, i ∈ [q], and such that xji ∈ Xj for (i, j) ∈ [q] × [2]. For j ∈ [2], we

say that the pair (X1, X2) generates the q-boundaried graph Aj = (Aj , xj) if Ai = G[Xi] and

xi = (xj1, . . . , x
j
q).

We denote by Bq,h the collection containing every q-boundaried graph that can be generated

from some cut (X1, X2) of some graph H where |V (H)|+ |E(H)| ≤ h and q = δ(X1). Moreover,

we denote by Mq,h = P(Bq,h). In other words, Mq,h contains all partial q-boundaried graphs
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that can be generated by a graph whose number of edges and vertices does not exceed h. We

insist that if H = (H,x) ∈Mq,h, then the vertices of H are taken from some fixed repository of

h vertices and that an element xi of x is either an empty slot (i.e., xi = �) or the i-th vertex of

some predetermined ordering (x1, . . . , xq) of q vertices from this repository. This permits us to

assume that |Mq,h| is bounded by some function that depends only on q and h.

Let G = (G, x) be a q-boundaried graph and H = (H, y) be a partial q-boundaried graph.

Let also G∗ and H∗ be the extensions of G and H, respectively. We also assume that, for all

i ∈ [q], either yi = xi or yi = �. For an edge subset R ⊆ E(G∗), we say that H is an R-avoiding

strong immersion of G if there is an H∗-immersion model (φ, ψ) of G∗ \R where, for every i ∈ [q]

such that yi 6= �, it holds that φ(yi) = xi 6= � and φ(y′i) = x′i 6= �. We now define the R-avoiding

(q, h)-folio of G as the set of all partial q-boundaried graphs in Mq,h that are R-avoiding strong

immersions of G and we denote it by folioq,h,R(G). We finally define

Fq,h(G) = {folioq,h,R(G) | R ⊆ E(G∗)}.

Given two q-boundaried graphs G1 and G2 we write G1 ∼q,h G2 in order to denote that

Fq,h(G2) = Fq,h(G2). As Fq,h maps each q-boundaried graph to a collection of subsets of Mq,h

we have the following.

Lemma 30. There is some function f1 : N2 → N such that for every two non-negative integers

h and r, the number of equivalence classes of ∼q,h is at most f1(q, h).

The next lemma is a consequence of the definition of the function Fq,h.

Lemma 31. Let H be some set of connected graphs, each of at most h vertices, and let Gi =

(Gi, xi), i ∈ {1, 2} be two q-boundaried graphs such that G1 ∼q,h G2 and such both G1, G2 are

H-immersion free. Then, for every q-boundaried graph F = (F, y), it holds that aicH(F⊕G1) =

aicH(F⊕G2).

The proof is omitted as it is very similar to the one in [5] where a similar encoding was

defined in order to treat the topological minor relation. To see the main idea, recall that Fq,h(Gi)

registers all different “partial occurrences” of graphs of ≤ h vertices (and therefore also of graphs

of H) in G′i, for all possible ways to obtain G′i from G after removing at most q edges. This

encoding is indeed sufficient to capture the behavior of all possible edge sets whose removal from

F ⊕Gi creates an H-free graph. Indeed, as both G1, G2 are H-immersion free, any such set

should have at most q edges inside Gi as, if not, the q-boundary edges between F and Gi would

also make the same job. A similar discussion is also present in [9].

Given a graph G and X ⊆ V (G), we write cwσ(G,X) = δG(X) + cwσX
(G[X]). We require

the following extension of the definition of lean orderings.

Definition 32 (extended lean ordering). Let G be a n-vertex graph and X ⊆ V (G). An ordering

σ = 〈v1, . . . , vn〉 of G is X-lean if X = {vn−|X|+1, . . . , vn} and for every i, j ∈ [n− |X|, n] where

i < j there exist min{δ({v1, . . . , vh}) | i ≤σ h ≤σ j} edge-disjoint paths between {v1, . . . , vi} and

{vj , . . . , vn} in G.
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The proof of the following result is very similar to the one of Lemma 13. We just move X to

the end of the ordering, in the order given by σ, and apply exhaustively the same refinement step

based on submodularity, but only to the subordering induced by X.

