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Abstract—OpenTelemac suffers from numerical reproducibil-
ity failures. In parallel simulations, the domain distribution
toward units computing with floating-point arithmetic may yield
different numerical results. Numerical reproducibility is a re-
quested feature to facilitate the debug, the validation and the test
of industrial or large codes. We present how to apply compen-
sation techniques to recover reproducibility in the finite element
computation of a hydrodynamics simulation. Compensation is
used in both the building and the resolution phases of the linear
system which are not reproducible in the current version of the
software. Here the building step relies on the element-by-element
storage mode and the solving step applies the conjugated gradient
algorithm. We also measure that the running time extra-cost of
the reproducible version is reasonable enough in practice.

I. INTRODUCTION

The openTelemac suite is a HPC code for the simulation
at the industrial scale of free surface flows in 1D-2D-3D
hydrodynamics. It is an integrated set of open source For-
tran 90 modules developped since 20 years of international
collaboration [11]. Like most large and complex applications,
openTelemac introduces parallelism. The domain is distributed
toward several processors which solve simultaneously their
own sub-domains. In practice, the processors are not inde-
pendent of each other, but each one needs the results from
the others. This technology reduces the processing time since
ideally using p processors divides by p the time to solve the
same problem with only one processor.

An undesirable consequence of parallelism reported in
openTelemac is the non-reproducibility of the results. The
ability to reproduce the simulation results becomes a crucial
property to improve the confidence in large scale numerical
experiments. The changes of a simulation results must depend
only on the changes of the simulations inputs, and not be
accidentally affected by uncontrolled floating-point calcula-
tions. The non-deterministic propagation of the rounding errors
and the dynamic reductions of parallel executions may yield
to different outputs. Indeed, numerical reproducibility is a
requested feature to facilitate the debugging and the testing
of the code: it is not obvious to fix a bug nor to test a code
when the results differ from one run to another. Moreover,

critical simulations should verify this reproducibility to satisfy
legal agreements.

We studied a schematic test case, called gouttedo, which is
a 2D-simulation of a water drop fall in a square basin. The test
case specificities are the EBE storage matrix, the uses of the
wave equation system and of the conjugate gradient for the
solving phase. This resolution runs for a triangular element
mesh (8978 elements, 4624 nodes) and simulates several time
steps of 0.2 sec. Figure 1 illustrates the gouttedo test case
where we display the non reproducible behavior of the water
depth simulation between the sequential and the 2 processor
runs. The left plot shows the water depth values returned by
the sequential simulation and the right one corresponds to the
p = 2 parallel run. White spots exhibit the mesh elements
where these latter results differ from the sequential ones.

The first task is to carefully identify the sources which
produce the reproducibility failure and then to apply as
few as possible modifications to limit their extra-cost. The
difficulty in this work was to identify these sources. Figure 2
illustrates the main aspects we need to consider. First row
shows how the results of a code, in different colors, are
not reproducible when varying the number of processors. A
convincing modified reproducible code should satisfied two
criteria:
i) bit-wise identical result for every p-parallel run and for
every p ≥ 1, as showed in the second row in Figure 2
where the results share the same color. Reproducibility is
measured as the relative error between the modified sequential
simulation and the parallel ones (in green).
ii) the reproducible results must be within a reasonable range
of differences compared to the original sequential simulation
ones. This measure is important for the code developers
who, in practice, trust their sequential results as a reference.
The measure of the accuracy is the relative error between
the original sequential simulation and the modified one (in
red). The paper is organized as follows. In Section II we
introduce floating-point arithmetic to explain the reasons of
the non-reproducibility in parallel executions. In Section III,
we summarize the compensation algorithms which are
used in Telemac to recover the reproducibility. The sources



Figure 1: gouttedo: white spots are non reproducible water
depth values between the sequential (left) and a 2 processors
run (right). Time steps: 1, 2, . . . , 7, 8.
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Figure 2: The two measures of a convincing modified repro-
ducible code
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identification of the non-reproducibility and how we modify
them by using compensation are detailed in Section IV.
Section V presents the reproducible simulation. Finally the
running time extra-cost of these modifications is analyzed in
Section VI.

