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Abstract. Information about the evolution of a software is useful data for soft-

ware developers and maintainers as well as project managers. Versioning sys-

tems have been used in many proposals to provide such data but very few ap-

proaches analyze and interpret this information at the architectural level. In this 

paper, we propose an approach that supports the understanding of software evo-

lution at the architectural level. Our approach relies on the idea that an architec-

tural tactic can be mapped to a number of operational representations, each of 

which is a transformation described using a set of elementary actions on source 

code entities (e.g., adding a package, moving a class from a package to another, 

etc.). These operational representations make it possible to: 1) detect architec-

tural tactics’ application (or cancellation) by analyzing different versions of the 

source code of analyzed systems, and 2) understand the architectural evolution 

of these systems. To evaluate the proposed approach, we carried out a case 

study on the JFreeChart open source software. We focused on the modifiability 

tactics and we analyzed a number of available releases of JFreeChart to infer 

the modifiability trend through the system’s evolution. 

Keywords: software evolution, architectural evolution, architectural tactics, 

tactics detection. 

1 Introduction 

Throughout the life of a software, developers and maintainers will modify the 

source code in order to add new features, correct or prevent defects. In doing so, they 

will apply many simple coding techniques and patterns but they will also occasionally 

introduce higher level elements that will be meaningful at an architectural level. 

While there are many proposals concerned about evolution data at a low level, few 

approaches have been proposed to analyze and interpret this information at the archi-

tectural level. Even though approaches that tackle the understanding and formaliza-

tion of architecture evolution are emerging (e.g., [1, 2, 3, 4, 5, 6, 7]), there exist very 

few tools to help designers track and group a set of low-level source code changes and 

translate them into a more concise high-level architectural intention. A key challenge 



is that some architectural decisions/elements may not be traced easily and directly to 

code elements (e.g., architectural constraints). In fact, architectural elements include 

extensional elements (e.g., module or component) and intensional ones (e.g., design 

decisions, rationale, invariants) while source code elements are extensional [8 and 9]. 

This contributes to the absence of the architectural intention at the source code level 

and the divergence of the source code from this intention. Moreover, architectural 

decisions are non-local [8] and often define and constrain the structure and the inter-

actions of several source code elements. If the developer is aware of the architectural 

decisions and constraints, the changes she made to the source code will be consistent 

with these. In fact, some of these changes may derive from the architecture evolution 

of the software and they reveal some intentions at the architectural level.  

Thus, in this work, we hypothesize that some of the architectural intentions can be 

inferred from the analysis of the evolution of the source code. Clustering a set of 

changes made to the source code and analyzing the results may reveal a high level 

decision. We focus in this paper on architectural tactics [10] as they represent elemen-

tary architectural decisions that enable to achieve quality attributes. We propose an 

approach that enables detecting architectural tactics’ application (or cancellation) in 

an existing object-oriented software system and inferring an architectural evolution 

trend through the system’s evolution. To do so, we map high level descriptions of 

tactics, as introduced in [10], to a number of operational representations (i.e., source 

code transformations). Tactics are intensional and thus may have several operational 

representations. An operational representation is a pattern of evolution described us-

ing elementary actions on source code entities (e.g., adding a class to a package, mov-

ing a class from a package to another, etc.) and a set of constraints describing the 

structure of the system before or after these actions. Using these operational represen-

tations, we analyze available evolution data about the source code to retrieve architec-

tural tactics that were applied or cancelled during development or maintenance. We 

developed a prototype tool that supports our approach and experimented on a set of 

modifiability tactics and a number of versions of a Java open source project. 

The paper is organized as follows. Section 2 proposes some background and relat-

ed work about architectural tactics and evolution. Section 3 presents an overview of 

our approach while Section 4 and 5 detail two key aspects of our proposal: the defini-

tion of operational representations of tactics and the detection of their occurrences 

respectively. Section 6 proposes a case study for our approach and discussion of the 

obtained results. Finally Section 7 summarizes our proposal and outlines future work. 

2 Background and Related Work 

2.1 Architectural Tactics 

Architectural tactics are design decisions that enable software architecture to 

achieve quality attributes [10, 11]. Quality attributes are measurable properties that 

indicate how well a given system supports specific requirements [10]. Examples of 

these attributes include performance, availability and security. Bass et al. [10] intro-

duced the concept of an architectural tactic as an architecture transformation that sup-



ports the achievement of a single quality attribute. They catalogued a set of common 

tactics that address availability, interoperability, modifiability, performance, security, 

testability and usability. This catalog of tactics aims at supporting systematic design. 

