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Packing and Covering Immersion Models

of Planar subcubic Graphsa

Archontia Giannopouloub,c O-joung Kwond,e Jean-Florent Raymondb,f ,g

Dimitrios M. Thilikosf,h

Abstract

A graph H is an immersion of a graph G if H can be obtained by some subgraph
G after lifting incident edges. We prove that there is a polynomial function f :
N×N→ N, such that if H is a connected planar subcubic graph on h > 0 edges, G
is a graph, and k is a non-negative integer, then either G contains k vertex/edge-
disjoint subgraphs, each containing H as an immersion, or G contains a set F of
f(k, h) vertices/edges such that G \ F does not contain H as an immersion.

keywords: Erdős–Pósa properties, Graph immersions, Packings and coverings in graphs

1 Introduction

All graphs is this paper are finite, undirected, loopless, and may have multiedges. Let C
be a class of graphs. An C-vertex/edge cover of G is a set S of vertices/edges such that
each subgraph of G that is isomorphic to a graph in C contains some element of S. A
C-vertex/edge packing of G is a collection of vertex/edge-disjoint subgraphs of G, each
isomorphic to some graph in C.

We say that a graph class C has the vertex/edge Erdős–Pósa property (shortly v/e-
E&P property) for some graph class G if there is a function f : N → N, called a gap
function, such that, for every graph G in G and every non-negative integer k, either G
has a vertex/edge C-packing of size k or G has a vertex/edge C-cover of size f(k). In the
case where G is the class of all graphs we simply say that C has the v/e-E&P property.
An interesting topic in Graph Theory, related to the notion of duality between graph
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parameters, is to detect instantiations of C and G such that C has the v/e-E&P property
for G and, if yes, optimize the corresponding gap. Certainly, the first result of this type
was the celebrated result of Erdős and Pósa in [11] who proved that the class of all cycles
has the v-E&P property with gap function O(k · log k). This result have triggered a lot
of research on its possible extensions. One of the most general ones was given in [24]
where its was proven that the class of graphs that are contractible to some graph H
have the v-E&P property iff H is planar (see also [4, 5, 8] for improvements on the gap
function).

Other instantiations of C for which the v-E&P property has been proved concern
odd cycles [18, 21], long cycles [2], and graphs containing cliques as minors [9] (see
also [14,16,23] for results on more general combinatorial structures).

As noticed in [8], cycles have the e-E&P property as well. Interestingly, only few more
results exist for the cases where the e-E&P property is satisfied. It is known for instance
that graphs contractible to θr (i.e. the graph consisting of two vertices and an edge of
multiplicity r between them) have the e-E&P property [3]. Moreover it was proven that
odd cycles have the e-E&P property for planar graphs [19] and for 4-edge-connected
graphs [18].

Given two graphs G and H, we say that H is an immersion of G if H can be obtained
from some subgraph of G by lifting incident edges (see Section 2 for the definition of
the lift operation). Given a graph H, we denote by I(H) the set of all graphs that
contain H as an immersion. Using this terminology, the edge variant of the original
result of Erdős and Pósa in [11] implies that the class I(θ2) has the v-E&P property
(and, according to [8], the e-E&P property as well). A natural question is whether this
can be extended for I(H), for other H’s, different than θ2. This is the question that
we consider in this paper. A distinct line of research is to identify the graph classes G
such that for every graph H, I(H) has the e-E&P property for G. In this direction, it
was recently proved in [20] that for every graph H, I(H) has the e-E&P property for
4-edge-connected graphs.

In this paper we show that if H is non-trivial (i.e., has at least one edge), connected,
planar, and subcubic, i.e., each vertex is incident to at most 3 edges, then I(H) has
the v/e-E&P property (with polynomial gap in both cases). More concretely, our main
result is the following.

Theorem 1. Let H be a connected planar subcubic graph of h > 0 edges, let k ∈ N, and
let G be a graph without any I(H)-vertex/edge packing of size greater than k. Then G
has a I(H)-vertex/edge cover of size bounded by a polynomial function of h and k.

The main tools of our proof are the graph invariants of tree-cut width and tree-
partititon width, defined in [28] and [10] respectively (see Section 2 for the formal def-
initions). Our proof uses the fact that every graph of polynomially (on k) big tree-cut
width contains a wall of height k as an immersion (as proved in [28]). This permits us
to consider only graphs of bounded tree-cut width and, by applying suitable reductions,
we finally reduce the problem to graphs of bounded tree partition width (Theorem 2).
The result follows as we next prove that for every H, the class I(H) has the e-E&P
property for graphs of bounded tree-partition width (Theorem 3).

2



One might conjecture that the result in Theorem 1 is tight in the sense that both
being planar and subcubic are necessary for H in order I(H) to have the e-E&P property.
In this direction, in Section 7, we give counterexamples for the cases where H is planar
but not subcubic and is subcubic but not planar.

2 Definitions and preliminary results

We use N+ for the set of all positive integers and we set N = N+∪{0}. Given a function
f : A→ B and a set C ⊆ A, we denote by f |C = {(x, f(x)) | x ∈ C}.