II. THE SOURCES OF NUMERICAL NON-REPRODUCIBILITY

A. Floating-point arithmetic features

Computer memory is limited so it cannot store the infinite
precision of real numbers. The floating-point (FP) numbers
are approximate real numbers. The IEEE-754 standard [5]
defines the most common floating-point representation and the
behavior of their arithmetic operations. It also defines the data
formats, conversion rules, some special values, the rounding
modes and the accuracy of basic operations. This standard aims
to obtain predictable and portable programs which produce
identical results when running on different machines.

1) Floating-point representation: It is based on the scien-
tific notation to represent a floating-point number x as:

x = (−1)s.m.βe, (1)

where s ∈ {0, 1}. The mantissa m is a string of integer digits
which depends on the radix β > 1 (0 ≤ mi < β) and e
(represented by w bits) acts as a scaling factor for floating-
point number x. The number of mantissa digits is the precision
of the floating-point number, denoted t. Figure 3 details each
component for the binary case (β = 2).

Figure 3: Binary FP representation

sign exponent mantissa
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The IEEE-754 standard defines different precision where
the most used ones are the binary single precision repre-
sented with 32 bits, and the binary double precision rep-
resented with 64 bits [5]. They correspond, respectively, to
(w, t) = (8, 24) or (11, 53).

2) Rounding function: The rounding function, denoted ◦,
applies to floating-point numbers and their operations. It is
needed to represent one number or one operation result which
can not be exactly represented by a floating-point number, e.g.
the constants π or 1/10. The rounded operation replaces these
values by an approximating floating-point value. For a non
representable number x ∈ R, ◦(x) = x̂ denotes the floating-
point number x̂ ∈ F resulting from the rounding.

The IEEE-754 standard defines how any numerical value
is rounded to a floating-point number by introducing several
rounding modes. There are illustrate in Figure 4, where we
distinguish the rounding to nearest (RN) which is the default
rounding one, rounding toward −∞ (RD), rounding toward
+∞ (RU) and rounding toward 0 (RZ). The standard forces
the correct rounding for the basic operations (addition, sub-
traction, multiplication, division and square root). "Correct
rounding" means that the returned result is computed as an
infinitely precise result then it is rounded to the floating-point
number, according to the chosen rounding mode. At each
rounding, you lose a priori some accuracy which corresponds
to the rounding error. This rounding error is bounded by the
arithmetic precision. It is classic to denote u this working
precision that verifies u = 2−t for the RN rounding mode
and u = 21−t for the other mode.



Figure 4: The rounding modes, x, y > 0.

0

RN(x)
RZ(x)
RD(x)

x

RU(x)
RZ(y)
RD(y)

y

RN(y)
RU(y)

3) Relative errors: Whatever we work about accuracy or
reproducibility of floating-point operation, we are interested
in these rounding errors and more generally in approximation
errors. Let x̂ ∈ F be the rounded value of x ∈ R, the relative
error is:

Errrel =
|x̂− x|
|x|

, if x 6= 0. (2)

When a result is compared to the exact value x, Relation 2
measures the accuracy of the result x̂. In our simulations we
do not know the exact result. In this quest for reproducibility,
we will compare the value x̂ to a reference one, which is the
sequential result, as explained in Figure 2.
The major problem of floating-point computation is the round-
ing errors propagation which occurs within a sequence of
computations. Although one isolated operation returns the
best possible result (the relative error is bounded by u), a
sequence of calculations may lead to significant errors due
to the accumulation of every single rounding error. It is well
known that a final result of several operations may be far from
the exact value, see [9] for details and numerous entries on the
subject.

4) Non-associativity of floating-point arithmetic: Because
of the rounding errors, the floating-point addition is not
associative. So change in the addition order may produce
different results: (a + b) + c 6= a + (b + c). For instance,
◦((−1+1)+u) = u, which differs from ◦((1+u)−1) = 0. This
phenomena is a consequence of the limited precision and range
of the IEEE floating-point representation. Hence, depending
on the computation order, the propagation of rounding errors
differs to yield a different result.

