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Relaxing Order Basis Computation
Pascal Giorgi and Romain Lebreton
LIRMM, Université Montpellier 2 - CNRS

Context

Let K be a field, F = ∑
i>0Fix

i ∈ K[[x]]m×n a matrix of power series, σ a
positive integer and (F, σ) be the K[x]-module defined by the set of v ∈ K[x]1×m
such that vF ≡ 0 mod xσ.

Definition of Order basis: P ∈ K[x]m×m is a (left) (σ,~s)-order basis of F if
the rows of P form a ~s-row reduced basis of (F, σ) (see [1]).

Order basis are used in: column reduction [2]; minimal nullspace basis [3];
block Wiedemann algorithm [4]; ...

Two existing algorithms

Input: F ∈ K[[x]]m×n, σ ∈ N∗ and ~s ∈ Zm
Output: P ∈ K[x]m×m a (σ,~s)-order basis of F and

~u ∈ Zm the shifted ~s-row degree of P .

To simplify the presentation, let us assume w.l.o.g. that:
1 the procedure Basis(F,~s) handles the (1, ~s)-order basis case
2 n = O(m) and the shift ~s is balanced, as in [2]

M-Basis

Naive algorithm, iterative on the order σ, which costs O(mωσ2) op. in K.

7 Quadratic complexity in the precision σ
3 Easy to stop at any intermediate step
3 Minimal knowledge on F , only coefficients F0, . . . , Fk at step k

Algorithm 1: M-Basis(F, σ,~s)

1: P, ~u := Basis(F mod x, ~s )
2: for k = 1 to σ − 1 do
3: F ′ := x−kP · F mod xk+1

4: Pk, ~u := Basis(F ′, ~u )
5: P := Pk · P
6: return P, ~u

PM-Basis
Recursive variant using a divide and conquer strategy on the order σ which
costs O(mωM(σ) log(σ)) = O (̃mωσ) operations in K.

3 Quasi-linear complexity in the precision σ
7 Not convenient for early termination
7 Often requires to know coefficients of F in advance

Algorithm 2: PM-Basis(F, σ, ~s)

1: if σ = 1 then
2: return Basis(F mod x, ~s)
3: else
4: Pl, ~ul := PM-Basis(F, σ/2, ~s)
5: F ′ := (x−σ/2Pl · F ) mod xσ/2
6: Ph, ~uh := PM-Basis(F ′, σ/2, ~ul)
7: return Ph · Pl, ~uh

Our contribution

1 Give an algorithm for order basis with the following properties:
3 Quasi-optimality: it takes a quasi-linear time in the precision σ;
3 Early termination: easy to stop at any intermediate step;
3 Relaxed algorithm: minimal knowledge on the input F at each step.

2 Use 1 to improve the complexity of block Wiedemann approach.

Fast iterative algorithm

Iterative-PM-Basis
Iterative version of PM-Basis that regroups computations step by step

3 Quasi-linear complexity in the precision σ
3 Convenient for early termination
7 Often requires to know coefficients of F in advance

Algorithm 3: Iterative-PM-Basis(F, σ,~s)

1: P0, ~u := Basis(F mod x, ~s)
2: P := [P0] and S := [0, . . . , 0, F ] with dlog2(σ)e zeros
3: for k = 1 to σ − 1 do

4: ` := ν2(k) and `′ :=
dlog2(σ)e if k = 2`

ν2(k − 2`) otherwise

5: Merge first ` + 1 elements of P by multiplication product tree step 7

6: S[` + 1] := (x−2`P [1] · S[`′ + 1]) mod x2` middle product step 5

7: Pk, ~u := Basis(S[` + 1] mod x, ~u ) recursive leafs step 2

8: Insert Pk at the beginning of P

9: return ∏
iP [i]

Relaxing the order basis algorithm

Problem:
At step k = 2`, Iterative-PM-Basis requires S[dlog2(σ)e + 1] mod x2`+1

, that is
F mod x2`+1

, to perform the middle product of step 6. However, we only need
the middle product modulo x at step k, and therefore F mod x1+2`. The other
coefficients of the middle product will be used in the next steps.

Solution:
Compute the middle products gradually with the additional constraint of not us-
ing any coefficient of the input before necessary, i.e. using a relaxed algorithm.

Definition of relaxed (or on-line) algorithm:
When computing the coefficient in xk of the output, a relaxed algorithm can
read at most the coefficients in 1, . . . , xk of the input.

Relaxed middle product

Two methods for a relaxed middle
product algorithm:

1 Compute a full 2n× n product using a
relaxed multiplication algorithm on
polynomial of matrices ([5])

2 Compute just the middle product as in
Figure 1 to gain asymptotically a factor 2
compared to method 1.
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Figure 1: Relaxed middle product

Relaxed-PM-Basis
Using this relaxed middle product within Iterative-PM-Basis, we obtain a
new order basis algorithm relaxed w.r.t. F , which costs O(kωM(σ) log2(σ)).

3 Quasi-linear complexity in the precision σ (with an extra log2(σ))
3 Convenient for early termination
3 Requires minimal knowledge on F

Application to block Wiedemann algorithm

Let A ∈ GLN(K) with O(N) non-zero elements and S = ∑
i∈NUA

iV xi for
random U, V T ∈ Kn×N . The block Wiedemann approach uses a (σ,~s)-order
basis of F = [ST | In]T ∈ K[[x]]2n×n to solve sparse linear systems Ay = b.

Current approach:
Computing S at precision σ costs O(nω−1Nσ) operations in K, which is domi-
nant since n� N . An a priori bound δ on the order σ is hard to find or may be
loose. To circumvent this the paper [6] proposes a stopping criteria which has
to be integrated into an iterative algorithm.

Benefits of our approach:

1 Iterative-PM-Basis provides the first iterative algorithm with quasi-linear
time complexity that can use stopping criteria from [6].

2 Relaxed-PM-Basis improves the complexity of 1 on average by a constant
factor because less coefficients of S need to be computed.
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