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The Plane Subgraph Completion problem asks, given a (possibly disconnected)
plane graph Γ and a connected plane graph ∆, whether it is possible to add edges
in Γ such that the resulting graph remains planar and contains some subgraph that
is topologically isomorphic to ∆. We give an algorithm that solves this problem in
2O(k log k) ·n2 steps where k and n are the number of vertices of ∆ and Γ respectively.

1 Introduction

Completion problems are defined as follows: Consider a graph class P and ask whether we
may add edges to a given graph G in order to obtain a graph G+, where G+ ∈ P. Numerous
results have appeared for the case where the objective is to minimize the number of added
edges [12, 9, 10, 8, 4] in G. However, interestingly there is no known dichotomy asserting when
the problem is solvable in polynomial time and when it is NP-complete.

In this paper, we consider the Plane Subgraph Completion (PSC) problem which, given
a (possibly disconnected) plane graph G and a connected plane graph H, asks whether it
is possible to add edges in G such that the resulting graph remains planar and contains some
subgraph that is topologically isomorphic to H. When the input graph G is planar triangulated,
PSC is NP-complete. Indeed, let G be any planar triangulated graph. Note here, that as any
planar triangulated graph is 3-connected, G is 3-connected and from Whitney’s Theorem [11]
admits a unique embedding on the plane (up to equivalence). Let also H be the cycle on
n = |V (G)| vertices. Then H also has unique embedding on the plane (up to equivalence). Since
G is triangulated no edge can be added to it while preserving its planarity. Thus, PSC becomes
equivalent to the Hamilton Cycle Problem which is NP-complete on planar triangulated
graphs [6] (see also [7]). This observation further implies that PSC parameterized by the number
of added edges k, and in particular even for k = 0, is NP-complete. Thus, PSC is not FPT when
parameterized by the number of added edges unless P = NP. Thus, in order to obtain a tractable
algorithm, we need to find an alternative way to parameterize this problem. In particular, we
will consider |V (H)| as our parameter. Such alternative parameterization first appeared in [3].

To state our main result, and throughout the paper, we need the following definitions.
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Plane graphs and completion subgraphs By plane graph Γ we mean a planar graph Γ
with the vertex set V (Γ) and the edge set E(Γ) drawn in the sphere. To simplify notations, we
usually do not distinguish between a vertex of the graph and the point of the sphere used in the
drawing to represent the vertex or between an edge and the open line segment representing it.
We define the following relation on plane graphs. Let Γ and ∆ be plane graphs. We say that
∆ � Γ if there exists a set S ∈

(
V (Γ)

2

)
\E(Γ) such that Γ′ = (V (Γ), E(Γ) ∪ S) is plane and ∆ is

topologically isomorphic to a subgraph of Γ′. Notice that � is not a transitive relation.
Our main result is the following.

Theorem 1. There exists an algorithm that, given as input an n-vertex plane graph Γ and a
connected k-vertex plane graph ∆ decides whether ∆ � Γ in 2O(k log k) · n2 steps.

Let Γ and ∆ be an input of PSC as above. In order to obtain our algorithm we consider a
family G consisting of n structures depending only on Γ whose underlying graphs have treewidth
at most 3k (Lemma 6). We also consider a family D consisting of 2O(k) structures depending
only on ∆ (Lemma 4). For the graphs Γ and ∆ and the families G and D, it holds that ∆ � Γ
if and only if some structure D ∈ D is contained as a special contraction in a structure G ∈ G,
denoted D ≤c G (Lemmata 5 and 7). Finally, for a fixed pair of structures (D,G) ∈ D×G, we
can decide in 2O(k log k)n time whether D ≤c G (Lemma 2). Therefore, by testing for all pairs
(D,G) ∈ D × G whether D ≤c G, we decide in 2O(k log k) · n2 steps whether ∆ � Γ.

2 Preliminaries

Contractions A structure G is a tuple whose first element is a graph G and the rest of its
elements are subsets of V (G) forming a partition of V (G). Let G = (G,S0, Y, S1, S2, S3, S4)
and D = (D,Z0, B, Z1, Z2, Z3, Z4) be structures. We say that D is a contraction of G, denoted
by D ≤c G, if and only if there exists a function σ : V (G)→ V (D) such that:

1. if u, v ∈ V (D), u 6= v ⇔ σ−1(u) ∩ σ−1(v) = ∅,

2. for every u ∈ V (D), G[σ−1(u)] is connected,

3. {u, v} ∈ E(D)⇔ G[σ−1(u) ∪ σ−1(v)] is connected,

4. for every i ∈ {0, . . . , 4} and every x ∈ Zi it holds that |σ−1(x)| = 1 and σ−1(x) ∈ Si, and

5. σ(Y ) ⊆ B.

We say that a graph G is a contraction of a graph D if (D, ∅, ∅, ∅, ∅, ∅, ∅) ≤c (G, ∅, ∅, ∅, ∅, ∅, ∅)
and we denote it by D ≤c G. Notice that ≤c defined for graphs is the usual contraction relation
where only conditions 1,2, and 3 apply.

The next Lemma follows using the results in [2].

Lemma 2. There exists an algorithm that receives as input a structure G, whose graph has
n vertices and treewidth at most h, and a structure D, whose graph is connected and has k
vertices, and outputs whether D ≤c G in 2O(k+h+k log h) · n steps.