B. Parallel computation and numerical reproducibility

Parallel computation is introduced by domain decomposi-
tion where each computing unit solve its own sub-domain. The
sub-domains compute their local contributions, exchange and
summed them to obtain the global value of the whole domain.
In this procedure two causes may lead to non-reproducible
results.
Firstly when the sub-domain number varies, the computation
of the local contributions differs due to the different rounding
errors propagation. In this case, even if the global value is
summed in a static order (as it is the case in openTelemavc’s
paraco), it will differ when the number of sub-domain
changes whereas being reproducible for successive runs with
a fixed number of sub-domains.
Secondly, parallel computation may introduce collective com-
munications where the arrival order of the local contributions
differs because of dynamic scheduling or resource sharing for

instance. That leads to different order of the computations
and due to the non-associativity of the floating-point arith-
metic, results are not reproducible. In this case, there is non-
reproducibility even when the number of sub-domains does
not change.

III. COMPENSATION TECHNIQUE

Compensation is a way to increase the accuracy of results.
We apply compensation techniques to recover the reproducibil-
ity in our context. The principle of this technique is to use
error-free transformation (EFT) which computes the rounding
errors generated by the elementary operations in floating
point arithmetic. Many compensation algorithms have been
developed using these transformations to compute the sum or
the dot product of floating-point vectors [10].
The principle in these transformations is that, for an elementary
operation op ∈ {+,−, ∗} of two floating-point numbers â and
b̂, there are two floating-point numbers x̂, ŷ that verify:

â op b̂ = x̂+ ŷ. (3)

Here x̂ = ◦(â op b̂) is the rounded part of the result and ŷ is
the generated rounding error. It can also be respectively named
the high-order and low-order parts of the result.

Now we present the EFT and the compensation algorithms
that are useful in our context.
Algorithm 1. 2Sum is one EFT of the addition proposed by
Knuth [6] in 1969. It computes the high (x) and the low (y)
parts of the sum of two floating-point numbers a and b, in
6flop.

Algorithm 1 [x,y]=2Sum(a,b)

x = RN(a+ b)
a′ = RN(x− b)
b′ = RN(x− a′)
δa = RN(a− a′)
δb = RN(b− b′)
y = RN(δa + δb)

Algorithm 2. 2Product is one EFT of the multiplication
introduced by Dekker in 1971 [1]. It starts by calling the Split
algorithm proposed by Veltkamp [9]. This algorithm splits the
inputs a and b into their high and lower parts, respectively
ah, bh and al, bl. The 2Product algorithm returns the two
floating-point numbers x = RN(a×b) and the generated error
y. It requires 17flop. Another EFT for the product exists when
a fused multiply and accumulate operator (FMA) is available
[9].

Algorithm 2 [x,y]=2Product(a,b)

[ah, al] = Split(a)
[bh, bl] = Split(b)
x = RN(a× b)
t1 = RN(−r1 +RN(ah × bh))
t2 = RN(t1 +RN(ah × bl))
t3 = RN(t2 +RN(al × bh))
y = RN(t3 +RN(al × bl))



Algorithm 3. Sum2 is the compensation algorithm which
approximates the sum of a vector using Algorithm 1. It was
proposed by Rump, Ogita and Oishi in 2005 [10]. The result
res of this algorithm is as accurate as if it is computed in
twice the working precision and finally rounded to the working
precision. It requires 7(n− 1)flop.

Algorithm 3 res = Sum2(a)
s1 = a1, σ1 = 0
for i=2 to n do
[si, qi] =2Sum(si−1, ai)
σi = RN(σi−1 + qi)

end for
res = RN(sn + σn)

Algorithm 4. Dot2 is a compensated dot product, that uses
Algorithms 1 and 2 to compute a twice more accurate result.
It requires 25n− 7flop.

Algorithm 4 res = Dot2(a,b)

[r, ε] =2Product(a1, b1)
for i = 2 to n do

[p, π] =2Product(ai, bi)
[r, σ] =2Sum(r, p)
ε = RN(ε+RN(σ + π))

end for
res = RN(r + ε)

Sum2 and Dot2, are almost maximally accurate while their
conditioning remains smaller than 1/u. The condition numbers
for the sum and the dot product are respectively,

∑
|ai|/|

∑
ai|

and
∑
|ai ·bi|/|

∑
ai ·bi|. When this conditioning is larger than

1/u, the computation is ill-conditioned and one needs more
than twice the working precision to remain accurate. Another
levels of compensation can be applied, see [10] for instance.