Lemma 33. For every graph G and every subset X of V (G) there exists an ordering σ of G

such that cwσ(G,X) ≤ r, then there exist an X-lean ordering σ′ of G such that cwσ′(G,X) ≤ r.

Let w1, w2 ∈ N, G be a graph, and X ⊆ V (G). We say that X is an (w1, w2)-cutwidth-edge-

protrusion of G if δ(X) ≤ w1 and cw(G[Xi]) ≤ w2.

The next lemma uses an idea similar to the one of Lemma 17. Here ∼q,h plays the role of

(q, `)-similarity.

Lemma 34. There is a computable function f2 : N2 → N such that the following holds: Let

k be a non-negative integer and let H be a finite set of connected graphs, each having at most

h vertices and edges. Let also G be a graph and let X be a (2k, k)-cutwidth-edge-protrusion

of G. If |X| > f2(k, h), then G contains as a proper strong immersion a graph G′ where

aicH(G) = aicH(G′).

Proof. We set f2(k, h) = (f1(3k, h) + 1)3k+1 − 1. We have that |X| > f2(k, h) or, equivalently,

|X| ≥ (f1(3k, h) + 1)3k+1. Denote ` = |X|. Let σ∗ = 〈x1, . . . , x`〉 be an ordering of the

vertices in X such that cwσ∗(G[X]) ≤ k. Let σ = 〈v1, . . . , vn−`, vn−`+1, . . . , vn〉 be any ordering

of V (G) such that σ′ is a suffix of σ, i.e. 〈x1, . . . , x`〉 = 〈vn−`+1, . . . , vn〉. It follows that

cwσ(G,X) ≤ cwσ∗(G[X]) + δG(X) ≤ k+ 2k = 3k. From Lemma 33, there is an X-lean ordering

σ′ of V (G), where cwσ′(G,X) ≤ 3k.

We set ki = δG[X]({x1, . . . , xi−(n−`))+δG(X) and observe that ki ≤ k+2k = 3k, i ∈ [n−`, n−1].

We set up the alphabet A = {0, 1, . . . , 3k} and we see w = kn−`, kn−`+1, . . . , kn−1 as a word on

A. Let also N = f1(3k, h). Notice that |w| = |X| = ` ≥ (f1(3k, h) + 1)3k+1 = (N + 1)|A|. From

Corollary 15, if |w| ≥ (N + 1)|A|, there are a, b ∈ [n− `, n− 1], a < b and some p ∈ A such that

ka, kb ≥ p and p appears in {ka, . . . , kb} at least N + 1 times. Let these appearance be at indices

a ≤ i1 < i2 < . . . < iN+1 ≤ b.
By X-leanness, there are p edge-disjoint paths P i, for i ∈ [p], from {v1, . . . , vi1} to {viN+1

, . . . ,

v|V (G)|}. Observe that for each j ∈ [N + 1], each path P i must cross exactly one edge of the cut

δG({v1, . . . , vij}); let this edge be zijw
i
j , where zij ∈ {v1, . . . , vij} and wij /∈ {v1, . . . , vij}. For each

j ∈ [N + 1] we define p-boundaried graphs Fj = (Fj , (z
1
j , . . . , z

p
j )), where Fj = G[{v1, . . . , vij}],

and Gj = (Gj , (w
1
j , . . . , w

p
j )) where Gj = G[{vij+1, . . . , v|V (G)|}].

As, from Lemma 30, the equivalence relation ∼3k,h has at most N equivalent classes, there

are j1, j2 such that a ≤ j1 < j2 ≤ b such that Gj1 ∼3k,h Gj2 . Let G′ = Fij1 ⊕ Gij2
; it is

easy to observe that G′ is a proper immersion of G, because the edges added when joining

can be modeled using appropriate infixes of the paths Pi. From Lemma 31, however, we have

aicH(Fi ⊕Gi) = aicH(Fi ⊕Gj), and therefore aicH(G) = aicH(G′).

