
HAL Id: lirmm-01374249
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01374249v1

Submitted on 30 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Inferring Architectural Evolution from Source Code
Analysis A tool-supported approach for the detection of

architectural tactics
Christel Kapto, Ghizlane El Boussaidi, Sègla Kpodjedo, Chouki Tibermacine

To cite this version:
Christel Kapto, Ghizlane El Boussaidi, Sègla Kpodjedo, Chouki Tibermacine. Inferring Architectural
Evolution from Source Code Analysis A tool-supported approach for the detection of architectural
tactics. ECSA: European Conference on Software Architecture, Nov 2016, Copenhagen, Denmark.
pp.149-165, �10.1007/978-3-319-48992-6_11�. �lirmm-01374249�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01374249v1
https://hal.archives-ouvertes.fr

adfa, p. 1, 2016.

© Springer-Verlag Berlin Heidelberg 2016

Inferring Architectural Evolution from Source Code

Analysis

A tool-supported approach for the detection of architectural tactics

Christel Kapto
1
, Ghizlane El Boussaidi

1
, Sègla Kpodjedo

1
, Chouki Tibermacine

2

1Department of Software and IT engineering, École de Technologie Supérieure, Montreal,

Canada
2LIRMM- CNRS and University of Montpellier II – France

Abstract. Information about the evolution of a software is useful data for soft-

ware developers and maintainers as well as project managers. Versioning sys-

tems have been used in many proposals to provide such data but very few ap-

proaches analyze and interpret this information at the architectural level. In this

paper, we propose an approach that supports the understanding of software evo-

lution at the architectural level. Our approach relies on the idea that an architec-

tural tactic can be mapped to a number of operational representations, each of

which is a transformation described using a set of elementary actions on source

code entities (e.g., adding a package, moving a class from a package to another,

etc.). These operational representations make it possible to: 1) detect architec-

tural tactics’ application (or cancellation) by analyzing different versions of the

source code of analyzed systems, and 2) understand the architectural evolution

of these systems. To evaluate the proposed approach, we carried out a case

study on the JFreeChart open source software. We focused on the modifiability

tactics and we analyzed a number of available releases of JFreeChart to infer

the modifiability trend through the system’s evolution.

Keywords: software evolution, architectural evolution, architectural tactics,

tactics detection.

1 Introduction

Throughout the life of a software, developers and maintainers will modify the

source code in order to add new features, correct or prevent defects. In doing so, they

will apply many simple coding techniques and patterns but they will also occasionally

introduce higher level elements that will be meaningful at an architectural level.

While there are many proposals concerned about evolution data at a low level, few

approaches have been proposed to analyze and interpret this information at the archi-

tectural level. Even though approaches that tackle the understanding and formaliza-

tion of architecture evolution are emerging (e.g., [1, 2, 3, 4, 5, 6, 7]), there exist very

few tools to help designers track and group a set of low-level source code changes and

translate them into a more concise high-level architectural intention. A key challenge

is that some architectural decisions/elements may not be traced easily and directly to

code elements (e.g., architectural constraints). In fact, architectural elements include

extensional elements (e.g., module or component) and intensional ones (e.g., design

decisions, rationale, invariants) while source code elements are extensional [8 and 9].

This contributes to the absence of the architectural intention at the source code level

and the divergence of the source code from this intention. Moreover, architectural

decisions are non-local [8] and often define and constrain the structure and the inter-

actions of several source code elements. If the developer is aware of the architectural

decisions and constraints, the changes she made to the source code will be consistent

with these. In fact, some of these changes may derive from the architecture evolution

of the software and they reveal some intentions at the architectural level.

Thus, in this work, we hypothesize that some of the architectural intentions can be

inferred from the analysis of the evolution of the source code. Clustering a set of

changes made to the source code and analyzing the results may reveal a high level

decision. We focus in this paper on architectural tactics [10] as they represent elemen-

tary architectural decisions that enable to achieve quality attributes. We propose an

approach that enables detecting architectural tactics’ application (or cancellation) in

an existing object-oriented software system and inferring an architectural evolution

trend through the system’s evolution. To do so, we map high level descriptions of

tactics, as introduced in [10], to a number of operational representations (i.e., source

code transformations). Tactics are intensional and thus may have several operational

representations. An operational representation is a pattern of evolution described us-

ing elementary actions on source code entities (e.g., adding a class to a package, mov-

ing a class from a package to another, etc.) and a set of constraints describing the

structure of the system before or after these actions. Using these operational represen-

tations, we analyze available evolution data about the source code to retrieve architec-

tural tactics that were applied or cancelled during development or maintenance. We

developed a prototype tool that supports our approach and experimented on a set of

modifiability tactics and a number of versions of a Java open source project.