Graphs. As already mentioned, we deal with loopless graphs where multiedges are
allowed. Given a graph G, we denote by V (G) its set of vertices and by E(G) its multiset
of edges. The notation |E(G)| stands for the total number of edges, that is, counting
multiplicities. We use the term multiedge to refer to a 2-element set of adjacent vertices
and the term edge to deal with one particular instanciation of the multiedge connecting
two vertices. The function multG maps a set of two vertices of G to the multiplicity
of the edge connecting them, or zero if they are not adjacent. If multG({u, v}) = k for
some k ∈ N+, we denote by {u, v}1, . . . , {u, v}k the distinct edges connecting u and v.
For the sake of clarity, we identify a multiedge of multiplicity one and its edge and write
{u, v} instead of {u, v}1 when multG({u, v}) = 1.

We denote by degG(v) the degree of a vertex v in a graph G, that is, the number of
vertices that are adjacent to v. The multidegree of v, that we write mdegG(v), is the
number of edges (i.e. counting multiplicities) incident with v. We drop the subscript
when it is clear from the context.

Immersions. Let H and G be graphs. We say that G contains H as an immersion
if there is a pair of functions (φ, ψ), called an H-immersion model, such that φ is an
injection of V (H)→ V (G) and ψ sends {u, v}i to a path of G between φ(u) and φ(v), for
every {u, v} ∈ E(H) and every i ∈ {1, . . . ,multH({u, v})}, in a way such that distinct
edges are sent to edge-disjoint paths. Every vertex in the image of φ is called a branch
vertex. We will make use of the following easy observation.

Observation 1. Let H and G be two graphs, and let (φ, ψ) be an H-immersion model
in G. Then for every vertex x of G, we have mdegH(x) ≤ mdegG(φ(x)).

An H-immersion expansion M in a graph G is a subgraph of G defined as follows:
V (M) = φ(V (H)) ∪

⋃
e∈H V (ψ(e)) and E(M) =

⋃
e∈H E(ψ(e)) for some H-immersion

model (φ, ψ) of G. We call the paths in ψ(E(H)) certifying paths of the H-immersion
expansion M .

We say that two edges are incident if they share some endpoint. A lift of two incident
edges e1 = {x, y} and e2 = {y, z} of G is the operation that removes the edges e1 and
e2 from the graph and then, if x 6= z, adds the edge {y, z} (or increases the multiplicity
of {y, z} if this edge already exists). Notice that H is an immersion of G if and only if
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a graph isomorphic to H can be obtained from some subgraph of G after applying lifts
of incident edges1.

The dissolution of a vertex of degree two of a graph is the operation of adding an
edge joining its endpoints and then deleting this vertex.

Packings and coverings. An H-cover of G is a set C ⊆ E(G) such that G \ C does
not contain H as an immersion. An H-packing in G is a collection of edge-disjoint H-
immersion expansions in G. We denote by packH(G) the maximum size of an H-packing
and by coverH(G) the minimum size of an H-covering in G.

Rooted trees. A rooted tree is a pair (T, s) where T is a tree and s ∈ V (T ) is a vertex
referred to as the root. Given a vertex x ∈ V (T ), the descendants of x in (T, s), denoted
by desc(T,s)(x), is the set containing each vertex w such that the unique path from w to
s in T contains x. If y is a descendant of x and is adjacent to x, then it is a child of x.
Two vertices of T are siblings if they are children of the same vertex. Given a rooted
tree (T, s) and a vertex x ∈ V (G), the height of x in (T, s) is the maximum distance
between x and a vertex in desc(T,s)(x).

We now define two types of decompositions of graphs: tree-partitions (cf. [15, 26])
and tree-cut decompositions (cf. [28]).

Tree-partitions. We introduce, especially for the needs of our proof, a multigraph
extension of the parameter of tree-partition width defined in [15, 26] where we could
consider the number of edges between the bags and the number of vertices in the bags.
A tree-partition of a graph G is a pair D = (T,X ) where T is a tree and X = {Xt}t∈V (T )

is a partition of V (G) such that either |V (T )| = 1 or for every {x, y} ∈ E(G), there
exists an edge {t, t′} ∈ E(T ) where {x, y} ⊆ Xt ∪Xt′ . We call the elements of X bags of
D. Given an edge f = {t, t′} ∈ E(T ), we define Ef as the set of edges with one endpoint
in Xt and the other in Xt′ . The width of D is defined as max{|Xt|}t∈V (T )∪{|Ef |}f∈E(T ).
The tree-partition width of G is the minimum width over all tree-partitions of G and will
be denoted by tpw(G). A rooted tree-partition of a graph G is a triple D = ((T, s),X )
where (T, s) is a rooted tree and (X , T ) is a tree-partition of G.

Tree-cut decompositions. A near-partition of a set S is a collection of pairwise
disjoint subsets S1, . . . , Sk ⊆ S (for some k ∈ N) such that

⋃k
i=1 Si = S. Observe that

this definition allows a set of the familly to be empty. A tree-cut decomposition of a
graph G is a pair D = (T,X ) where T is a tree and X = {Xt}t∈V (T ) is a near-partition
of V (G). As in the case of tree-partitions, we call the elements of X bags of D. A
rooted tree-cut decomposition of a graph G is a triple D = ((T, s),X ) where (T, s) is a
rooted tree and (X , T ) is a tree-cut decomposition of G. Given that D = ((T, s),X ) is
a rooted tree partition or a rooted tree-cut decomposition of G and given t ∈ V (T ), we

set Gt = G
[⋃

t∈desc(T,s)(t)
Xt

]
.