For instance, performance tactics aim at ensuring that the system responds to arriving 

events within some time constraints while security tactics aim at resisting, detecting 

and recovering from attacks [10]. Examples of performance tactics include increasing 

computational efficiency, managing the event rate and introducing concurrency. 

Common security tactics include authenticating users and maintaining data confiden-

tiality. The designer chooses the appropriate tactics according to the system’s context 

and trade-offs, and the cost to implement these tactics. 

2.2 Related Work 

Developing approaches and tools that support the designers in understanding archi-

tectural evolution involves many theoretical and practical challenges [19]. Several 

approaches were proposed to tackle the architectural evolution of software systems. 

These approaches can be classified according to their goal: 1) supporting architects in 

building software evolution plans at the architectural level (e.g., [1, 2]); 2) under-

standing and visualizing the evolution [4, 5, 12, 13]; and 3) evaluating architectural 

stability [3, 7]. With the goal of supporting architects in building software evolution 

plans at the architectural level, the concept of evolution paths was introduced in [1, 2]. 

An evolution path is a sequence of intermediate architectures starting from the initial 

architecture of the system and leading to the desired architecture once the evolution is 

complete. These evolution paths can be represented in an evolution graph where 

nodes are (intermediate) architectures and edges are transitions among these architec-

tures. To support the architect in finding the optimal path, the authors propose analy-

sis based on constraints on the path evolution and functions that evaluate the path 

qualities. Even if our focus is on tactics’detection, our work can be seen as comple-

mentary as we analyze existing software systems to infer architectural decisions that 

were applied through the evolution of these systems and to check if the changes made 

to a given system represent a consistent pattern of evolution. 

In [5], the authors propose a method for differencing and merging component and 

connector architecture views by comparing the structural elements composing these 

views. The comparison and matching between different views may help to identify 

architectural violations and synchronize the views. The proposed approach does not 

tackle the particular problem of identifying architectural tactics when comparing ar-

chitecture views. The case studies presented in their paper are related to the synchro-

nization of an implementation-level architecture view (obtained using architecture 

recovery) with a conceptual one (described using an ADL). This feature can be per-

ceived as complementary to our work. With the focus on visualization, both [4 and 

12] propose techniques that exploit source code modifications to understand software 

evolution at architectural level. In particular, McNair et al. [4] propose a diagram, 

called architectural impact view, which is basically an entity-relationship diagram 

enhanced with colors to depict the impact of the code changes under study on the 

entities and relationships of the system (e.g., added, deleted, etc.). D’Ambros et al. 



[12] describe a general schema to analyze software repositories for studying software 

evolution. This schema includes three essential steps: 1) modeling various aspects of 

the software system and its evolution, 2) retrieving and processing the information 

from the relevant data sources, and 3) analyzing the modeled and retrieved data using 

appropriate techniques depending on the targeted software evolution problem. 

Though we do not target the visualization of architecture evolution, our approach 

follows this general schema and we also aim to help designers and developers under-

stand and be aware of the architectural evolution of a given system. 

Le et al. [7] propose an approach called ARCADE (Architecture Recovery, 

Change, And Decay Evaluator) which relies on various architecture recovery tech-

niques to build different views of the analyzed system and three metrics for quantify-

ing architectural changes at the system-level and component-level. ARCADE was 

used in an empirical study. An interesting outcome of this study was that considerable 

architectural change is introduced both between two major versions and across minor 

versions. In [3], a metric-based approach is proposed to evaluate architectural stabil-

ity. To do so, the approach starts by analyzing different releases of the system under 

study and extracting facts from these releases. These facts are then analyzed using 

some software metrics that are indicators of architectural stability (e.g., change rate, 

growth rate, cohesion and coupling). Our approach can be complementary to these 

metric-based approaches as it relies on the detection of tactics applications or cancel-

lations to assess the architectural evolution of software systems. 

Kim et al. [13] proposed Ref-Finder, an Eclipse plug-in, that automatically detects 

refactorings that were applied between two versions of a given program. To do so, 

Ref-Finder extracts logic facts from each program version and used predefined logic 

queries to match program differences with the constraints of the refactorings under 

study. This approach is more focused on the refactorings introduced in Fowler’s book 

[14]. Unlike Ref-Finder, our goal is to detect evolution patterns that match architec-

tural tactics and to support the designer in defining any evolution pattern that might 

be of interest in her context/domain. 

3 An Approach for Inferring Architectural Evolution from 

Source Code 

In this paper, we propose an approach that supports the detection of architectural 

tactics’ application (or cancellation) and the inference of the architectural trend 

through the system’s evolution. Our approach assumes that high level descriptions of 

tactics, as introduced in [10], can be mapped to a number of operational representa-

tions, i.e., source code transformations described using elementary actions on source 

code entities (e.g., adding a package, moving a class from a package to another, etc.). 