IV. NECESSARY MODIFICATIONS TO RECOVER THE
REPRODUCIBILITY

We recover the numerical reproducibility for the gouttedo
test case of Telemac-2D using the compensated algorithms
presented in Section III. OpenTelemac applies the finite el-
ement library BIEF. This one includes many subroutines in
Fortran 90 which provide the data structure and the subroutines
to the building and the solving phases of the simulation.
Almost all our subroutine modifications have been restricted
to this library. We now describe 4 types of modifications:
data structure, algebraic operations, building phase and solving
phase. The unknowns at each node of the domain mesh are the
depth of water (H) and the two velocity components (U, V ).
In the Introduction, it was reported that these results are not
reproducible but the sources of this issue are unknown. Finite
element method leads to build and solve a general sparse linear
system. The strategy is to observe each component of the
linear as the computation is performed. This system mixes
the three sub-systems related to H,U, V . The sub-system
components are computed from physic algebraic equations by
taken into account all the physical condition inputs. In the case
of the pseudo wave equation, the mixed system is simplified

by eliminating the velocity from the continuity equation at
the discrete level, more details of these transformations are
detailled in [8]. So we obtain the decoupled system :(

A1 0 0
0 A2 0
0 0 A3

)(
H
U
V

)
=

(
C1

C2

C3

)
, (4)

where A2 and A3 become diagonal matrices thanks to
the lumped-mass method. The matrix A1 and the three
second members are computed by algebraic transformations
defined in [3]. It is important to note here that the two
velocity second members C2 and C3 still depend on the
H unknown. Hence, this procedure mixed the building and
the resolution phases. System (4) is solved in two steps: H
is first computed applying the conjugate gradient method
to A1H = C1. Then C2 and C3 derive from H , then the
diagonal systems with A2 and A3 are solved to yield U and V .

In the following we distinguish the modified parts of
the openTelemac code highlighting it on pink. The users
choose the two following keywords in the test case file.
The desired number of processors is defined by the keyword
’PARALLEL PROCESSORS’ in English (or ’PROCESSEURS
PARALLELES’ in French). This correspond to the Fortran
variable NCSIZE that takes value 0 for a sequential execution
and p for a parallel one. The original computation or the
reproducible ones is defined by the keyword "FINITE
ELEMENT ASSEMBLY" in English (or "ASSEMBLAGE
EN ELEMENTS FINIS" in French). This correspond to
the Fortran variable MODASS that takes the values 1,2,3
respectively for the original, integer, compensated modes.

A. Modifications in the data structure

The main type in the BIEF library is BIEF_OBJ which
may be a vector, a matrix or a block. This type contains many
components that define the data, the size, the name etc. We
write V%R the R component of the vector V which corresponds
to the data. In the compensated version, these R values will
be accompanied, when necessary, with the accumulation of
their generated rounding errors. These errors will be stored in
a component named E and we write V%E to access to them.
The same way applies for the diagonal D of the matrix M :
we write M%D%R for data and M%D%E for errors, etc.

Note: the code is not optimized to these modifica-
tions because the subroutine inputs/outputs are not always
a BIEF_OBJ type, but sometimes double precision vectors.
In other words, if the parameters of the subroutines were
always of the BIEF_OBJ type, all the structure components
would be accessible as V%R and V%E. But when the subroutine
parameters are double precision vectors which refer to V%R,
we had to manually add supplementary input/output parameter
that refers to V%E.

B. Modifications in the building phase

The steps of the building phase which condition the repro-
ducibility are the finite element assembly and its complement
step in parallel, the interface node assembly. The finite element
assembly is the main step that builds the linear system. It



recovers the finite elements values to express them on the nodal
values computing:

V (i) =

nelem∑
ielem=1

Wielem(i). (5)

This process builds the global vector V of size npoin by
accumulating the elementary contributions Wielem for every
element ielem in the mesh that contains the node i. This
assembly is applied to the elementary vector, the diagonal of
any matrix and in the EBE matrix-vector product process, see
Section IV-D.
The domain decomposition in a parallel resolution introduces
inner and interface mesh nodes. The latter ones belong to
a common boundary between several sub-domains and are
shared between several computing units. The interface node
assembly is one of the main significant differences between the
sequential and the parallel resolutions. It significantly affects
the numerical reproducibility by a non-deterministic rounding
errors propagation. Let V be an arbitrary vector extracted from
the linear system, and let i an interface node that belongs to
k sub-domains. V dk(i) is one of the contribution of V in the
sub-domain dk at the interface node i (the computation of
V dk only includes quantities related to dk). Communications
between the sub-domains d1, . . . , dk yield the final value V (i)
at every interface node i as the following reduction:

V (i) =
∑

sub-domains dk

V dk(i). (6)

Accumulation (5) has the same order with respect to ielem
for inner nodes in the sequential and the parallel cases.
Nevertheless, a given inner node i may become one interface
node in another domain decomposition, i.e. when the number
p of computing units varies. Hence this type of nodes suffers
from a non-deterministic error propagation. // In practice, the
computation of the vectors V or the diagonal of the matrix
D is performed respectively in the subroutines vectos or
matrix, which call the subroutine assvec to compute the
finite element assembly process, i.e. Relation (5). In the com-
pensated mode, the generated rounding errors of the assembly
are calculated by subroutine 2Sum (Algorithm 1) which is
added in BIEF. From Relation (5) we derive an assembly which
now computes the rounding error of each node i:

[V (i), EV (i)] = ReprodAssielem=1,...,nelemWielem(i), (7)

where:

(V (i), ei) = 2Sum(V (i),Wel(i)),

and EV (i) accumulates the errors ei for all elements that
include the node i.
In the subroutine assvec (Listing 1) this pair is accumulated
with the errors generated by the assembly for each node
ile(ielem, idp).
We continue the modifications with the same idea to provide a
reproducible interface point assembly. In practice this assembly
is produced in the subroutine paraco which is called at sev-
eral steps in the computation. It becomes paraco_comp in
the compensated mode. In the original mode, the assembly of
the sub-domains contributions (Relation 6) is an accumulation
of the received data. In the compensated one, each sub-domain
receives a pair [data, error] from every neighbor sub-domain.

Listing 1 FE assembly in assvec
1 DO IDP = 1 , NDP
2 DO IELEM = 1 , NELEM
3 IF (MODASS.EQ.1)
4 & X(IKLE(IELEM,IDP)=X(IKLE(IELEM,IDP)
5 & +W(IELEM,IDP)

6 ELSEIF (MODASS.EQ.3) THEN

7 CALL 2SUM(X(IKLE(IELEM,IDP)),

8 & W(IELEM,IDP),X(IKLE(IELEM,IDP)),ERROR)

9 ERRX(IKLE(IELEM,IDP))= ERRX(IKLE(IELEM,IDP))

10 & +ERROR
11 ENDIF
12 ENDDO
13 ENDDO

Then the assembly uses 2Sum to compute the rounding errors
of the data accumulation. These generated rounding errors
are accumulated and represent error contributions of the sub-
domain. For all sub-domains dk that share the interface node
i, we compute:

[V (i), EV (i)] =
⊕

sub-domains dk

[V dk(i), Edk

V (i)], (8)

which derives from (6) using again the 2Sum error-free trans-
formation for every dk, as follows:

(V (i), ek) = 2Sum(V (i), V dk(i)), (9)
EV (i) = EV (i) + Edk

V (i) + ek. (10)

Step (9) accumulates V (i) and computes the generated round-
ing error ek. Step (10) accumulates in EV (i) this ek and the
previous errors Edk

V (i). Finally, compensation occurs after the
last reduction of every interface node i to yield the whole
vector V as:

V + EV . (11)

We stress that this compensation applies once to the vector of
inner and interface nodes after the end of the interface node
assembly (8). After this step, the compensated vector becomes
reproducible.
We note that this procedure is applied to every vector and also
for matrix the diagonal M%D%R which is a vector for the EBE
storage: its accompanying error term M%D%E is calculated in
a similar way.

C. Modifications in the algebraic operations

The rounding errors V%E must be updated for each alge-
braic operation on V%R. Each operation on block or vector is
called by the subroutine os which only verifies the structure
validation before calling the concerned subroutine ov. The lat-
ter computes the requested operation op for the passed vectors
X%R, Y%R, Z%R. In the compensated mode, the new subroutine
ov_comp is called: the data vectors are accompanied with
their own error vectors X%E, Y%E, Z%E to also update them.
Listing 2 contains some of these modified operations.