1While we mentioned this definition in the introduction, we now adopt the more technical definition
of immersion in terms of immersion models as this will facilitate the presentation of the proofs.
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The torso of a tree-cut decomposition (T,X ) at a node t is the graph obtained from
G as follows. If V (T ) = {t}, then the torso at t is G. Otherwise let T1, . . . , T` be the
connected components of T \ t. The torso Ht at t is obtained from G by consolidating
each vertex set

⋃
b∈V (Ti)

Xb into a single vertex zi. The operation of consolidating a
vertex set Z into z is to replace Z with z in G, and for each edge e between Z and
v ∈ V (G) \ Z, adding an edge zv in the new graph. Given a graph G and X ⊆ V (G),
let the 3-center of (G,X) be the unique graph obtained from G by suppressing vertices
in V (G) \X of degree two and deleting vertices of degree 1. For each node t of T , we

denote by H̃t the 3-center of (Ht, Xt), where Ht is the torso of (T,X ) at t.
Let D = ((T, s),X ) be a rooted tree-cut decomposition of G. The adhesion of a

vertex t of T , that we write adhD(t), is the number of edges with exactly one endpoint

in Gt. The width of a tree-cut decomposition (X , T ) of G is maxt∈V (T ){adhD(t), |H̃t|}.
The tree-cut width of G, denoted by tcw(G), is the minimum width over all tree-cut
decompositions of G.

A vertex t ∈ V (T ) is thin if adhD(t) ≤ 2, and bold otherwise. We also say that D is
nice if for every thin vertex t ∈ V (T ) we have N(V (Gt)) ∩

⋃
b is a sibling of t V (Gb) = ∅.

In other words, there is no edge from a vertex of Gt to a vertex of Gb, for any sibling b
of t, whenever t is thin. The notion of nice tree-cut decompositions has been introdued
by Ganian et al. in [13]. Furthermore, they proved the following result.

Proposition 1 ([13]). Every rooted tree-cut decomposition can be transformed into a
nice one without increasing the width.

We say than an edge of G crosses the bag Xt, for some t ∈ V (T ) if its endpoints
belongs to bags Xt1 and Xt2 , for some t1, t2 ∈ V (T ) such that t belongs to the interior
of the (unique) path of T connecting t1 to t2.

3 From tree-cut decompositions to tree-partitions

The purpose of this section is to prove the following theorem.

Theorem 2. For every connected graph G, and every connected graph H with at least
one edge, there is a graph G′ such that

• tpw(G′) ≤ (tcw(G) + 1)2/2,

• packH+(G′) ≤ packH(G), and

• coverH(G) ≤ coverH+(G′).

Theorem 2 will allow us in Section 4 to consider graphs of bounded tree-partition
width instead of graphs of bounded tree-cut width. Before we proceed with the proof
of Theorem 2, we need some definitions and a series of auxiliary results.

For every graph G, we define G+ as the graph obtained if, for every vertex v, we add
two new vertices v′ and v′′ and the edges {v′, v′′} (of multiplicity 2), {v, v′} and {v, v′′}
(both of multiplicity 1). Observe that for every G, we have mδ(G+) ≥ 3. We also define
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G∗ as the graph obtained by adding, for every vertex v, the new vertices v′1, . . . , v
′
mdeg(v)

and v′′1 , . . . , v
′′
mdeg(v) and the edges {v′i, v′′i } (of multiplicity 2), {v, v′i}, and {v, v′′i } (both

of multiplicity 1), for every i ∈ {1, . . . ,deg(v)}. If v is a vertex of G, then we denote by
Zv,i the subgraph G∗[{v, v′i, v′′i }] for every i ∈ {1, . . . ,mdegG(v)}.

Our first aim is to prove the following three lemmata.

Lemma 1. Let G be a graph, let H be a connected graph with at least one edge and let
G′ be a subdivision of G∗. Then we have

• packH+(G∗) = packH+(G′) and

• coverH+(G∗) = coverH+(G′).

Proof. We denote by S the set of subdivision vertices added during the construction of
G′ from G+. As G′ is a subdivision of G∗, we have packH+(G′) ≥ packH+(G∗) and
coverH+(G′) ≥ coverH+(G∗).

As a consequence of Observation 1 and the fact that mδ(H+) ≥ 3, if M is an H+-
immersion expansion in G′ then no branch vertex of M belongs to S. Indeed, every
vertex of S has multidegree 2 in G′. Therefore, by dissolving in M the vertices of S
that belong to V (M), we obtain an H+-immersion expansion in G∗. It follows that
packH+(G∗) ≥ packH+(G′), hence packH+(G∗) = packH+(G′).

On the other hand, let X be an H+-cover of G∗ and let X ′ be a set of edges
constructed by taking, for every e ∈ X, an edge of the path of G′ connecting the
endpoints of e that has been created by subdividing e. Assume that X ′ is not an
H+-cover of G′. According to the remark above, this implies that X is not an H+-
cover of G∗, a contradiction. Hence X ′ is an H+-cover of G′ and thus coverH+(G∗) =
coverH+(G′).