Once these operational representations are identified and precisely defined, it be-

comes possible to use evolution data about the source code to retrieve architectural 

tactics that were applied or cancelled during development or maintenance. 

Fig. 1 presents an overview of our approach which defines two processes. The first 

enables the designer to specify operational representations of a given tactic. The sec-



ond process aims at supporting the designer in analyzing the evolution trend of a 

software system. It uses the operational representations of tactics and the available 

versions of the system under study and proceeds in three steps (numbered 1 to 3 in 

Fig. 1). In the first step, a differencing tool is applied to multiple versions of the sys-

tem and generates deltas that are expressed using a number of source code changes 

(e.g., removed package, added package, added class, removed class, moved class, 

etc.). For this purpose, our approach uses MADMatch [15] a tool that enables a many-

to-many approximate diagram matching approach. The second step matches the gen-

erated deltas to the operational representations of tactics to detect applied or cancelled 

tactics. We designed and implemented a tool TacMatch which generates on the fly 

detection algorithms from the operational representations of tactics and executes these 

detection algorithms to find occurrences of tactics in the analyzed delta of the source 

code. In the third step, the resulting occurrences are analyzed by the designer to infer 

the architectural evolution trend of the analyzed system. 

 

 

Fig. 1. Overview of the approach 

4 Defining Operational Representations of Tactics 

4.1 High-level Descriptions of Tactics 

As stated above, a tactic can be seen as a transformation undergone by software ar-

chitecture to satisfy a specific quality attribute. Thus a tactic can be described as a set 

of actions that may change the structure and behavior of the components of the sys-

tem. The type and magnitude of these actions depend on the tactic and the current 

architecture of the system to which the tactic is to be applied. We roughly divide these 

actions into two types: 

 Actions on components: create, delete or modify components. A component may 

be modified by adding new responsibilities, deleting its responsibilities or moving 

some of its responsibilities to another component. 
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 Actions on connectors: add, modify or remove a connector. 

Consider the modifiability quality attribute. Modifiability refers to the property of 

changing easily the software with a minimal cost (i.e., time and resources).  Tactics 

that ensure this property are linked to four concerns that impact the modifiability [10, 

11]: the size of the modules, the cohesion of the modules, the coupling between the 

modules, and the binding time of modification. Thus modifiability tactics are catego-

rized according to the concern they address: reducing the size of a module, increasing 

cohesion, reducing coupling between modules, and deferring binding time of modifi-

cation. Common modifiability tactics involve splitting responsibilities, moving them 

from a component to another, introducing intermediaries between components and 

encapsulating components. 

For instance, the modifiability tactic “Abstract Common Services” (ACS) states 

that common services should be abstracted so that modifications to them would be 

localized to a single module. Fig. 2 gives a high level representation of this tactic. A 

and B are responsibilities that can be split respectively to A’ and A”, and B’ and B” 

and where A’ and B’ provide a variant of a similar service to A” and B”, respectively. 

In this case, the ACS tactic merges A’ and B’ into a more general and common ser-

vice (called C in the figure) and updates A’’ and B’’ to depend on the general service. 

Applying the ACS tactic enables to localize modifications of the common services 

and to prevent ripple effects as changes made to a module using the common services 

will not impact other modules [10, 11].  

C
A

A’’A’

B

B’’B’

Abstract Common 

Services A’’ A’B’ B’’

 

Fig. 2. A high level representation of Abstract common services, adapted from [11]. 

Table 1 presents the high level description of the ACS tactic in terms of actions on 

architectural components and connectors. 

Table 1. High-level description of Abstract Common Services  

Type of action High-Level description 

Actions on components Create C 

Actions on components Move A’ from A to C 

Actions on components Move B’ from B to C 

Actions on connectors Modify A” to depend now on C 

Actions on connectors Modify B” to depend now on C 

 

4.2 Operational Representations of Tactics: actions and constraints 

High-level descriptions of tactics must be refined in order to generate concrete de-

sign/implementation strategies, while taking into consideration the system’s context. 

In this paper, we target the analysis of object oriented (OO) systems. Thus, architec-

tural components involved in tactics’ application are matched with the entities of the 

system such as packages and classes. The responsibilities of a given component are 



mapped to fields and methods implemented by the classes that are part of this compo-

nent. This mapping introduces multiple possible concrete instances for a given tactic; 

e.g., we may map the modules of the ACS tactic to packages in a concrete instance 

and to classes in another instance. As for architectural connectors, they are not explic-

itly supported by typical OO languages [16]; they are indirectly specified through 

method calls, references and events. Thus our operational representations of tactics 

are expressed as a set of actions (i.e., adding, deleting, modifying and moving) on 

packages, classes, methods, fields, object references, method calls and events. 