The paper is organized as follows. Section 2 proposes some background and relat-

ed work about architectural tactics and evolution. Section 3 presents an overview of

our approach while Section 4 and 5 detail two key aspects of our proposal: the defini-

tion of operational representations of tactics and the detection of their occurrences

respectively. Section 6 proposes a case study for our approach and discussion of the

obtained results. Finally Section 7 summarizes our proposal and outlines future work.

2 Background and Related Work

2.1 Architectural Tactics

Architectural tactics are design decisions that enable software architecture to

achieve quality attributes [10, 11]. Quality attributes are measurable properties that

indicate how well a given system supports specific requirements [10]. Examples of

these attributes include performance, availability and security. Bass et al. [10] intro-

duced the concept of an architectural tactic as an architecture transformation that sup-

ports the achievement of a single quality attribute. They catalogued a set of common

tactics that address availability, interoperability, modifiability, performance, security,

testability and usability. This catalog of tactics aims at supporting systematic design.

For instance, performance tactics aim at ensuring that the system responds to arriving

events within some time constraints while security tactics aim at resisting, detecting

and recovering from attacks [10]. Examples of performance tactics include increasing

computational efficiency, managing the event rate and introducing concurrency.

Common security tactics include authenticating users and maintaining data confiden-

tiality. The designer chooses the appropriate tactics according to the system’s context

and trade-offs, and the cost to implement these tactics.

2.2 Related Work

Developing approaches and tools that support the designers in understanding archi-

tectural evolution involves many theoretical and practical challenges [19]. Several

approaches were proposed to tackle the architectural evolution of software systems.

These approaches can be classified according to their goal: 1) supporting architects in

building software evolution plans at the architectural level (e.g., [1, 2]); 2) under-

standing and visualizing the evolution [4, 5, 12, 13]; and 3) evaluating architectural

stability [3, 7]. With the goal of supporting architects in building software evolution

plans at the architectural level, the concept of evolution paths was introduced in [1, 2].

An evolution path is a sequence of intermediate architectures starting from the initial

architecture of the system and leading to the desired architecture once the evolution is

complete. These evolution paths can be represented in an evolution graph where

nodes are (intermediate) architectures and edges are transitions among these architec-

tures. To support the architect in finding the optimal path, the authors propose analy-

sis based on constraints on the path evolution and functions that evaluate the path

qualities. Even if our focus is on tactics’detection, our work can be seen as comple-

mentary as we analyze existing software systems to infer architectural decisions that

were applied through the evolution of these systems and to check if the changes made

to a given system represent a consistent pattern of evolution.

In [5], the authors propose a method for differencing and merging component and

connector architecture views by comparing the structural elements composing these

views. The comparison and matching between different views may help to identify

architectural violations and synchronize the views. The proposed approach does not

tackle the particular problem of identifying architectural tactics when comparing ar-

chitecture views. The case studies presented in their paper are related to the synchro-

nization of an implementation-level architecture view (obtained using architecture

recovery) with a conceptual one (described using an ADL). This feature can be per-

ceived as complementary to our work. With the focus on visualization, both [4 and

12] propose techniques that exploit source code modifications to understand software

evolution at architectural level. In particular, McNair et al. [4] propose a diagram,

called architectural impact view, which is basically an entity-relationship diagram

enhanced with colors to depict the impact of the code changes under study on the

entities and relationships of the system (e.g., added, deleted, etc.). D’Ambros et al.

[12] describe a general schema to analyze software repositories for studying software

evolution. This schema includes three essential steps: 1) modeling various aspects of

the software system and its evolution, 2) retrieving and processing the information

from the relevant data sources, and 3) analyzing the modeled and retrieved data using

appropriate techniques depending on the targeted software evolution problem.

Though we do not target the visualization of architecture evolution, our approach

follows this general schema and we also aim to help designers and developers under-

stand and be aware of the architectural evolution of a given system.

