Relaxing order basis computation
Pascal Giorgi, Romain Lebreton

To cite this version:

Let K be a field, $F = \sum_{i=0}^{n} f_i x^i \in K[x]^{m \times n}$ a matrix of power series, σ a positive integer and (F, σ) be the $K[x]$-module defined by the set of $e \in K[x]^{m \times n}$ such that $e F \equiv 0 \mod x^\sigma$.

Definition of basis: $P \in K[x]^{m \times m}$ is a (left) (σ, \mathcal{S})-order basis of F if the rows of P form a \mathcal{S}-row reduced basis of (F, σ) (see [1]).

Order basis are used in: column reduction [2]; minimal nullspace basis [3]; block Wiedemann algorithm [4];...

Two existing algorithms

Input: $F \in K[x]^{m \times n}$, $\sigma \in \mathbb{N}$ and $\mathcal{S} \in \mathbb{Z}^m$

Output: $P \in K[x]^{m \times m}$ a (σ, \mathcal{S})-order basis of F and $\overline{u} \in \mathbb{Z}^m$, the shifted \mathcal{S}-row degree of P.

To simplify the presentation, let us assume w.l.o.g. that:
- the procedure Basis(F, \mathcal{S}) handles the $(1, \mathcal{S})$-order basis case;
- $n = O(m)$ and the shift \mathcal{S} is balanced, as in [2]

M-Basis

Naive algorithm, iterative on the order σ, which costs $O(m\sigma^2)$ op. in K.

- Quadratic complexity in the precision σ
- Easy to stop at any intermediate step
- Minimal knowledge on F, only coefficients F_0, \ldots, F_k at step k

Algorithm 1: M-Basis(F, σ, \mathcal{S})

1. $P_0, \overline{u} := \text{Basis}(F \mod x, \mathcal{S})$
2. for $k = 1$ to $\sigma - 1$
3. $P' := x^{-k} P \cdot F \mod x^{k+1}$
4. $P_k, \overline{u} := \text{Basis}(P', \overline{u})$
5. $P := P_k \cdot P$
6. return P, \overline{u}

PM-Basis

Recursive variant using a divide and conquer strategy on the order σ which costs $O(m^2 \log(\sigma)/\log(\sigma)) = O(m^2 \sigma)$ operations in K.

- Quasi-linear complexity in the precision σ
- Not convenient for early termination
- Often requires to know coefficients of F in advance

Algorithm 2: PM-Basis(F, σ, \mathcal{S})

1. if $\sigma = 1$ then
2. return Basis($F \mod x$, \mathcal{S})
3. else
4. $P_0, \overline{u} := \text{PM-Basis}(F, \sigma/2, \mathcal{S})$
5. $P' := (x^{-k} P_0 \cdot F) \mod x^{k}$
6. $P_k, \overline{u} := \text{PM-Basis}(F', \sigma/2, \overline{u})$
7. return $P_k \cdot P_0 \cdot P_k$

Our contribution

- Give an algorithm for order basis with the following properties:
 - Quasi-optimality: it takes a quasi-linear time in the precision σ.
 - Early termination: easy to stop at any intermediate step;
 - Relaxation: minimal knowledge on the input F at each step.
- Use 1 to improve the complexity of block Wiedemann approach.

Fast iterative algorithm

Iterative version of PM-Basis that regroups computations by step

- Quasi-linear complexity in the precision σ
- Convenient for early termination
- Often requires to know coefficients of F in advance

Algorithm 3: Iterative-PM-Basis(F, σ, \mathcal{S})

1. $P_0, \overline{u} := \text{Basis}(F \mod x, \mathcal{S})$
2. $P := [P_0^\ell] \text{ and } S = [0, \ldots, 0, F]$ with $[\log_2(\sigma)]$ zeros
3. for $k = 1$ to $\sigma - 1$
4. $\mathcal{E} := \nu_2(k)$ and $\mathcal{E}' := \left\{ \begin{array}{ll} \log_2(\sigma) & \text{if } k = 2^t \\ \nu_2(k) - 2 & \text{otherwise} \end{array} \right.$
5. Merge first \mathcal{E} elements of P by multiplication
6. set product tree step 7
7. $S[\ell + 1] := (x^{-\mathcal{E}} P[1] \cdot S[\ell + 1]) \mod x^{\mathcal{E}'}$
8. middle product step 5
9. $P_{k-1} \cdot \overline{u} := \text{Basis}(S[\ell + 1] \mod x, \overline{u})$
10. Insert P_{k-1} at the beginning of P
11. return $[1, P^\ell]$

Relaxing the order basis algorithm

Problem: At step $k = 2^t$. Iterative-PM-Basis requires $S[\log_2(\sigma)] + 1 \mod x^{\mathcal{E}'}$, that is $F \mod x^{\mathcal{E}'}$, to perform the middle product of step 6. However, we only need the middle product modulo x at step k, and therefore $F \mod x^{k+2}$.
- The other coefficients of the middle product will be used in the next steps.

Solution:
- Compute the middle products gradually with the additional constraint of not using any coefficient of the input before necessary, i.e. using a relaxed algorithm.

Defining of relaxed (or on-line) algorithm: When computing the coefficient in x^k of the output, a relaxed algorithm can read at most the coefficients in $1, \ldots, x^{k}$ of the input.

Relaxed middle product

Two methods for a relaxed middle product algorithm:

1. Compute a full $2n \times n$ product using a relaxed multiplication algorithm on polynomial of matrices ([5])
2. Compute just the middle product as in Figure 1 to gain asymptotically a factor 2 compared to method 1.

Application to block Wiedemann algorithm

Let $A \in GL_\mathbb{K}(K)$ with $O(N)$ non-zero elements and $S = \sum_{i=0}^{n-1} U^i V^j \in \mathbb{K}^{n \times N}$. The block Wiedemann approach uses a $(1, \mathcal{S})$-order basis of $F = [S[i]]$, $\mathcal{S} \in K[x]^{m \times n}$ to solve sparse linear systems $Ay = b$.

Current approach:
Computing $S \cdot \sigma$ costs $O(m^2 \cdot N \sigma)$ operations in K, which is dominant since $\sigma \ll N$. An a priori bound δ on the order σ is hard to find or may be loose. To circumvent this the paper [6] proposes a stopping criteria which has to be integrated into an iterative algorithm.

Benefits of our approach:

1. **Iterative-PM-Basis** provides the first iterative algorithm with quasi-linear time complexity that can use stopping criteria from [6].
2. **Relaxed-PM-Basis** improves the complexity of 1 on average by a constant factor because less coefficients of S need to be computed.

References