Furthermore, the same set of actions may be common to different tactics. For in-

stance, both Split Responsibility (SR) and Abstract Common Service (ACS) tactics 

involve moving responsibilities from a module (i.e., package or class in our context) 

to another. However, in case of ACS, the moved responsibilities belonged to different 

modules before applying the tactic while in SR the moved responsibilities belonged to 

the same module before applying the tactic. To distinguish these tactics, we added a 

set of constraints on the elements or actions involved in a given tactic. Thus we ex-

press an operational representation as a set of actions on architectural elements and a 

set of constraints relating these elements or actions. Once an operational representa-

tion is defined, its cancellation is simply derived by reversing the source and destina-

tion of the different actions and constraints used in its definition. For example, if a 

tactic definition involves adding a class, its cancellation would involve deleting a 

class. Table 2 lists some examples of operational representations for four modifiabil-

ity tactics in the context of an object oriented system. 

Table 2. Examples of operational representations 

Tactic Concrete representation (s) Tactic Concrete representation (s) 

Abstract 

common 
services 

(ACS) 

Pdest: added or existing package 

C: moved classes to Pdest 
Classes in C did not belong to the 

same package in the previous re-

lease 

Split re-

sponsibili-
ties 

(SR) 

Pdest: added package 

C: moved classes from Psrc to 

Pdest 
All classes in C belonged to the 

same package (Psrc) in the previous 
release 

Abstract 

common 

services 

(ACS) 

Cdest: added class or existing class 

M: moved methods to Cdest 

Methods in M did not belong to the 
same class in the previous release 

Split re-

sponsibili-

ties 

(SR) 

Cdest: added class 

E: moved elements (attribute and 

method) from Csrc to Cdest 
All elements in E moved to Cdest 

belonged to the same class (Csrc) in 

the previous release 

Abstract 

common 

services 

(ACS) 

Cp: added class 

Inherits Cp: added inheritance 

All classes involved in “Inherits 
Cp” existed in the previous release 

These classes belong to at least two 

different packages in next release. 

Use encap-

sulation 

(UE) 

Cp: added class 

Inherits Cp: added inheritance 

All classes involved in “Inherits 
Cp” existed in the previous release 

These classes belong to the same 

package in the next release 

Increase 

cohe-

sion 

(IC) 

C: moved classes from Psrc to 

Pdest 
All classes in C belonged to the 
same package (Psrc) in the previous 

release 

Pdest existed  
Cohesion of Psrc increased 

Increase 

cohesion 

(IC) 

E: moved elements (attribute and 

method) from Csrc to Cdest 

Cdest existed  
All elements in E moved to Cdest 

belonged to the same class (Csrc) in 

the previous release 
Cohesion of Csrc increased 



4.3 Tool Support 

To support the developer in defining the operational representations of tactics or 

any other relevant evolution pattern, we use a language that resembles the natural 

language and eases the translation of the concrete representations into detection algo-

rithms. In fact, we wanted to provide a way for a user to specify the tactics (or any 

targeted evolution pattern) without having to know a specific language to do so. The 

user has only to know the actions of the tactic (or any targeted evolution pattern) on 

architectural elements and how these elements are constrained.  

 

Fig. 3. Defining an operational representation of a tactic using TacMatch 

Thus, to define operational representations of tactics, we designed and implement-

ed a custom interface that was inspired by query languages such as SQL and QBE 

(Query By Example). Fig. 3 displays the TacMatch interface for defining operational 

representations of tactics. This interface is divided into four parts: 1) the name of the 

tactic and the variant if there are many variants of the tactic; 2) a selector zone that 

enables the user to select the type of changes (actions) the tactic introduces; 3) a filter 

zone that enables the user to specify the constraints on the selected elements; and 4) 

the preview zone that displays the tactic’s specification in a form similar to an SQL 

query. Fig. 3 displays an example of the ACS tactic (i.e., the variant described in line 

3 of Table 2) where multiple constraints were defined by the user using the filter zone 

(the “+” bouton enables to add a constraint at a time to the specification). These de-

clarative specifications are used by our tool TacMatch to generate on the fly (when 

the user launches an analysis of a given system) the algorithm that retrieves the set of 

elements (from deltas) that match the tactic’s application. This is described in detail in 

section 5.2. 