Le et al. [7] propose an approach called ARCADE (Architecture Recovery,

Change, And Decay Evaluator) which relies on various architecture recovery tech-

niques to build different views of the analyzed system and three metrics for quantify-

ing architectural changes at the system-level and component-level. ARCADE was

used in an empirical study. An interesting outcome of this study was that considerable

architectural change is introduced both between two major versions and across minor

versions. In [3], a metric-based approach is proposed to evaluate architectural stabil-

ity. To do so, the approach starts by analyzing different releases of the system under

study and extracting facts from these releases. These facts are then analyzed using

some software metrics that are indicators of architectural stability (e.g., change rate,

growth rate, cohesion and coupling). Our approach can be complementary to these

metric-based approaches as it relies on the detection of tactics applications or cancel-

lations to assess the architectural evolution of software systems.

Kim et al. [13] proposed Ref-Finder, an Eclipse plug-in, that automatically detects

refactorings that were applied between two versions of a given program. To do so,

Ref-Finder extracts logic facts from each program version and used predefined logic

queries to match program differences with the constraints of the refactorings under

study. This approach is more focused on the refactorings introduced in Fowler’s book

[14]. Unlike Ref-Finder, our goal is to detect evolution patterns that match architec-

tural tactics and to support the designer in defining any evolution pattern that might

be of interest in her context/domain.

3 An Approach for Inferring Architectural Evolution from

Source Code

In this paper, we propose an approach that supports the detection of architectural

tactics’ application (or cancellation) and the inference of the architectural trend

through the system’s evolution. Our approach assumes that high level descriptions of

tactics, as introduced in [10], can be mapped to a number of operational representa-

tions, i.e., source code transformations described using elementary actions on source

code entities (e.g., adding a package, moving a class from a package to another, etc.).

Once these operational representations are identified and precisely defined, it be-

comes possible to use evolution data about the source code to retrieve architectural

tactics that were applied or cancelled during development or maintenance.

Fig. 1 presents an overview of our approach which defines two processes. The first

enables the designer to specify operational representations of a given tactic. The sec-

ond process aims at supporting the designer in analyzing the evolution trend of a

software system. It uses the operational representations of tactics and the available

versions of the system under study and proceeds in three steps (numbered 1 to 3 in

Fig. 1). In the first step, a differencing tool is applied to multiple versions of the sys-

tem and generates deltas that are expressed using a number of source code changes

(e.g., removed package, added package, added class, removed class, moved class,

etc.). For this purpose, our approach uses MADMatch [15] a tool that enables a many-

to-many approximate diagram matching approach. The second step matches the gen-

erated deltas to the operational representations of tactics to detect applied or cancelled

tactics. We designed and implemented a tool TacMatch which generates on the fly

detection algorithms from the operational representations of tactics and executes these

detection algorithms to find occurrences of tactics in the analyzed delta of the source

code. In the third step, the resulting occurrences are analyzed by the designer to infer

the architectural evolution trend of the analyzed system.

Fig. 1. Overview of the approach

4 Defining Operational Representations of Tactics

4.1 High-level Descriptions of Tactics

As stated above, a tactic can be seen as a transformation undergone by software ar-

chitecture to satisfy a specific quality attribute. Thus a tactic can be described as a set

of actions that may change the structure and behavior of the components of the sys-

tem. The type and magnitude of these actions depend on the tactic and the current

architecture of the system to which the tactic is to be applied. We roughly divide these

actions into two types:

 Actions on components: create, delete or modify components. A component may

be modified by adding new responsibilities, deleting its responsibilities or moving

some of its responsibilities to another component.

 Analyzing the evolution trend of software systems

 Defining tactics

High-level

descriptions of tactics

Computing deltas (1)

Source code

versions

Define operational

representations

Select tactis to be

detected

Detecting tactics

occurrences (2)

Architectural

evolution trend

Analysis (3)
Select versions to

be analyzed

Operational

representations

Deltas

TacMatch

Occurrences of

tactics’s application

and cancellation

TacMatch

MADMatch

 Actions on connectors: add, modify or remove a connector.

Consider the modifiability quality attribute. Modifiability refers to the property of

changing easily the software with a minimal cost (i.e., time and resources). Tactics

that ensure this property are linked to four concerns that impact the modifiability [10,

11]: the size of the modules, the cohesion of the modules, the coupling between the

modules, and the binding time of modification. Thus modifiability tactics are catego-

rized according to the concern they address: reducing the size of a module, increasing

cohesion, reducing coupling between modules, and deferring binding time of modifi-

cation. Common modifiability tactics involve splitting responsibilities, moving them

from a component to another, introducing intermediaries between components and

encapsulating components.