D. Modifications in the solving phase

In the gouttedo test case, the resolution phase applies the
conjugate gradient (subroutine gracjg). The modifications
impact the computations of the scalar product in function



Listing 2 Algebraic operations in ov_comp
1 !X,Y and Z correspond to the vector value
2 !!X_ERR,Y_ERR and Z_ERR correspond to the
vector errors

3 !For initialization
4 CASE(’0 ’)
5 DO I=1,NPOIN
6 X(I) = 0.D0

7 X_ERR(I)=0.D0
8 ENDDO
9 !For copy y to x

10 CASE(’Y ’)
11 DO I=1,NPOIN
12 X(I) = Y(I)

13 X_ERR(I) = Y_ERR(I)
14 ENDDO
15 !For addition of two vectors
16 !In the original code: X(I) = Y(I) + Z(I)
17 DO I=1,NPOIN

18 CALL TWOSUM(Y(I),Z(I),X(I),ERROR)

19 X_ERR(I)=(Y_ERR(I)+Z_ERR(I))+ERROR
20 ENDDO
21 !For value by value vectors product
22 !In the original code: X(I) = Y(I) * Z(I)
23 DO I=1,NPOIN

24 CALL TWOPROD(Y(I),Z(I),X(I),ERROR)

25 X_ERR(I)=(Y(I) * Z_ERR(I))+(Y_ERR(I) * Z(I))

26 & +(Y_ERR(I) * Z_ERR(I))

27 X_ERR(I)=X_ERR(I)+ ERROR
28 ENDDO

p_dots and the matrix-vector product in subroutine matrbl,
which are called by gracjg. We now describe these two
modifications.

i) The scalar product X · Y
According to the computation mode, the corresponding scalar
product is called. In the original mode, the dot product of
the whole domain is computed partially by each sub-domain,
then the partial contributions are summed over all the sub-
domains to compute the global scalar product. This reduction
is computed by the MPI dynamic reduction which proceeds
with an non-deterministic order. So for a given input results
may differ. In the compensated mode, a twice more accurate
scalar product is computed. In sequential, Dot2 (Algorithm 4)
computes a such accurate sequential dot product. It accumu-
lates both the dot product and the generated rounding errors
(addition and multiplication) and finally compensates them
together. In the parallel implementation, each sub-domain com-
putes its local scalar product and the corresponding generated
rounding errors. Hence a pair [data, error] is returned by
pdot2. These local pairs are exchanged by the processors via
MPI_ALLGATHER and are accurately accumulated by Sum2
(Algorithm 3) in every computing unit, see Listing 3.

ii) The matrix-vector product M × V
The EBE storage and the EBE matrix-vector product are
detailed in [3]. Matrix M is stored as M%D for its diagonal
terms and M%X for its extra-diagonal ones. The result RES
of the product M × V , of size npoin, satisfies the following

Listing 3 The final sum on all the sub-domains
1 !In original version, MYPART is a scalar
2 !CALL MPI_ALLREDUCE(MYPART,P_DSUM,1,
MPI_DOUBLE_PRECISION,MPI_SUM,MPI_COMM_WORLD
,IER)

3 !In compensated version, MYPART is a pair
of scalar

4 CALL MPI_COMM_SIZE(MPI_COMM_WORLD,NUM_PROCS,IER)
5 ALLOCATE(ALL_PARTIAL_SUM(1:2*NUM_PROCS))
6 ALL_PARTIAL_SUM=0.D0
7 CALL MPI_ALLGATHER (MYPART,2,
MPI_DOUBLE_PRECISION,ALL_PARTIAL_SUM,2,
MPI_DOUBLE_PRECISION,MPI_COMM_WORLD,IER)

8 CALL SUM2(2*NUM_PROCS,ALL_PARTIAL_SUM,P_DSUMERR)
9 DEALLOCATE(ALL_PARTIAL_SUM)

equality:

RES = D.V +

nelem∑
ielem=1

Xielem.Vielem. (12)

The first operand is a vector R1 (of size npoin) resulting from
the Hadamard product R1(i) = D(i) × V (i). The second
operand is calculated in two steps:

1) firstly the multiplication of the extra-diagonal terms
and the vector Vielem via a mapping with the con-
nectivity table from the global numbering i and the
local ones i1, i2, i3 ∈ ielem.