5 Detecting Tactics Occurrences in Software Systems 

Using the operational representations of tactics and two different versions of the 

software system under study, TacMatch supports the designer in detecting occurrenc-

es of these tactics in the system. To do so, TacMatch relies on MADMatch [15], a tool 

that enables diagram matching, to compute the deltas between two different versions 

of the same system. TachMatch uses the operational representation to generate on the 

fly detection algorithms for the tactics selected by the designer in the current analysis 

of the system. TachMatch executes these algorithms on the analyzed delta of the sys-

tem and returns tactics’ occurrences or cancellations. These occurrences can be used 

by the designer to carry out different types of analysis and to evaluate the architectur-

al evolution of the analyzed system. 

5.1 Computing and storing deltas between versions 

Our approach relies on differencing tools able to supply our technique with ele-

mentary source code changes that we can then analyze, regroup and possibly match to 

architectural tactics. One such tool is MADMatch [15], which is a recent tool that 

takes as input graph representations of two different versions of the source code and 

generates the delta between these versions. In our case, these graphs represent class 

diagrams that were recovered using the Ptidej tool suite [17]. A generated delta de-

scribes the source code changes that occurred between the two analyzed versions 

(e.g., removed package, added package, added class, moved class, etc.). Deltas are 

serialized in CVS files. Our proposed tool TacMatch analyzes these CVS files to ex-

tract relevant information on the delta and saves this information in a database to 

which we will ultimately send customised queries to detect tactics’ occurrences.  

5.2 Detecting Tactics Occurrences 

Given a generated delta from the system under study and a set of tactics chosen by 

the user for her current analysis, TacMatch retrieves corresponding tactics specifica-

tions and generates the corresponding detection algorithms on the fly and then exe-

cute them on the delta. To generate the detection algorithms, TacMatch relies on a set 

of classes that read the specification of a tactic and generate different parts of the 

corresponding algorithm. Fig.4 gives an excerpt of the core classes of TacMatch, 

which were organized using the Chain of Responsibility (CoR) design pattern [18]. 

The Selector class enables to select occurrences of the changes undergone by the sys-

tem and that correspond to those specified in the Select clause of the operational rep-

resentation of the tactic (e.g., see the first line of the preview in Fig. 3). The Filter 

type defines an interface for filtering occurrences of the changes undergone by the 

system according to a given constraint; i.e., sub-classes of Filter implement different 

constraints. We used the CoR design pattern so that we can instantiate and configure, 

at runtime, the subset of filters that correspond to the constraints defined by the tactic 

at hand. Moreover, using the CoR design pattern makes it easy to add new filters (i.e., 

constraints). 
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+ doFilter(List<Occurrences>): List<Occurrences>

Cardinality

Cardinality(cmd: Command)
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successor

firstFilter

 

Fig. 4. Generating the detection algorithms using a chain of responsibility 

TacMatch’s entry point is the class TacMatchEngine which reads the tactic’s speci-

fication as entered by the designer and generates a collection of commands corre-

sponding to the lines of the specification. These commands are then used to create an 

ordered list of objects that starts with an instance of the Selector class followed by a 

chain of the appropriate subset of the filters. This is done using the createChain meth-

od which relies on the FilterFactory class to instantiate and set the appropriate filter 

for each command
1
. The appropriate selector object and chain of filters are instantiat-

ed and ordered in a dynamic way according to the operational representation of a 

tactic. This corresponds to generating on the fly the skeleton of the detection algo-

rithm for the given tactic. For instance, given the operational representation described 

in the preview zone of Fig. 3, TacMatch generates a selector object that is set to re-

trieve inheritance relationships grouped by their superclass followed by a chain of two 

instances of the Existence filter
2
 and one instance of the Cardinality filter.  

The method executeChain enables to execute the detection algorithm related to a 

given tactic. This method takes as input the selection object corresponding to the tac-

tic and it calls first the select() method of this object to retrieve the relevant occur-

rences of changes from the delta. These occurrences are then sent to the first filter 

referenced by the selector object and from one filter to its successor in the chain; each 

filter filters the occurrences according to the constraint it implements (i.e, using the 

doFilter() method) and passes the resulting occurrences to its successor in the chain. 

6 Case Study: Analyzing The Architectural Evolution Trend of 

JFreeChart 

Our approach aims at mapping high-level descriptions of tactics to operational rep-

resentations that can be detected at the source-code level, and inferring the architec-

                                                           
1 Both the Selector and the filter classes have their own fields which are set during their respec-

tive instantiation using the command parameter received by their respective constructor. 
2 In some tactics, the same filter class can be instantiated more than once using different param-

eters (i.e., commands). Moreover, we use a filter class to instantiate a constraint or its oppo-

site depending on the tactic’s definition. 



tural evolution trend of a software system by analyzing its available versions and 

detecting occurrences of the operational representations. To evaluate the effectiveness 

of our approach, we implemented a prototype tool that supports the definition and 

detection of operational representations and we conducted a retrospective case study 

using an open source software system.  