For instance, the modifiability tactic “Abstract Common Services” (ACS) states

that common services should be abstracted so that modifications to them would be

localized to a single module. Fig. 2 gives a high level representation of this tactic. A

and B are responsibilities that can be split respectively to A’ and A”, and B’ and B”

and where A’ and B’ provide a variant of a similar service to A” and B”, respectively.

In this case, the ACS tactic merges A’ and B’ into a more general and common ser-

vice (called C in the figure) and updates A’’ and B’’ to depend on the general service.

Applying the ACS tactic enables to localize modifications of the common services

and to prevent ripple effects as changes made to a module using the common services

will not impact other modules [10, 11].

C
A

A’’A’

B

B’’B’

Abstract Common

Services A’’ A’B’ B’’

Fig. 2. A high level representation of Abstract common services, adapted from [11].

Table 1 presents the high level description of the ACS tactic in terms of actions on

architectural components and connectors.

Table 1. High-level description of Abstract Common Services

Type of action High-Level description

Actions on components Create C

Actions on components Move A’ from A to C

Actions on components Move B’ from B to C

Actions on connectors Modify A” to depend now on C

Actions on connectors Modify B” to depend now on C

4.2 Operational Representations of Tactics: actions and constraints

High-level descriptions of tactics must be refined in order to generate concrete de-

sign/implementation strategies, while taking into consideration the system’s context.

In this paper, we target the analysis of object oriented (OO) systems. Thus, architec-

tural components involved in tactics’ application are matched with the entities of the

system such as packages and classes. The responsibilities of a given component are

mapped to fields and methods implemented by the classes that are part of this compo-

nent. This mapping introduces multiple possible concrete instances for a given tactic;

e.g., we may map the modules of the ACS tactic to packages in a concrete instance

and to classes in another instance. As for architectural connectors, they are not explic-

itly supported by typical OO languages [16]; they are indirectly specified through

method calls, references and events. Thus our operational representations of tactics

are expressed as a set of actions (i.e., adding, deleting, modifying and moving) on

packages, classes, methods, fields, object references, method calls and events.

Furthermore, the same set of actions may be common to different tactics. For in-

stance, both Split Responsibility (SR) and Abstract Common Service (ACS) tactics

involve moving responsibilities from a module (i.e., package or class in our context)

to another. However, in case of ACS, the moved responsibilities belonged to different

modules before applying the tactic while in SR the moved responsibilities belonged to

the same module before applying the tactic. To distinguish these tactics, we added a

set of constraints on the elements or actions involved in a given tactic. Thus we ex-

press an operational representation as a set of actions on architectural elements and a

set of constraints relating these elements or actions. Once an operational representa-

tion is defined, its cancellation is simply derived by reversing the source and destina-

tion of the different actions and constraints used in its definition. For example, if a

tactic definition involves adding a class, its cancellation would involve deleting a

class. Table 2 lists some examples of operational representations for four modifiabil-

ity tactics in the context of an object oriented system.

Table 2. Examples of operational representations

Tactic Concrete representation (s) Tactic Concrete representation (s)

Abstract

common
services

(ACS)

Pdest: added or existing package

C: moved classes to Pdest
Classes in C did not belong to the

same package in the previous re-

lease

Split re-

sponsibili-
ties

(SR)

Pdest: added package

C: moved classes from Psrc to

Pdest
All classes in C belonged to the

same package (Psrc) in the previous
release

Abstract

common

services

(ACS)

Cdest: added class or existing class

M: moved methods to Cdest

Methods in M did not belong to the
same class in the previous release

Split re-

sponsibili-

ties

(SR)

Cdest: added class

E: moved elements (attribute and

method) from Csrc to Cdest
All elements in E moved to Cdest

belonged to the same class (Csrc) in

the previous release

Abstract

common

services

(ACS)

Cp: added class

Inherits Cp: added inheritance

All classes involved in “Inherits
Cp” existed in the previous release

These classes belong to at least two

different packages in next release.