Lemma 2. For every two graphs H and G such that H is connected and has at least
one edge, we have packH+(G∗) ≤ packH(G).

Proof. In G∗ (respectively H+), we say that a vertex is original if it belongs to V (G)
(respectively V (H)). Let (φ, ψ) be an H+-immersion model in G∗.

We first show that if u is an original vertex of H+, then φ(u) is an original vertex
of G∗. By contradiction, let us assume that φ(u) is not original, for some original vertex
u of H+. Then φ(u) = v′i or φ(u) = v′′i , for some v ∈ V (G) and i ∈ {1, . . . ,mdegG(v)}.

Observe that since H is connected and has at least one edge, every vertex of H+

has degree at least three: let x, y, and z be the endpoints of three multiedges incident
with u. Then ψ({u, x}), ψ({u, x}), and ψ({u, x}) are edge-disjoint paths connecting
φ(u) to three distinct vertices. This is not possible because there is an edge cut of size
two, {{v, v′i}, {v, v′′i }}, separating the two vertices v′i and v′′i (among which is φ(u)) from
the rest of the graph. Consequently, if u ∈ V (H+) is original, then φ(u) is original.

Let us now consider an edge {u, v} ∈ E(H). By the above remark, φ(u) and φ(v)
are original vertices of G∗. It is easy to see that ψ({u, v}) contains only original vertices
of G∗. Indeed, if this path contained a non-original vertex w′ or w′′ for some original
vertex w of V (G∗), it would use w twice in order to reach u and v, what is not allowed.
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Therefore, from the definition of H+, the pair (φ|V (H), ψ|E(H)) is an H-immersion model
of G.

We proved that every H+-immersion-expansion of G∗ contains an H-immersion-
expansion that belongs to the subgraph G of G∗. Consequently every H+-packing of G∗

contains an H-packing of the same size that belongs to G, and the desired inequality
follows.

Lemma 3. For every two graphs H and G such that H is connected and has at least
one edge, we have coverH(G) ≤ coverH+(G∗).

Proof. Similarly to the proof of Lemma 2, we say that an edge of G∗ is original if it
belongs to E(G). Let X ⊆ E(G∗) be a minimum cover of H+-immersion expansions
in G∗.

First case: all the edges in X are original. In this case, X is an H-cover of G as well.
Indeed, if G \X contains an H-immersion expansion M , then G∗ \X contains M∗ that,
in turn, contains H+. Hence in this case, coverH(G) ≤ coverH+(G∗).

Second case: there is an edge e ∈ X that is not original. Let v be the original vertex
of G∗ such that either e ∈ Zv,l for some l ∈ {1, . . . ,mdegG(v)}. Let us first show the
following claim.
Claim: For every i ∈ {1, . . . ,mdegG(v)}, there is an edge of Zv,i that belongs to X.

Proof of claim: Looking for a contradiction, let us assume that for some i ∈ {1, . . . ,mdegG(v)},
we have E(Zv,i) ∩ X = ∅. Clearly i 6= l. By minimality of X, the graph G \
(X \ {e}) contains an H+-immersion expansion M that uses e. Observe that M ′ =
M \E(Zv,l)∪E(Zv,i) contains an H+-immersion expansion (since Zv,l and Zv,i are iso-
morphic). Hence, M ′ is a subgraph of G \ (X \ {e}) that contains an H+-immersion
expansion. This is not possible as X is a cover, so we reach the contradiction we were
looking for and the claim holds.

We build a set Y as follows. For every edge f ∈ X, if f is original then we add
to Y . Otherwise, if vf is the (original) vertex of G∗ such that e ∈ E(Zvf ,i) for some
i ∈ {1, . . . ,mdegG(vf )}, then we add to Y all edges that are incident to vf .

The above claim ensures that when a non-original edge f of X is encountered,
then X contains an edge in each of Zvf ,1, . . . , Zvf ,mdegG(vf ). Therefore, the same set of
edges, of size mdegG(vf ), will be added to Y when encountering an other edge from
Zvf ,1, . . . , Zvf ,mdegG(vf ). Consequently, |X| = |Y |.

Let us not show that Y is an H+-cover of G∗. Suppose that there exists an H+-
immersion expansion M in G∗ \ Y . Observe that since H is connected and has at least
one edge, M does not belong to

⋃
i∈{1,...,mdegG(u)} Zu,i, for every original vertex u of G∗.

Let
Z =

⋃
u∈V (G)

⋃
i∈{1,...,mdegG(u)}

E(Zu,i)

Then M is a subgraph of G \ (Y ∪ Z). As X ⊆ Y ∪ Z, this contradicts the fact that X
is a cover. Therefore, Y is an H+-cover. Moreover all the edges in Y are original. As
this situation is treated by the first case above, we are done.
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We are now ready to prove Theorem 2.