In particular, the goal of our case study was to answer the following research ques-

tions:  

 RQ1: How effective is our technique at detecting applied tactics?  To answer 

this question, we used our prototype tool to analyze a number of versions of an 

open source Java system in order to detect a common set of the modifiability tac-

tics. These tactics are: Split Responsibility (SR), Abstract Common Services 

(ACS), Use Encapsulation (UE) and Increase Cohesion (IC). We computed the 

precision and recall of the obtained results by manually analyzing the changes 

made to the versions under study as reported by the differencing tool MADMatch. 

 RQ2: Are we able to derive an architectural evolution trend using our ap-

proach and interpret this trend at the architectural level? To answer this ques-

tion, we studied the detected applications and cancellations of tactics to check if 

the changes made to the system follow a comprehensible pattern of architectural 

evolution. We also compared the results of our detection process when applied to 

major releases versus minor releases versus revisions. 

Our case study is focused on the analysis of JFreeChart, a Java open source 

framework which was previously studied in many publications, including the 

MADMatch paper [15]. JFreeChart is a library that supports developers in displaying 

various charts in their applications. We analyzed 37 versions of JFreeChart including 

revisions, minor and major releases starting from version 0.5.6
3
 till version 1.0.6. The 

size of the analyzed versions varies from 26 to 141 packages and from 100 to 1196 

classes. 

6.1 Effectiveness at detecting architectural tactics 

Overall, using the 36 deltas generated from the 37 analyzed versions we detected 

103 occurrences of tactics’ applications and 33 tactics’ cancellations. To compute the 

precision and recall of our results, we used the output of MADMatch to manually 

identify all the changes that correspond to true tactics applications or cancellations. 

Regarding the occurrences of tactics applications, we were able to confirm that 85 of 

these occurrences were true positives resulting in a precision of 82.52%. We also 

identified 3 occurrences of tactics applications that our tool did not detect, resulting in 

a recall of 96.59%. Interestingly, only 19 among the 33 occurrences of tactics cancel-

                                                           
3 In this three sequence-based schema, the first sequence is the major number (incremented 

when there are significant changes to the system), the second sequence is the minor number 

(incremented when there are minor changes to the system or significant bug fixes) and the 

last sequence is the revision number (increment when minor bugs were fixed). 



lations were true positives, giving a precision of 57.57% while manual analysis of 

MADMatch’s output did not reveal any false negatives, resulting in a recall of 100%.  

These results suggest that our operational representations are effective in detecting 

the application of architectural tactics but may not be enough to automatically infer 

cancellations. Indeed, our simple technique for inferring the opposite evolution pat-

tern from an operational representation of a tactic is not enough to precisely define the 

tactic’s cancellation. The opposite evolution pattern may lead to a high number of 

negatives identified as positives (high recall and low precision) or to a misinterpreta-

tion of the appropriate tactic that was cancelled. For instance, during the transition 

from version 0.7.0 to version 0.7.1, the Separate Responsibility tactic was applied by 

moving a number of classes from the package com.jrefinery.chart into a new package 

com.jrefinery.chart.combination. However, during the transition from version 0.8.1 to 

version 0.9.0, the package com.jrefinery.chart.combination was deleted and its classes 

were moved back into two different packages (com.jrefinery.chart and 

com.jrefinery.data). This was recognized by our detection process as a cancellation of 

the Abstract Common Services tactic. Indeed, the SR tactic that was detected the first 

time was in fact part of the application of an ACS that was incrementally introduced 

through several transitions from versions 0.7.0 to 0.8.1 and then cancelled later in 

version 0.9.0. Future work is needed to define the relationships between operational 

representations so that we can aggregate and correctly interpret a number of succes-

sive applications of some tactics and thus define and appropriately trace cancellations 

to tactics. 

To identify the factors that influence the effectiveness of our operational repre-

sentations, we examined in detail the false results (i.e., false positives and false nega-

tives) returned by our detection process. We uncovered that all these errors were due 

to the external tools MADMatch (85%) for the deltas and PtiDej (15%) for the reverse 

engineering of the project binaries. MADMatch sometimes returns incorrect matching 

in its deltas in part because its default parameters, which we used, promote recall over 

precision. We decided to leave these parameters unchanged in order to get more data 

for our manual analysis and thus a better approximation of the recall. Experimentation 

with different parameters is planned for future work.  