Use encap-

sulation

(UE)

Cp: added class

Inherits Cp: added inheritance

All classes involved in “Inherits
Cp” existed in the previous release

These classes belong to the same

package in the next release

Increase

cohe-

sion

(IC)

C: moved classes from Psrc to

Pdest
All classes in C belonged to the
same package (Psrc) in the previous

release

Pdest existed
Cohesion of Psrc increased

Increase

cohesion

(IC)

E: moved elements (attribute and

method) from Csrc to Cdest

Cdest existed
All elements in E moved to Cdest

belonged to the same class (Csrc) in

the previous release
Cohesion of Csrc increased

4.3 Tool Support

To support the developer in defining the operational representations of tactics or

any other relevant evolution pattern, we use a language that resembles the natural

language and eases the translation of the concrete representations into detection algo-

rithms. In fact, we wanted to provide a way for a user to specify the tactics (or any

targeted evolution pattern) without having to know a specific language to do so. The

user has only to know the actions of the tactic (or any targeted evolution pattern) on

architectural elements and how these elements are constrained.

Fig. 3. Defining an operational representation of a tactic using TacMatch

Thus, to define operational representations of tactics, we designed and implement-

ed a custom interface that was inspired by query languages such as SQL and QBE

(Query By Example). Fig. 3 displays the TacMatch interface for defining operational

representations of tactics. This interface is divided into four parts: 1) the name of the

tactic and the variant if there are many variants of the tactic; 2) a selector zone that

enables the user to select the type of changes (actions) the tactic introduces; 3) a filter

zone that enables the user to specify the constraints on the selected elements; and 4)

the preview zone that displays the tactic’s specification in a form similar to an SQL

query. Fig. 3 displays an example of the ACS tactic (i.e., the variant described in line

3 of Table 2) where multiple constraints were defined by the user using the filter zone

(the “+” bouton enables to add a constraint at a time to the specification). These de-

clarative specifications are used by our tool TacMatch to generate on the fly (when

the user launches an analysis of a given system) the algorithm that retrieves the set of

elements (from deltas) that match the tactic’s application. This is described in detail in

section 5.2.

5 Detecting Tactics Occurrences in Software Systems

Using the operational representations of tactics and two different versions of the

software system under study, TacMatch supports the designer in detecting occurrenc-

es of these tactics in the system. To do so, TacMatch relies on MADMatch [15], a tool

that enables diagram matching, to compute the deltas between two different versions

of the same system. TachMatch uses the operational representation to generate on the

fly detection algorithms for the tactics selected by the designer in the current analysis

of the system. TachMatch executes these algorithms on the analyzed delta of the sys-

tem and returns tactics’ occurrences or cancellations. These occurrences can be used

by the designer to carry out different types of analysis and to evaluate the architectur-

al evolution of the analyzed system.

5.1 Computing and storing deltas between versions

Our approach relies on differencing tools able to supply our technique with ele-

mentary source code changes that we can then analyze, regroup and possibly match to

architectural tactics. One such tool is MADMatch [15], which is a recent tool that

takes as input graph representations of two different versions of the source code and

generates the delta between these versions. In our case, these graphs represent class

diagrams that were recovered using the Ptidej tool suite [17]. A generated delta de-

scribes the source code changes that occurred between the two analyzed versions

(e.g., removed package, added package, added class, moved class, etc.). Deltas are

serialized in CVS files. Our proposed tool TacMatch analyzes these CVS files to ex-

tract relevant information on the delta and saves this information in a database to

which we will ultimately send customised queries to detect tactics’ occurrences.

5.2 Detecting Tactics Occurrences

Given a generated delta from the system under study and a set of tactics chosen by

the user for her current analysis, TacMatch retrieves corresponding tactics specifica-

tions and generates the corresponding detection algorithms on the fly and then exe-

cute them on the delta. To generate the detection algorithms, TacMatch relies on a set

of classes that read the specification of a tactic and generate different parts of the

corresponding algorithm. Fig.4 gives an excerpt of the core classes of TacMatch,

which were organized using the Chain of Responsibility (CoR) design pattern [18].

The Selector class enables to select occurrences of the changes undergone by the sys-

tem and that correspond to those specified in the Select clause of the operational rep-

resentation of the tactic (e.g., see the first line of the preview in Fig. 3). The Filter

type defines an interface for filtering occurrences of the changes undergone by the

system according to a given constraint; i.e., sub-classes of Filter implement different

constraints. We used the CoR design pattern so that we can instantiate and configure,

at runtime, the subset of filters that correspond to the constraints defined by the tactic

at hand. Moreover, using the CoR design pattern makes it easy to add new filters (i.e.,

constraints).