Proof of Theorem 2. Let k = tcw(G). We examine the nontrivial case where G is not a
tree, i.e., tcw(G) ≥ 2. Let us consider the graph G∗. We claim that tcw(G∗) = tcw(G).
Indeed, starting from an optimal tree-cut decomposition of G, we can, for every vertex
v of G and for every i ∈ {1, . . . ,mdegG(v)}, create a bag that is a children of the one
of v and contains {v′i, v′′i }. According to the definition of G∗, this creates a tree-cut
decomposition D = ((T, s), {Xt}t∈V (T )) of G∗. Observe that for every vertex x that we
introduced to the tree of the decomposition during this process, adhD(x) = 2 and the
corresponding bag has size two. This proves that tcw(G∗) ≤ max(tcw(G), 2) = tcw(G).
As G is a subgraph of G∗, we obtain tcw(G) ≤ tcw(G∗) and the proof of the claim is
complete.

According to Proposition 1, we can assume that G∗ has a nice rooted tree-cut
decomposition of width ≤ k. For notational simplicity we again denote it by D =
((T, s), {Xt}t∈V (T )) and, obviously, we can also assume that all leaves of T correspond
to non-empty bags.

Our next step is to transform the rooted tree-cut decomposition D into a rooted
tree-partition D′ = ((T, s), {X ′t}t∈V (T )) of a subdivision G′ of G∗. Notice that the only
differences between two decompositions are that, in a tree-cut decomposition, empty
bags are allowed as well as edges connecting vertices of bags corresponding to non-
adjacent vertices of T .

We proceed as follows: if X is a bag crossed by edges, we subdivide every edge
crossing X and add the obtained subdivision vertex to X. By repeating this process
we decrease at each step the number of bags crossed by edges, that eventually reaches
zero. Let G′ be the obtained graph and observe that G′ is a subdivision of G. As G
is connected, the obtained rooted tree-cut decomposition D′ = ((T, s), {X ′t}t∈V (T )) is a
rooted tree partition of G′.

Notice that the adhesion of any bag of T in D is the same as in D′. However, the
bags of D′ may grow during the construction of G′. Let t be a vertex of T and let
{t1, . . . , tm} be the set of children of t. We claim that |X ′t| ≤ (k + 1)2/2.

Let Et be the set of edges crossing Xt in G. Let Ht be the torso of D at t, and let
H ′t = Ht \Xt. Observe that |Et| is the same as the number of edges in H ′t. Let zp be the
vertex of H ′t corresponding to the parent of t, and similarly for each i ∈ {1, . . . ,m} let
zi be the vertex of H ′t corresponding to the child ti of t. Notice that if ti is a thin child
of t, then zi can be adjacent to only zp as D is a nice rooted tree-cut decomposition.
Thus the sum of the number of incident edges with zi in H ′t for all thin children ti of t is
at most adhD(t) ≤ k. On the other hand, if ti is a bold child of t, then zi has at least 3
neighbors in Ht, and thus it is contained in the 3-center of (Ht, Xt). Thus, the number
of all bold children of t is bounded by k − |Xt|. Since each vertex in H ′t is incident
with at most k edges, the total number of edges in H ′t is at most (k − |Xt|+ 1)k/2 + k.
As |E(H ′t)| = |Et| = |X ′t \ Xt|, it implies that |X ′t| ≤ |Xt| + k · (k − |Xt| + 2)/2 ≤
max{2k, k(k + 2)/2} ≤ (k + 1)2/2. We conclude that G′ has a rooted tree partition of
width at most (tcw(G) + 1)2/2.

Recall that G′ is a subdivision of G∗. By the virtue of Lemmata 3, 2, and 1, we obtain
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that packH+(G′) ≤ packH(G) and coverH(G) ≤ coverH+(G′). Hence G′ satisfies the
desired properties.

4 Erdős-Pósa for bounded tree-partition width

Before we proceed, we require the following lemma and an easy observation.

Lemma 4. Let G and H be two graphs and let X ⊆ V (G). Let C be the collection
of connected components of G \ X. If M is an H-immersion expansion of G then M
contains vertices from at most (|X|+ 1) · |E(H)| graphs of C.

Proof. Let P be a certifying path of M connecting two branch vertices of M . Since P is
a path, it cannot use twice the same vertex of X. Besides, as X is a separator, P must
go through a vertex of X in order to go from one graph of C to an other one. Therefore,
P contains vertices from at most |X| + 1 graphs of C. The desired bound follows as
E(M) is partitioned into |E(H)| certifying paths.

Observation 2. Let G and H be graphs and let F ⊆ E(G). Then it holds that
coverH(G) ≤ coverH(G \ F ) + |F |.

For a graph H, we define ωH : N → N so that ωH(r) =
⌈
r · 3r+1

2 · |E(H)|
⌉
. The next

Theorem is an important ingredient of our results.

Theorem 3. Let H be a connected graph with at least one edge. Then for every graph
G it holds that coverH(G) ≤ ωH(tpw(G)) · packH(G)

Proof. Let us show by induction on k that if packH(G) ≤ k and tpw(G) ≤ r then
coverH(G) ≤ ωH(r) · k.

The case k = 0 is trivial. Let us now assume that k ≥ 1 and that for every graph G of
tree-partition width at most r and such that packH(G) = k− 1, we have coverH(G) ≤
ωH(r)(k − 1). Let G be a graph such that packH(G) = k and tpw(G) ≤ r. Let also
D = ((T, s), {Xt}t∈V (T )) be an optimal rooted tree partition of G. We say that a vertex
t ∈ V (T ) is infected if Gt contains an H-immersion expansion. Let t be an infected
vertex of T of minimum height.
Claim: If some of the H-immersion expansions of G shares an edge with Gt′ for some
child t′ of t, then it also shares and edge with E{t,t′}.