2) Secondly each term of the previous operation has to
be assembled to a global vector R2 of size npoin, in
the corresponding node i, by the FE assembly step,
i.e. applying Relation (5).

Finally, the two vectors are added to obtain the final result of
the matrix-vector product: RES = R1 + R2.

In the compensated mode, this procedure is modified to
also take care of the accompanied errors M%D%E and V%E,
previously computed. The following modifications of the
product (12) produce a reproducible M × V product because
it ends with one interface point assembly step of the result.
The diagonal part D is now associated with its errors ED,
so we compute the pair [DV,ED] × V . The finite element
assembly in Relation (12) is now computed with the modified
one (8). This updates the couple [MV,EMV ] which is,
finally, assembled on the interface nodes with Relation (8).
The final step is the compensation MV + EMV . So all the
M × V products in the conjugate gradient iterations are now
reproducible.

By achieving a reproducible EBE matrix-vector product
and a reproducible dot product, the output H of the conjugate
gradient becomes reproducible. It is important to note that
there are still rounding errors in the conjugate gradient (gener-
ated by the divisions and the other operations) but they remain
similar in both the sequential and the parallel executions.
Recovering the reproducibility of the last two sub-systems U
and V is now straightforward. The U and V diagonal sub-
systems depend on H . The second members C2 and C3 are
built (from H) and are assembled at the interface nodes before
the resolution. Reproducible members A2, C2, A3 and C3 lead



to the reproducible diagonal resolution of the U and V sub-
systems.

V. REPRODUCIBLE RESULTS

Thanks to the previous modifications that rely on compen-
sated techniques the results of the gouttedo test case are
now reproducible.
Figure 5 displays two measures corresponding to Figure 2.
The rep plot is the maximum relative error over the whole
domain between the compensated parallel simulations and the
compensated sequential one. The number of processors varies
(p = 2, 4, 8) but all plots are superposed and constant at
the precision level. This exhibits the reproducibility of the
compensated simulations. The second plot acc displays the
maximum relative difference between the original sequential
Telemac-2D simulation and the compensated ones. Relative
differences varies from 10−14 to 10−10. This validates the
compensated simulations that are very similar to the original
sequential Telemac-2D simulation. As already mentioned, this
latter is considered by the openTelemac developers as the ref-
erence simulation. Nevertheless since compensation provides
more accuracy than the working precision computation, this
curve certainly displays the increase of accuracy produced by
the compensation.

Figure 5: Reproducibility (rep) of the compensated simulation
and accuracy (rep) compared to the original Telemac-2D for
the water depth in gouttedo. X-axis: time steps (1 . . . 20× 0.2
sec). Y-axis: maximum relative difference. Number of proces-
sors: p = 2, 4, 8.
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VI. EXTRA-COST REPRODUCIBILITY

In our context, we measure the extra-cost of the mod-
ifications that provide reproducible results compared to the
original code. An appropriated method is to repeat the timing
measurement several times and then to report the minimal.

We measure the running time extra-cost in cycles, on the
version v7.2 of openTelemac. This measure are performed with
the hardware counter, the Read-Time-Stamp Counter (RDTSC)
instruction. For the parallel measurement, we synchronize the
processors to be sure that we measure the minimal time
between the processors, see Listing 4. In openTelemac and

Figure 6: gouttedo: Numerical reproducibility, no more white
spots for the water depth values between the sequential (left)
and a 2 processors run (right).
Time steps: 1, 2, . . . , 7, 8.

...
...

Listing 4 Synchronization of the processors in the performance
test

1 ! Beginning of the measure
2 MPI_BARRIER()
3 CALL RDTSC(Begin_Timer)
4 !Time loop calculation...
5 MPI_BARRIER()
6 CALL RDTSC(End_Timer)
7 ! End of the measure
8 Total_Time = End_Timer - Begin_Timer

generally in any simulation, there are a lot of read/write
data at both the pre- and post- simulation steps. It is not
significant to measure the whole simulation: the extra-cost of
the modifications is negligible beside the complete simulation
cost. We only measure the modified parts compared to the
original ones, which are both the building and the solving



phases. So we measure from the begin to the end of the time
loop that includes all the modifications and avoid to take into
account the large amount of read/write process.
We compare 3 different meshes with 4624, 18225 and 72361
nodes to exhibit how the extra-cost depends on the magnitude
of the problem. Table I presents the significant increasing num-
ber of interface nodes in these 3 meshes that also introduces
a more important communication cost.