Filter

+ doFilter(List<Occurrences>): List<Occurrences>

Cardinality

Cardinality(cmd: Command)

Existence

Existence(cmd: Command)

Selector

Selector(cmd: Command)

select(): List<Occurrences>

FilterFactory

createFilter(cmd: Command): Filter

TacMatchEngine

read(spec: String): List<Command>

createChain(List<Command>): Selector

executeChain(Selector): List<Occurrences>
successor

firstFilter

Fig. 4. Generating the detection algorithms using a chain of responsibility

TacMatch’s entry point is the class TacMatchEngine which reads the tactic’s speci-

fication as entered by the designer and generates a collection of commands corre-

sponding to the lines of the specification. These commands are then used to create an

ordered list of objects that starts with an instance of the Selector class followed by a

chain of the appropriate subset of the filters. This is done using the createChain meth-

od which relies on the FilterFactory class to instantiate and set the appropriate filter

for each command
1
. The appropriate selector object and chain of filters are instantiat-

ed and ordered in a dynamic way according to the operational representation of a

tactic. This corresponds to generating on the fly the skeleton of the detection algo-

rithm for the given tactic. For instance, given the operational representation described

in the preview zone of Fig. 3, TacMatch generates a selector object that is set to re-

trieve inheritance relationships grouped by their superclass followed by a chain of two

instances of the Existence filter
2
 and one instance of the Cardinality filter.

The method executeChain enables to execute the detection algorithm related to a

given tactic. This method takes as input the selection object corresponding to the tac-

tic and it calls first the select() method of this object to retrieve the relevant occur-

rences of changes from the delta. These occurrences are then sent to the first filter

referenced by the selector object and from one filter to its successor in the chain; each

filter filters the occurrences according to the constraint it implements (i.e, using the

doFilter() method) and passes the resulting occurrences to its successor in the chain.

6 Case Study: Analyzing The Architectural Evolution Trend of

JFreeChart

Our approach aims at mapping high-level descriptions of tactics to operational rep-

resentations that can be detected at the source-code level, and inferring the architec-

1 Both the Selector and the filter classes have their own fields which are set during their respec-

tive instantiation using the command parameter received by their respective constructor.
2 In some tactics, the same filter class can be instantiated more than once using different param-

eters (i.e., commands). Moreover, we use a filter class to instantiate a constraint or its oppo-

site depending on the tactic’s definition.

tural evolution trend of a software system by analyzing its available versions and

detecting occurrences of the operational representations. To evaluate the effectiveness

of our approach, we implemented a prototype tool that supports the definition and

detection of operational representations and we conducted a retrospective case study

using an open source software system.

In particular, the goal of our case study was to answer the following research ques-

tions:

 RQ1: How effective is our technique at detecting applied tactics? To answer

this question, we used our prototype tool to analyze a number of versions of an

open source Java system in order to detect a common set of the modifiability tac-

tics. These tactics are: Split Responsibility (SR), Abstract Common Services

(ACS), Use Encapsulation (UE) and Increase Cohesion (IC). We computed the

precision and recall of the obtained results by manually analyzing the changes

made to the versions under study as reported by the differencing tool MADMatch.

 RQ2: Are we able to derive an architectural evolution trend using our ap-

proach and interpret this trend at the architectural level? To answer this ques-

tion, we studied the detected applications and cancellations of tactics to check if

the changes made to the system follow a comprehensible pattern of architectural

evolution. We also compared the results of our detection process when applied to

major releases versus minor releases versus revisions.

Our case study is focused on the analysis of JFreeChart, a Java open source

framework which was previously studied in many publications, including the

MADMatch paper [15]. JFreeChart is a library that supports developers in displaying

various charts in their applications. We analyzed 37 versions of JFreeChart including

revisions, minor and major releases starting from version 0.5.6
3
 till version 1.0.6. The

size of the analyzed versions varies from 26 to 141 packages and from 100 to 1196

classes.

6.1 Effectiveness at detecting architectural tactics

Overall, using the 36 deltas generated from the 37 analyzed versions we detected

103 occurrences of tactics’ applications and 33 tactics’ cancellations. To compute the

precision and recall of our results, we used the output of MADMatch to manually

identify all the changes that correspond to true tactics applications or cancellations.