Proof of claim: Let M be some H-immersion expansions of G. Notice that, by the
choice of t, M cannot be entirely inside in Gt′ . This fact, together with the connectivity
of M , implies that E(M) ∩ E{t,t′} 6= ∅.

Suppose that M be an H-immersion expansion of Gt and let U be the set of children
of t corresponding to bags which share vertices with M . We define the multisets A =
E(G[Xt]), B =

⋃
t′∈U E{t,t′} and C =

⋃
t′∈U E(G′t). We also set D = A ∪ B. By the

definition of U , it follows that E(M) ⊆ C ∪D (1).
Let us upper-bound the size of |D|. Applying Lemma 4 for Gt, H, and Xt, we have

|U | ≤ (r+1) · |E(H)|, hence |B| ≤ r(r+1) · |E(H)|. Besides, every path of M connecting
two branch vertices meets every vertex of Xt at most once (as it is a path), thus E(M)
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does not contain an edge of G[Xt] with a multiplicity larger than |E(H)|. It follows that

|A| ≤ r(r−1)
2 ·|E(H)| and finally we obtain that |D| = |A|∪|B| ≤ r· 3r+1

2 ·|E(H)| = ωH(r).
Let G′ = G \ D. We now show that packH(G′) ≤ k − 1. Let us consider an H-

immersion expansion M ′ in G′. As E(M ′) ⊆ E(G)\D, if follows that E(M ′)∩D = ∅. (2).
Recall that B ⊆ D, which together with (2) implies that E(M ′)∩B = ∅. This fact,

combined with the claim above, implies that E(M ′) ∩ C = ∅. (3) From (2) and (3),
we obtain that E(M ′) ∩ (C ∪D) = ∅, which, combined with (1), implies that E(M) ∩
E(M)′ 6= ∅. Consequently, every maximum packing of H-immersion expansions in G′ is
edge-disjoint from M . If such a packing had size ≥ k, it would form together with M
a packing of size k + 1 in G, a contradiction. Thus packH(G′) ≤ k − 1, as desired. By
the induction hypothesis applied on G′, coverH(G′) ≤ ωH(r) · (k− 1) edges. Therefore,
from Observation 2, coverH(G) ≤ |C|+ coverH(G′) ≤ |C|+ωH(r) · (k− 1) ≤ ωH(r) · k
edges as required.

We set σ : N→ N where σ(r) =
⌈
1
8(3(r + 1)4 + 2(r + 1)2)

⌉
.

Theorem 4. Let H be a connected graph with at least one edge, r ∈ N, and G be a
graph where tcw(G) ≤ r. Then coverH(G) ≤ σ(r) · (4 · |V (H)|+ |E(H)|) · packH(G).

Proof. Clearly, we can assume that G is connected, otherwise we work on each of its
connected components separately. By Theorem 2, there is a graph G′ where tpw(G′) ≤
(r + 1)2/2, packH+(G′) ≤ packH(G) and coverH(G) ≤ coverH+(G′). The result
follows as, from Theorem 3, coverH+(G′) ≤ ωH+((r+1)2/2)·packH+(G′) and ωH+((r+
1)2/2) = σ(r) · |E(H+)| ≤ σ(r) · (4 · |V (H)|+ |E(H)|).

5 Erdős-Pósa for immersions of subcubic planar graphs

Grids and Walls. Let k and r be positive integers where k, r ≥ 2. The (k×r)-grid Γk,r

is the Cartesian product of two paths of lengths k− 1 and r− 1 respectively. We denote
by Γk the (k×k)-grid. The k-wall Wk is the graph obtained from a ((k+1)× (2 ·k+2))-
grid with vertices (x, y), x ∈ {1, . . . , k+ 1}, y ∈ {1, . . . , 2k+ 2}, after the removal of the
“vertical” edges {(x, y), (x+ 1, y)} for odd x+ y, and then the removal of all vertices of
degree 1.

Figure 1: The graph W+
5 .
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Let Wk be a wall. We denote by P
(v)
j the shortest path connecting vertices (1, 2j)

and (k+1, 2j), j ∈ [k] and call these paths the vertical paths of Wk, with the assumption

that P
(v)
j contains only vertices (x, y) with y = 2j, 2j − 1. Note that these paths are

vertex-disjoint. Similarly, for every i ∈ [k + 1] we denote by P
(h)
i the shortest path

connecting vertices (i, 1) and (i, 2k + 2) (or (i, 2k + 1) if (i, 2k + 2) has been removed)

and call these paths the horizontal paths of Wk. Let E = {e | e ∈ E(P
(v)
j )∩E(P

(h)
i ), j ∈

{1, 2, . . . , k}, i ∈ {1, 2, . . . , k + 1}}. We obtain W+
k by Wk by adding a second copy of

every edge in E. (For an example, see Figure 1.)

Strong immersions. If in the definition on when a graph G contains a graph H as
an immersion we additionally demand that no branch vertex is an internal vertex of any
certifying path, then the function (φ, ψ) is an H-strong-immersion model and we say
that G contains H as a strong immersion.

Figure 2: Finding a subdivision of Γk as a strong immersion in W+
k .