6.2 Detecting architectural evolution trends 

Regarding our second research question, we investigated the applications and can-

cellations of tactics that were manually confirmed. Table 3 displays the distribution of 

both tactics applications and cancellations per deltas (i.e., the table displays true posi-

tives). To reduce the size of the table, we have omitted the deltas that do not have any 

occurrences. In purely quantitative terms, if we consider the total numbers of the tac-

tics that were applied (85) and those cancelled (19) through all the analyzed versions, 

cancellations represent 22% of applications. We further investigated the observed 

cancellations to understand the causes of such a high percentage. 

Our analysis revealed that out of the 19 cancellations of tactics, 11 cancellations 

were related to tactics already present in the first available release 0.5.6 while 8 can-

cellations are related to tactics that were introduced during the subsequent versions. 



For instance, in the revision from versions 0.9.16 to 0.9.17, the class 

org.jfree.chart.renderer.AbstractSeriesRenderer was introduced as a superclass for 

two other existing sub-classes but was deleted two revisions later (i.e., in 0.9.19). We 

also observed an interesting evolution pattern which involves the introduction, 

through different versions, of a number of super-classes that centralize a number of 

common constants and the deletion of these classes later in other versions. For in-

stance, from 0.8.1 to 0.9.0, the classes CategoryPlotConstants and ChartPanelCon-

stants (both in the package com.jrefinery.chart) were created to centralize a number of 

constants. CategoryPlotConstants was deleted later in the revision from 0.9.9 to 

0.9.10 and its content was moved back to the class com.jrefinery.chart.CategoryPlot. 

Likewise ChartPanelConstants was deleted later in the transition from 0.9.20 to 1.0.0 

and its content was moved to org.jfree.chart.ChartPanel. This tendency to apply and 

cancel tactics raises some questions about the consistency of the evolution of the sys-

tem in general and its conformance to architectural decisions in particular. In fact, this 

could be construed as a motivational case for the importance of detecting architectural 

tactics and reminding them to developers (especially in open-source and collaborative 

settings) in order to prevent seemingly erratic modifications. 

Table 3. Number of tactics applied or cancelled per deltas generated from successive versions 

Delta 
Application of tactics Cancellation of tactics 

SR UE ACS IC SR UE ACS IC 

v0.5.6_v0.6.0 1 2 1      

v0.7.0_v0.7.1 1        

v0.7.3_v0.7.4 1 2       

v0.7.4_v0.8.0  1       

v0.8.0_v0.8.1  1       

v0.8.1_v0.9.0  3 1 1 1 1 1  

v0.9.1_v0.9.2   1      

v0.9.2_v0.9.3  1       

v0.9.4_v0.9.5 3 5 2   1   

v0.9.6_v0.9.7 1 4  1     

v0.9.8_v0.9.9 1 1  1  6   

v0.9.9_v0.9.10  1 1   1   

v0.9.11_v0.9.12 1 1 1 2     

v0.9.12_v0.9.13 1 2       

v0.9.13_v0.9.14   2   1   

v0.9.14_v0.9.15 1 1       

v0.9.15_v0.9.16 1      1  

v0.9.16_v0.9.17  2  5     

v0.9.18_v0.9.19  3 2   2 1  

v0.9.19_v0.9.20   1      

v0.9.20_v1.0.0 9 3 2 4  2 1  

v1.0.2_v1.0.3   1      

v1.0.4_v1.0.5  1       

v1.0.5_v1.0.6  1       



We also compared the results of our detection process when applied to the deltas 

from two successive minor (respectively major) releases versus those generated by the 

intermediate revisions between these minor (respectively major) versions. We pre-

sume that if the developer consistently evolves the system through the intermediate 

revisions between two successive minor (respectively major) versions, the aggregated 

results of our detection process through these revisions would lead to the same result 

than the one generated using the two minor (respectively major) versions. Table 4 

displays the number of occurrences of both applications and cancellations of tactics 

generated from successive minor or major revisions. Similar to Table 3, Table 4 dis-

plays true positives and it omits minor and major releases for which no occurrences 

were found (e.g., from 0.6.0 to 0.7.0) and successive minor releases for which there 

was no intermediate revisions (e.g., from 0.5.6 to 0.6.0). 