Regarding the occurrences of tactics applications, we were able to confirm that 85 of

these occurrences were true positives resulting in a precision of 82.52%. We also

identified 3 occurrences of tactics applications that our tool did not detect, resulting in

a recall of 96.59%. Interestingly, only 19 among the 33 occurrences of tactics cancel-

3 In this three sequence-based schema, the first sequence is the major number (incremented

when there are significant changes to the system), the second sequence is the minor number

(incremented when there are minor changes to the system or significant bug fixes) and the

last sequence is the revision number (increment when minor bugs were fixed).

lations were true positives, giving a precision of 57.57% while manual analysis of

MADMatch’s output did not reveal any false negatives, resulting in a recall of 100%.

These results suggest that our operational representations are effective in detecting

the application of architectural tactics but may not be enough to automatically infer

cancellations. Indeed, our simple technique for inferring the opposite evolution pat-

tern from an operational representation of a tactic is not enough to precisely define the

tactic’s cancellation. The opposite evolution pattern may lead to a high number of

negatives identified as positives (high recall and low precision) or to a misinterpreta-

tion of the appropriate tactic that was cancelled. For instance, during the transition

from version 0.7.0 to version 0.7.1, the Separate Responsibility tactic was applied by

moving a number of classes from the package com.jrefinery.chart into a new package

com.jrefinery.chart.combination. However, during the transition from version 0.8.1 to

version 0.9.0, the package com.jrefinery.chart.combination was deleted and its classes

were moved back into two different packages (com.jrefinery.chart and

com.jrefinery.data). This was recognized by our detection process as a cancellation of

the Abstract Common Services tactic. Indeed, the SR tactic that was detected the first

time was in fact part of the application of an ACS that was incrementally introduced

through several transitions from versions 0.7.0 to 0.8.1 and then cancelled later in

version 0.9.0. Future work is needed to define the relationships between operational

representations so that we can aggregate and correctly interpret a number of succes-

sive applications of some tactics and thus define and appropriately trace cancellations

to tactics.

To identify the factors that influence the effectiveness of our operational repre-

sentations, we examined in detail the false results (i.e., false positives and false nega-

tives) returned by our detection process. We uncovered that all these errors were due

to the external tools MADMatch (85%) for the deltas and PtiDej (15%) for the reverse

engineering of the project binaries. MADMatch sometimes returns incorrect matching

in its deltas in part because its default parameters, which we used, promote recall over

precision. We decided to leave these parameters unchanged in order to get more data

for our manual analysis and thus a better approximation of the recall. Experimentation

with different parameters is planned for future work.

6.2 Detecting architectural evolution trends

Regarding our second research question, we investigated the applications and can-

cellations of tactics that were manually confirmed. Table 3 displays the distribution of

both tactics applications and cancellations per deltas (i.e., the table displays true posi-

tives). To reduce the size of the table, we have omitted the deltas that do not have any

occurrences. In purely quantitative terms, if we consider the total numbers of the tac-

tics that were applied (85) and those cancelled (19) through all the analyzed versions,

cancellations represent 22% of applications. We further investigated the observed

cancellations to understand the causes of such a high percentage.

Our analysis revealed that out of the 19 cancellations of tactics, 11 cancellations

were related to tactics already present in the first available release 0.5.6 while 8 can-

cellations are related to tactics that were introduced during the subsequent versions.

For instance, in the revision from versions 0.9.16 to 0.9.17, the class

org.jfree.chart.renderer.AbstractSeriesRenderer was introduced as a superclass for

two other existing sub-classes but was deleted two revisions later (i.e., in 0.9.19). We

also observed an interesting evolution pattern which involves the introduction,

through different versions, of a number of super-classes that centralize a number of

common constants and the deletion of these classes later in other versions. For in-

stance, from 0.8.1 to 0.9.0, the classes CategoryPlotConstants and ChartPanelCon-

stants (both in the package com.jrefinery.chart) were created to centralize a number of

constants. CategoryPlotConstants was deleted later in the revision from 0.9.9 to

0.9.10 and its content was moved back to the class com.jrefinery.chart.CategoryPlot.

Likewise ChartPanelConstants was deleted later in the transition from 0.9.20 to 1.0.0

and its content was moved to org.jfree.chart.ChartPanel. This tendency to apply and

cancel tactics raises some questions about the consistency of the evolution of the sys-

tem in general and its conformance to architectural decisions in particular. In fact, this

could be construed as a motivational case for the importance of detecting architectural

tactics and reminding them to developers (especially in open-source and collaborative

settings) in order to prevent seemingly erratic modifications.