Lemma 35. Let k,w, ` ∈ N and let G be a graph. If dcwk(G) ≤ w and |V (G)| ≥ ` · (w+ 1) + 2w,

then G has a (2k, k)-cutwidth-edge-protrusion X where |X| ≥ `.
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Proof. We denote n = |V (G)|. Let F be a set of edges of G such that if G′ = G \ F , then

cw(G′) ≤ k. Let σ = 〈v1, . . . , vn〉 be an ordering of V (G) such that cwσ(G) ≤ k. Let also S be

the set of endpoints of the edges in F . Clearly |S| ≤ 2w. We define a set of indices I ⊆ {1, . . . , n}
such that {vi | i ∈ I} = S. A pair (i, j) ∈ I2 is consecutive if there is no h ∈ I such that i < h < j.

Among all consecutive pairs in I2 let (i, j) be one maximizing the value c = j − i − 1. This

implies that c ≥ (n− 2w)/(w + 1) ≥ `. Consider now the set X = {vi+1, . . . , vj−1} and observe

that |X| = c ≥ `. Notice that if σ′ = 〈vi+1, . . . , vj−1〉, then cwσ′(G[X]) ≤ k. Moreover there are

at most δG′({v1, . . . , vi}) + δG′({vj , . . . , vn}) ≤ 2k edges with one vertex in X and the other not

in X. Therefore, δG(X) ≤ 2k and X is a (2k, k)-cutwidth-edge-protrusion of G.

Proof of Theorem 27. We set H = obs≤im
(Ck). By Theorem 17, there is a function f3 : N→ N

such that graphs from H have at most h = f3(k) vertices. Let G ∈ obs≤im
(Cw,k). This means that

dcwk(G) = w+ 1, while, for every proper strong immersion G′ of G, it holds that dcwk(G′) ≤ w.

This, together with Observation 29 and Lemma 34, implies that G cannot have a (2k, k)-cutwidth-

edge-protrusion X of more than ` = f2(k, h), vertices. As dcwk(G) = w + 1, Lemma 35 implies

that |V (G)| < ` · (w + 2) + 2w + 2 = Ok(w) vertices.

6.2 Lower bound

We now focus on the proof of Theorem 28. We need the following result.

Theorem 36 ( [10]). For every k ≥ 7, the number of non-isomorphic connected minimal

obstructions in obs≤i(Ck) is at least 3k−7 + 1.

Recall that, given a graph class H, we defined aicH(G) as the minimum number of edges

of G whose removal yields an H-immersion-free graph. We set Cw,H = {G | aicH(G) ≤ w}. In

particular C0,H is the class of all H-immersion free graphs. If G and H are graphs, we denote by

G ]H the disjoint union of G and H.

The following observations follow directly from the definition of aicH.

Observation 37. If G and H are graphs, then H ≤i G implies that aicH(H) ≤ aicH(G).

Observation 38. If G and H are graphs, then aicH(G ]H) = aicH(G) + aicH(H).

Observation 39. If G ∈ obs≤i
(Cw,H), then aicH(G) = w + 1.

Lemma 40. Let H be some ≤i-antichain. For every non-negative integer w, if G1, . . . , Gw+1

are (not necessarily distinct) members of H, then
⊎w+1
i=1 Gi ∈ obs≤i

(Cw,H).

Proof. Let G =
⊎w+1
i=1 Gi. To prove that G ∈ obs≤i

(Cw,H) we have to show that it satisfies O1 and

O2. Notice that since H is an ≤i-antichain, aicH(H) = 1 for every H ∈ H. By Observations 38

and 39, aicH(G) =
∑w+1
i=1 aicH(Gi) = w + 1 and O1 holds. Therefore, G 6∈ Cw,H. Let now G′

is a proper immersion of G. This mean that G′ =
⊎w+1
i=1 G′i where G′i ≤i Gi and at least one

of G′1, . . . , G
′
w+1 is different than Gi. W.l.o.g. we assume that this graph is Gw+1. As H is a

≤i-antichain, G′w+1 is different than any of the graphs in H. Therefore aicH(G′w+1) = 0. Then,

by Observations 37 and 38, aicH(G′) =
∑k
i=1 aicH(G′i) + aicH(G′w+1) ≤

∑w
i=1 aicH(Gi) + 0 = w

and O2 holds.
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Theorem 41. If k is a non-negative integer and H is a ≤i-antichain that contains at least q

connected graphs, then |obs≤i(Cw,H)| ≥
(
q+w
w+1

)
.

