Block Wiedemann Algorithm on Multicores Architectures

Bastien Vialla LIRMM, CNRS-UM2 France bastien.vialla@lirmm.fr

Notations

• K a commutative field.

• M n×m (K), ring of matrices of size n × m.

• We denote by γ the number of non zeros in a sparse matrix.

• NUMA : Non Uniform Memory Access

Motivations

Solving a linear system with large sparse matrices is a computational kernel used in a wide range of applications. The block version of Wiedemann's algorithm proposed in [START_REF] Coppersmith | Solving Homogeneous Linear Equation Over GF(2) via Block Wiedemann Algorithm[END_REF] take advantage of the sparsity to achieve better performance.

Objectives

An efficient implementation of block Wiedemann algorithm on NUMA multicores architectures.

Contribution

• We efficiently incorporate the sparse block into the first step of BW algorithm. • We provide an efficient implementation for NUMA multicores using tbb/MPI that provides excellent scaling.

Block Wiedemann algorithm

Let A ∈ M n×n (K), U, V ∈ M n×k (K) random matrices with k ≤ n. Block Wiedemann algorithm follows three steps:

1 Compute the first O(2n k) elements of S = [U T A i V] i∈N .
2 Find the minimal matrix polynomial generator of the sequence S.

3 Compute the solution using the polynomial found in step 2.

The cost of the first step is dominant, therefore its parallelization is crucial.

Sparse blocks

We generalize sparse block from [START_REF] Eberly | Faster inversion and other black box matrix computations using efficient block projections[END_REF] in block Wiedemann algorithm. We permute non zeros elements to have a cache efficient version.

U =    δ 1 . . . δ s δ s+1 δ 1 . . . δ s δ s+1 . . . δ 1 . . . δ s δ s+1 δ 1 . . . δ s . . . δ 1 . . . δ s         n/k times      n mod k times where s = n/k , δ 1 , • • • , δ s+1 ∈ K chosen at random.

Complexities of the first step of block Wiedemann algorithm: Dense blocks Sparse blocks Sequential O(nγ

+ n 2 k ω-2) O(nγ + n 2) Parallel k cores O(nγ k + n 2) O(nγ+n 2 k)

Experimentations

• We use LinBox [3] for dense blocks code, and tbb for parallelization. We use an NUMA with four Intel XEON E4620 with 8 cores at 2.2Ghz and 384GB of RAM.

Figure 1 :

 1 Figure 1: Sparse blocks size influence in comparison with dense blocks. Computations made with the matrix EX5 with 1 core.

Table 1 :

 1 Timings, in seconds, and speed-up of tbb and MPI/tbb implementations. We use the matrix rand100k.

	Dense blocks (LinBox)	Sparse blocks
	tbb	MPI/tbb	tbb	MPI/tbb
	time speed-up time speed-up time speed-up time speed-up