Table 4. Number of tactics applied or cancelled per deltas generated from successive minor or 

major versions 

Delta Application of tactics Cancellation of tactics Total 

SR UE ACS IC SR UE ACS IC 

v0.7.0_v0.8.0 2 5       7 

v0.8.0_v0.9.0  4 1 1 1 1 1  9 

v0.9.0_v1.0.0 10 5 14 1  4   34 

 

From 0.7.0 to 0.8.0, the only tactic occurrence (out of 7) that was detected in the 

delta between minor versions but not in the revisions is an incremental application of 

the Encapsulation tactic: a class (SignalsDataset) was created in 0.7.1 and an inher-

itance relationship was added later in 0.7.2 between this class and an existing subclass 

(SubSeriesDataset). As for the detected tactics applications and cancellations from 

0.8.0 and 0.9.0 (i.e., 9 occurrences), they match the aggregated results of the detection 

when applied to the revisions from 0.8.0 to 0.8.1 and from 0.8.1 to 0.9.0. Finally, we 

found 34 occurrences of applications and cancellations of tactics from 0.9.0 to 1.0.0 

which is a major revision. However, the aggregation of the results from all the inter-

mediate revisions between 0.9.0 and 1.0.0 yields 85 occurrences. We identified three 

main reasons for this discrepancy some of which were already discussed above. First, 

some tactics were applied through one or several revisions but all the entities involved 

in these tactics appear as added in the major revision (i.e., the evolution pattern is 

visible through revisions but not at the major versions level). For example, the Encap-

sulation tactic was incrementally applied by adding a set of classes (e.g., ObjectList) 

in the revision from 0.9.9 to 0.9.10 and their superclass (AbstractObjectList) in the 

revision from 0.9.11 to 0.9.12. This whole evolution pattern is not detectable when we 

analyze the delta from 0.9.0 to 1.0.0; the entire inheritance hierarchy appears to be 

newly created at the same time. Second, some tactics were applied in an incremental 

way through changes spread over several revisions starting from the revision 0.9.0. 

These occurrences are only detectable when we analyze the delta from 0.9.0 to 1.0.0. 

Finally, as discussed before, several tactics were applied and then cancelled through 

the revisions; these tactics are not present at major versions level.  



6.3 Threats to Validity 

External validity: Our case study was carried out on a subset of the modifiability 

tactics that we were able to detect through static analysis of different releases of a 

software system. This is possible for most of the modifiability tactics and some other 

tactics such as exception handling (for availability) and creating additional threads or 

reducing the number of iterations (for performance). However, other tactics may re-

quire a dynamic analysis of the code or are even not present in the source code (e.g., 

increasing computational efficiency or maintaining multiple copies of data). Thus, our 

approach is limited to those tactics that have an observable impact on the source code. 

As future work, we plan to extend our work to other tactics and identify precisely the 

type of tactics to which our approach may be applied. 

Internal validity: Some tactics (e.g., ACS) may be composed of several other 

more elementary tactics (e.g., SR). Since we didn’t implement yet a mechanism that 

enables to relate and aggregate detected tactics through a number of releases, we tend 

to interpret each detected tactic locally and individually. This may have an impact on 

our interpretation of the overall architectural evolution trend. Thus, as discussed in 

section 6.1., future work is needed to define the relationships between operational 

representations and exploit these relationships to correctly aggregate and interpret a 

number of successive applications of related tactics. Finally, our results are dependent 

on the effectiveness of the other tools used, notably MADMatch that was used to 

compute the deltas. We selected MADMatch because it is a recent tool which com-

pared favorably to other techniques [15] but other tools may provide different (better 

or worse) results. Future work is planned for experimentation with different parame-

ters of MADMatch and different tools. 

7 Conclusion and Future Work 

In this paper, we present a first iteration of a tool-supported approach that allows 

the definition and detection of architectural tactics or more general evolution patterns 

using basic changes extractable from the differencing of software versions. Once 

these architectural tactics or patterns are defined, our technique automatically gener-

ates algorithms able to parse the differencing data in order to detect occurrences of the 

application or cancellation of these tactics. Experiments conducted on a well-studied 

open source system (JFreeChart) suggest that the technique is effective at detecting 

the occurrences of the application of defined tactics but is not as successful at detect-

ing their cancellation. While few occurrences of these tactics are missed by our tech-

nique, there is some noise (lack of precision), especially for the detection of cancella-

tions. Many of these errors are related to the parameterizing of the external tool se-

lected to provide differencing data. Nevertheless, the study revealed many instances 

of cancellations of tactics that may be ill-advised and could have been prevented if the 

developers had access to the history and present of tactics involving the code they are 

working on or plan to work on. 

The conclusions of this study are still preliminary and future work with case stud-

ies involving different parameters, tools and systems is needed to confirm our find-



ings.  Additionally, we intend to experiment with more evolution patterns and eventu-

ally discover desirable or harmful patterns through analyses of the change and defect 

proneness of the components they involve.   
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