Proof. Let H′ be some subset of H containing q connected graphs. Using Lemma 40, we observe

that every multiset of cardinality w + 1 whose elements belong to H′ corresponds to a different

(i.e. non-isomorphic) obstructions of Cw,H. Therefore, |obs≤i
(Cw,H)— is at least the number of

multisets of cardinality w+ 1 the elements of which are taken from a set of cardinality q, which is

known to be
(
q+w
w+1

)
.

Proof of Theorem 27. From Observation 29, Cw,k = Cw,Hk
, where Hk = obs≤i

(Ck). This means

that obs≤i
(Cw,k) = obs≤i

(Cw,Hk
). The result follows from Theorems 36 and 41.

7 Conclusions

In this paper we have proved that the immersion obstructions for admitting a layout of cutwidth

at most k have sizes single-exponential in O(k3 log k). The core of the proof can be interpreted

as bounding the number of different behavior types for a part of the graph that has only a small

number of edges connecting it to the rest. This, in turn, gives an upper bound on the number

of states for a dynamic programming algorithm that computes the optimum cutwidth ordering

on an approximate one. This last result, complemented with an adaptation of the reduction

scheme of Bodlaender [2] to the setting of cutwidth, yields a direct and self-contained FPT

algorithm for computing the cutwidth of a graph. In fact, we believe that our algorithm can

be thought of “Bodlaender’s algorithm for treewidth in a nutshell”. It consists of the same two

components, namely a recursive reduction scheme and dynamic programming on an approximate

decomposition, but the less challenging setting of cutwidth makes both components simpler, thus

making the key ideas easier to understand.

In our proof of the upper bound on the number of types/states, we used a somewhat new

bucketing approach. This approach holds the essence of the typical sequences of Bodlaender and

Kloks [3], but we find it more natural and conceptually simpler. The drawback is that we lose a

log k factor in the exponent. It is conceivable that we could refine our results by removing this

factor provided we applied typical sequences directly, but this is a price that we are willing to

pay for the sake of simplicity and being self-contained.

An important ingredient of our approach is the observation that there is always an optimum

cutwidth ordering that is lean: the cutsizes along the ordering precisely govern the edge con-

nectivity between prefixes and suffixes. Recently, there is a growing interest in parameters that

are tree-like analogues of cutwidth: tree-cut width [22] and carving-width [17]. For tree-cut

decompositions and carving decompositions, one could define leanness in a very similar manner.

For example for carving-width, the definition would be as follows: Suppose (T , τ) is a carving

decomposition of a graph G, where τ bijectively maps vertices of G to leaves of T . Then (T , τ) is

considered lean if for every two disjoint subtrees S1 and S2 of T , respectively rooted at nodes x1

and x2, the maximum number of edge-disjoint paths leading from τ−1(S1) to τ−1(S2) is equal to
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the minimum cutsize among the edges of the path in T from x1 to x2. The definition for tree-cut

width is very similar.

We conjecture that both for tree-cut width and carving-width, there is always an optimum

decomposition that is lean; i.e., an analogue of Lemma 13 holds. Interestingly, when one tries to

mimic the proof of Lemma 13, the refinement operation can be generalized without much effort.

The problem lies in finding the right potential function for showing that the refinement cannot be

applied indefinitely. If the conjectured result would be true for tree-cut width or carving-width,

it is conceivable that an approach similar to the one of this paper would give upper bounds on

the sizes of minimal immersion obstructions also for these parameters.
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