Observation 3. For every integer k ≥ 2, there is a Γk-strong-immersion model (φ, ψ)
in W+

k such that φ(V (Γk)) = {(i, 2j + 1) | 1 ≤ i ≤ k + 1, 0 ≤ j ≤ k} is the set of its
branch vertices.

Figure 2 illustrates how we may find a subdivision of Γk as a strong immersion
in W+

k . We also need the following result.

Lemma 5 ([17]). Every simple planar subcubic graph of n vertices is a topological minor
of the bn2 c-grid.

Lemma 6. Every connected planar subcubic graph H is an immersion of the wall
W|V (H)|.

Proof. Let H be a connected planar subcubic graph and let H ′ be the simple subcubic
planar graph obtained from H by subdiving all but one copies of every multiple edge.
Since H is connected we may assume that at least |V (H)|−1 edges do not get subdivided.
Noice that 2|E(H)| ≤ 3|V (H)| and thus |E(H)| ≤ 3

2 |V (H)|. Since we add at most
|E(H)| − (V (H)− 1) vertices to obtain H ′ from H, it follows that

|V (H ′)| ≤ 2|V (H)|. (1)
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Let n = |V (H ′)|. By definition, we obtain that H is a topological minor of H ′ and
Lemma 5 yields that H ′ is a topological minor of Γbn

2
c. Then H is a topological minor

of Γbn
2
c and let (φ, ψ) be an H-topological-minor model in Γbn

2
c. Let H ′′ denote the

H-immersion expansion in Γbn
2
c. Notice that since H is planar subsubic so is H ′′.

Let (φ′, ψ′) be the Γbn
2
c-strong-immersion model in W+

bn
2
c where

φ′(V (Γbn
2
c)) ⊆ {(i, 2j + 1) | 1 ≤ i ≤ bn

2
c+ 1, 0 ≤ j ≤ bn

2
c}

(Observation 3) and notice that its restriction to H ′′ yields an H ′′-strong-immersion
model in W+

bn
2
c. Let W ′ be the H ′′-immersion expansion in W+

bn
2
c.

To prove our lemma it is enough to show that W ′ contains a strong immersion model
of H ′′ such that its H ′′-immersion expansion W is simple as then W ⊆Wbn

2
c.

Figure 3: Swapping branch vertices.

We first show that if W ′ contains a vertex z of φ′(V (Γbn
2
c)) then z ∈ φ′(V (H ′′)).

Let us assume, to the contrary, that W ′ contains a vertex z such that z ∈ φ′(V (Γbn
2
c)) \

φ′(V (H ′′)). Then z is internal to one of the certifying paths of the H ′′-immersion
expansion in W+

bn
2
c. However, by definition, this path corresponds to an edge e of Γbn

2
c

and is also a certifying path of e in the Γbn
2
c-immersion expansion in W+

bn
2
c. As the

path contains internally a branch vertex of Γbn
2
c we end up to a contradiction since we

considered a Γbn
2
c-strong-immersion model in W+

bn
2
c.

Let now E be the set {e = {ue, ve} | two copies of e belong to W ′}. Notice that for
every e ∈ E, one of its endpoints, say ue belongs to φ′(V (Γbn

2
c)). Then, it also holds

that ue ∈ φ′(V (H ′′)). Recall that for every e ∈ E the degree of ue in W ′ is at most
3 (as it is an H ′′-immersion expansion). Since we are working on a strong immersion
model of H ′′ all edges incident to ue belong to paths joining ue to other branch vertices.
Then notice that by mapping each verger φ′−1(ue) to ve, e ∈ E we may find a strong
immersion model of H ′′ where the corresponding immersion expansion does not contain
multiple edges (Figure 3). Thus we obtain a strong immersion model of H ′′ in W ′ such
that its H ′′-immersion expansion is simple. As n ≤ 2|V (H)|, we obtain that H is a
strong immersion of W|V (H)|.

By combining [28, Theorem 7] with the main result of [7] (see also [6]) we can readily
obtain the following.

Theorem 5. There is a function τ : N+ → N such that the following holds: for every
graph G and r ∈ N+, if tcw(G) ≥ f(r) then Wr is an immersion of G. Moreover,
f(r) = O(r29polylog(r)).
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Lemma 7. Let G be a graph and let H be a connected planar subcubic graph on h ver-
tices. Then tcw(G) = O(h29 · (packI(H)(G))14.5 · (polylog(h) + polylog(packI(H)(G))).

Proof. Let packH(G) ≤ k. Let g(h, k) = f((h+1) ·d(k+1)1/2e), where f is the function
of Theorem 5. Suppose that tcw(G) ≥ g(h). Then, from Theorem 5, we obtain that
G contains the wall W of height (h+ 1) · d(k + 1)1/2e as an immersion. Notice that W
contains k+ 1 vertex-disjoint walls W1,W2, . . . ,Wk+1 of height h. From Lemma 6, each
one of these walls contains H as an immersion and thus an H-immersion expansion.
Since, these walls are vertex-disjoint they are also edge-disjoint. Hence, we have found a
packing of H of size k+1 > k, a contradiction. Therefore, tcw(G) ≤ g(h, k). Notice now
that, from Theorem 5, g(h, k) = O(h29k14.5(polylog(h) + polylog(k)) as required.