Radial enhancements Let Γ be a plane graph. A radial enhancement of Γ is defined as
a plane graph that can be constructed as follows: take Γ, add a vertex vf inside each face
f of Γ and add edges connecting vf with the vertices incident to f , so that in the resulting
embedding, every face that is incident to an edge of E(Γ) is triangulated (this triangulation
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may have multiple edges). We denote by RΓ the set of all different (in terms of topological
isomorphism) radial enhancements of Γ. Observe that if Γ is connected, then RΓ contains only
one member that will be denoted as R(Γ).

Given a connected plane graph Γ, we define Q(Γ) = R(sub(R(Γ))), where sub(Γ) is the graph
obtained from Γ if we subdivide all its edges once.

If Γ and Γ̃ are plane graphs such that Γ̃ = Q(Γ) and S ⊆ V (Γ), then we denote by
p(Γ̃,Γ, S) = (S0, S1, S2, S3, S4) where S0 = S and:

S1 = V (Γ) \ S0 S3 = V (sub(R(Γ))) \ (S0 ∪ S1 ∪ S2)
S2 = V (R(Γ)) \ (S0 ∪ S1) S4 = V (Q(Γ)) \ (S0 ∪ S1 ∪ S2 ∪ S3)

Also given a tuple p of sets of vertices of a plane graph Γ and a set Q ⊆ V (Γ), we define
t(p, Q) = (Q,p \Q), where the operation p \Q removes from each element of p the vertices in
Q. And if G = (G,S0, S1, S2, S3, S4), then we define r(G) = (G,S0, ∅, S1, S2, S3, S4).

3 The algorithm

Lemma 3. Let Γ and ∆ be plane graphs. If ∆ is topologically isomorphic to a subgraph of Γ
then for every RΓ ∈ RΓ there exists some R∆ ∈ R∆ such that Q(RΓ) is isomorphic to Q(R∆).

A face extension of a connected plane graph ∆ is a connected plane supergraph ∆+ of ∆ such
that V (∆+)\V (∆) is an independent set and N∆+(x) 6= N∆+(y), for every x, y ∈ V (∆+)\V (∆)
with x 6= y, where N∆+(x) is the neighbourhood of the vertex x in ∆+. We then denote by F∆

the set of all face extension of the connected plane graph ∆.
Given a plane graph ∆ and L ⊆ E(∆), we denote by span(∆, L) the set of all spanning

subgraphs of ∆ that contain all edges in E(∆) \ L.

Lemma 4. If ∆ is a connected plane k-vertex graph, then |F∆|, |span(∆, E(∆))| ≤ 2O(k).

Based on Lemma 3, we prove the following:

Lemma 5. Let Γ be a plane graph and ∆ a connected plane graph. It holds that ∆ � Γ if and
only if there exists some ∆+ ∈ F∆ such that there exists some ∆∗ ∈ span(∆+, E(∆)) such that
for every RΓ ∈ RΓ there exists a R∆∗ ∈ R∆∗ such that

(Q(R∆∗), t(p(Q(R∆∗), R∆∗ , V (∆∗)), V (∆))) ≤c (Q(RΓ), r(p(Q(RΓ), RΓ, V (Γ)))).

Given a structure G = (G,S0, ∅, S1, S2, S3, S4), a non-negative integer k and a vertex v ∈ S0,

we define G
(k)
v = (Gv, S

′
0, Y, S

′
1, S
′
2, S
′
3, S
′
4) such that Gv is the graph created from G if for every

C ∈ C(G̃), the set of all the connected components of G̃, we contract all edges of C to a single
vertex vC , where G̃ = G \Bk

G(v), and Bk
G(v) is the set of all the vertices at distance at most k

in G from v. Also Y = {vC | C ∈ C(G̃)} and for i ∈ {0, . . . , 4}, S′i = Si ∩B
(k)
G (v).

The following is a direct consequence of [5].

Lemma 6. If G = (G,S0, ∅, S1, S2, S3, S4) is a structure, k is a non-negative integer and

v ∈ V (G), then the graph of G
(k)
v has treewidth at most 3k.

Lemma 7. Let G = (G,S0, ∅, S1, S2, S3, S4) and D = (D,Z0, B, Z1, Z2, Z3, Z4) be two struc-

tures. Then D ≤c G if and only if there exists some v ∈ S0 such that D ≤c G(|V (D)|)
v .
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Theorem 1 follows combining Lemmata 2, 4, 5, 6, and 7:

Input: An encoding of two plane graphs Γ and ∆.
Question: Is it true that ∆ � Γ?

1. for every ∆+ ∈ F∆

2. for every ∆∗ ∈ span(∆+, E(∆))
3. for every u ∈ V (Γ)
4. arbitrarily construct an RΓ ∈ RΓ

5. for every R∆∗ ∈ R∆∗

6. construct Q(Γ)(|V (∆)|)
u and Q(∆∗)

7. if Q(∆∗) ≤c Q(Γ)(|V (∆)|)
u , return

true
8. return false

σ

σ
RΓ R(∆∗)

Γ and ∆ are the graphs with the black and red edges, red edges

represent a choice in span(∆+, E(∆)). Greyed vertices are

added by the first radial enhancement. σ maps black vertices

to black, grey to grey and blue regions to blue vertices.

4 Conclusion

We can drop the number of steps to 2O(k) · n2 by using the results of [1] and [2]. Our approach
can also solve the Plane Induced Subgraph Completion problem where we are asked,
given a plane graph G and a connected plane graph H, whether it is possible to add edges
in G such that the resulting graph remains planar and contains some induced subgraph that
is topologically isomorphic to H. The only modification would be at the definition of a face
extension of ∆ where we would additionally require that every connected graph ∆+ contains ∆
as an induced subgraph.
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