Table I: Number of interface nodes in 3 meshes when the
number of computing units varies.

#IP
#nodes

4624 nodes 18225 nodes 72361 nodes

#p
ro

cs

2 procs 72 143 280
4 procs 304 674 1368
8 procs 501 1152 2020

Figure 7 presents the running time (y-axis) and their ratios
of the compensated version running time vs. the original
version for a given time step and when varying the number of
processors (x-axis). We remark that compensated algorithms
double (more or less) the time of the core calculations.
Cycles of the original code are represented as circles and the
compensated ones as squares.
The simulation time increases as the number of mesh nodes
because of the extra-computations of the construction and res-
olution of a larger system. In addition, the number of iterations
of the conjugate gradient significantly increases depending on
the number of the system unknowns. It is interesting to wrote
that the extra-cost for reproducibility benefits from this time
increase since our modifications impact the performance of the
core simulation.
At the contrary, for a given mesh size, the ratio is larger
when increasing the number of processors. This is due to the
augmentation of the interface node number and to their extra-
cost treatment in the compensated version, (Relation 8).

VII. CONCLUSION

We have presented how to recover the numerical repro-
ducibility of the Telemac-2D simulation for the gouttedo test
case using compensation techniques. The difficulties were to
identify the sources of this non-reproducibility, i.e. where
the rounding errors differ between the sequential and the
parallel simulations, and to distinguish their implementations
in this huge code. It was inevitable to manipulate three open-
Telemac components: the Bief library, the parallel library and
Telemac-2D module which include respectively 493, 46 and
192 subroutines. The modifications to obtain reproducibility
were restricted to about 30 subroutines, mostly in BIEF. The
first source is the non-deterministic error propagation at the
interfaces nodes. We recall that this step is implicitly present
in several parts of the computation (building and solving
phases). It is sufficient to store and propagate these errors
and finally compensate them into the computed value after
every step of interface node assembly. These corrections are
applied for both the parallel and the sequential simulations to
yield the expected reproducibility. The second source is the
dynamic reduction of the parallel implementation for the dot
product in the conjugate gradient iterations. It is corrected by

Figure 7: Extra-cost running time and ratios of the compen-
sated computation compared to the floating-point one, for the
test case gouttedo in Telemac-2D. (Mesh size increases from
bottom to top.)

0 2 4 8
# processors

108

109

1010

1011

1012

#c
yc

le
s

x 1.64
x 1.83

x 2.21

x 2.34

x 1.31

x 1.44

x 1.59

x 1.88

x 1.16

x 1.23

x 1.43

x 1.71

Telemac v7, gouttedo
Original,         #nodes= 4624
Reproducible, #nodes= 4624
Original,         #nodes= 18225
Reproducible, #nodes= 18225
Original,         #nodes= 72361
Reproducible, #nodes= 72361

implementing a dot product that computes in about twice the
working precision.
This approach is reasonable in term of running time extra-
cost. We measured no significant extra-cost of the whole
reproducible simulation compared to the original one (when
the read/write data process are considered). Of course, as the
computation core part takes about twice more time in the
reproducible version, the extra-cost could be of the same order
for larger cases.
The feasibility and the efficiency of the compensation have
been compared to other solutions like integer conversion and
reproducible sums [2]. These three techniques were applied
to the Nice test case of the Tomawac module where the non-
reproducibility source is only the finite element assembly step.
The compensated solution appeared to be the more efficient
one [7].

In this work, we track and modify the computation se-
quence of the test case gouttedo to make it reproducible.
Modifications were only necessary to vector and EBE matrix
operations. According to their experience, openTelemac devel-
opers are optimistic that no other source of non-reproducibility
remains in the code [4]. The future development should
integrate the same kind of modifications to other considered
solving options, e.g. additional physical terms or other linear
system solvers. At last, other structure operations should be
corrected to obtain a whole reproducible code, e.g. operations
on block structure, segment storage of matrices, etc. Up to our
knowledge, these modifications seem easy to be integrated in
future versions of a reproducible openTelemac.
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