The edge version of Theorem 1 follows as a corollary of Theorem 4 and Lemma 7.

6 The vertex case

To prove the vertex version of Theorem 1, is a much easier task. For this, we follow the
same methodology by using the graph parameter of treewidth instead of tree-cut width,
and topological minors instead of immersions.

Treewidth. A graph H is k-chordal if it does not contain any induced cycle of length
at least 4 and no clique one more than k+ 1 vertices. The treewidth of a graph G is the
minimum k for which G is a subgraph of a k-chordal graph.

Topological Minors. Let H and G graphs. Similarly to the definition of immersions,
we say that G contains H as a topological minor if there is pair of functions (φ, ψ),
called H-topological-minor model such that φ is an injection of V (H) → V (G) and
ψ sends {u, v}i to a path of G between φ(u) and φ(v), for every {u, v} ∈ E(H) and
every i ∈ {1, . . . ,multH({u, v})}, in a way such that distinct edges are sent to internally
vertex-disjoint paths. Every vertex in the image of φ is called a branch vertex. Observe
that if (φ, ψ) is an H-topological-minor model in G then (φ, ψ) is an H-strong-immersion
model in G.

For the proof of the vertex case of Theorem 1, we require the following two “vertex
counterparts” of Theorem 4 and Lemma 7 respectively.

Proposition 2. Let H be a class of connected graphs and let t be a non-negative integer.
Then H has the v-E&P property for the graphs of treewidth at most t with a gap that is
a polynomial function on t.

Lemma 8. Let G be a graph and let H be a connected planar graph on h vertices and
without any I(H)-vertex packing of size greater than k. Then tw(G) = (h · k)O(1).

Proposition 2 was proven by Thomassen in [27] (see also [4, 12]). For Lemma 8,
we need the fact that there is a polynomial function λ : N+ → N such that for every
r ∈ N+, every graph with treewidth at least λ(r) contains Wr as a topological minor.
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The existence of such a function λ follows from the grid exclusion theorem of Robertson
and Seymour in [24] (see also [8,25]) and the polynomiality of λ was proved recently by
Chekuri and Chuzhoy in [5] (see also [6, 7] for improvements). Then Lemma 8 can be
proved using the same arguments as in Lemma 7, taking into account that Lemma 6
also holds if we consider topological minors instead of immersions and the fact that a
topological minor model is also an immersion model.
The vertex version of Theorem 1 follows from Proposition 2 and Lemma 8 if, in Propo-
sition 2, we set H = I(H) and t = (h · k)O(1).

7 Discussion

Notice that in Theorem 1 we demand that H is a connected graph. It is easy to extend
this result if instead of H we consider some collectionH is of connected graphs containing
one that is planar subcubic and where I(H) contains all graphs containing some graph
in H as an immersion. Moreover, it is easy to drop the connectivity condition for the
vertex variant using arguments from [24]. However it remains open whether this can be
done for the edge variant as well.

Naturally, the most challenging problem on the Erdős–Pósa properties of immersions
is to characterize the graph classes:

Hv/e = {H | I(H) has the v/e-E&P property}

In this paper we prove that both Hv and He contain all planar subcubic graphs. It
is an interesting question whether Hv/e are wider than this. Using arguments similar
to [22,24] it is possible to prove the following.

Lemma 9. None of Hv and He contains a non-planar subcubic graph.

Figure 4: A biconnected graph H for which I(H) does not have the v/e-E&P property.

Actually, the arguments of [22,24] permit to exclude all non-planar graphs from Hv.
For the non-subcubic case, we can first observe that K1,4, which is planar and non-
subcubic belongs in both Hv and He. However, this is not the case for all planar and
non-subcubic graphs as is indicated in the following observation.
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Observation 4. There exists a 3-connected non-subcubic graph H that does belong
neither to Hv nor to He.

Figure 5: The host graph G.

Proof. Thomassen in [27] provided an example of a tree that does not belong in Hv

(the same graph does not belong in He either). Inspired by the construction of [27], we
consider first the graph H is depicted in Figure 4. To see that H 6∈ Hv and H 6∈ He,
consider as host graph G the graph in Figure 5. This graph consists of a main body
that is a wall of height 3 and three triples of graphs attached at its upper, leftmost, and
lower paths. Each of these triples consists of three copies of some of the 3-connected
components of H. Notice that G does not contain more than one H-immersion expan-
sion. However, in order to cover all H-immersion expansions of G one needs to remove
at least 3 edges/vertices. By increasing the heigh of the wall of G, we may increase the
minimum size of an I(H)-vertex/edge cover while no I(H)-vertex/edge packing of size
greater than 1 will appear. It is easy to modify H so to make it 3-connected: just add a
new vertex and make it adjacent with the tree vertices of degree 4. The resulting graph
H ′ remains planar. The same arguments, applied to an easy modification of the host
graph, can prove that H ′ is not a graph in Hv or He.

Providing an exact characterization of Hv and He is an insisting open problem. A

first step to deal with this problem could be the cases of θ4 = and the 4-wheel .
Especially for the 4-wheel, the structural results in [1] might be useful in this direction.
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[2] Etienne Birmelé, John Adrian Bondy, and Bruce A. Reed. The Erdös-Pósa property
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