Table 3. Number of tactics applied or cancelled per deltas generated from successive versions

Delta
Application of tactics Cancellation of tactics

SR UE ACS IC SR UE ACS IC

v0.5.6_v0.6.0 1 2 1

v0.7.0_v0.7.1 1

v0.7.3_v0.7.4 1 2

v0.7.4_v0.8.0 1

v0.8.0_v0.8.1 1

v0.8.1_v0.9.0 3 1 1 1 1 1

v0.9.1_v0.9.2 1

v0.9.2_v0.9.3 1

v0.9.4_v0.9.5 3 5 2 1

v0.9.6_v0.9.7 1 4 1

v0.9.8_v0.9.9 1 1 1 6

v0.9.9_v0.9.10 1 1 1

v0.9.11_v0.9.12 1 1 1 2

v0.9.12_v0.9.13 1 2

v0.9.13_v0.9.14 2 1

v0.9.14_v0.9.15 1 1

v0.9.15_v0.9.16 1 1

v0.9.16_v0.9.17 2 5

v0.9.18_v0.9.19 3 2 2 1

v0.9.19_v0.9.20 1

v0.9.20_v1.0.0 9 3 2 4 2 1

v1.0.2_v1.0.3 1

v1.0.4_v1.0.5 1

v1.0.5_v1.0.6 1

We also compared the results of our detection process when applied to the deltas

from two successive minor (respectively major) releases versus those generated by the

intermediate revisions between these minor (respectively major) versions. We pre-

sume that if the developer consistently evolves the system through the intermediate

revisions between two successive minor (respectively major) versions, the aggregated

results of our detection process through these revisions would lead to the same result

than the one generated using the two minor (respectively major) versions. Table 4

displays the number of occurrences of both applications and cancellations of tactics

generated from successive minor or major revisions. Similar to Table 3, Table 4 dis-

plays true positives and it omits minor and major releases for which no occurrences

were found (e.g., from 0.6.0 to 0.7.0) and successive minor releases for which there

was no intermediate revisions (e.g., from 0.5.6 to 0.6.0).

Table 4. Number of tactics applied or cancelled per deltas generated from successive minor or

major versions

Delta Application of tactics Cancellation of tactics Total

SR UE ACS IC SR UE ACS IC

v0.7.0_v0.8.0 2 5 7

v0.8.0_v0.9.0 4 1 1 1 1 1 9

v0.9.0_v1.0.0 10 5 14 1 4 34

From 0.7.0 to 0.8.0, the only tactic occurrence (out of 7) that was detected in the

delta between minor versions but not in the revisions is an incremental application of

the Encapsulation tactic: a class (SignalsDataset) was created in 0.7.1 and an inher-

itance relationship was added later in 0.7.2 between this class and an existing subclass

(SubSeriesDataset). As for the detected tactics applications and cancellations from

0.8.0 and 0.9.0 (i.e., 9 occurrences), they match the aggregated results of the detection

when applied to the revisions from 0.8.0 to 0.8.1 and from 0.8.1 to 0.9.0. Finally, we

found 34 occurrences of applications and cancellations of tactics from 0.9.0 to 1.0.0

which is a major revision. However, the aggregation of the results from all the inter-

mediate revisions between 0.9.0 and 1.0.0 yields 85 occurrences. We identified three

main reasons for this discrepancy some of which were already discussed above. First,

some tactics were applied through one or several revisions but all the entities involved

in these tactics appear as added in the major revision (i.e., the evolution pattern is

visible through revisions but not at the major versions level). For example, the Encap-

sulation tactic was incrementally applied by adding a set of classes (e.g., ObjectList)

in the revision from 0.9.9 to 0.9.10 and their superclass (AbstractObjectList) in the

revision from 0.9.11 to 0.9.12. This whole evolution pattern is not detectable when we

analyze the delta from 0.9.0 to 1.0.0; the entire inheritance hierarchy appears to be

newly created at the same time. Second, some tactics were applied in an incremental

way through changes spread over several revisions starting from the revision 0.9.0.

These occurrences are only detectable when we analyze the delta from 0.9.0 to 1.0.0.

Finally, as discussed before, several tactics were applied and then cancelled through

the revisions; these tactics are not present at major versions level.

6.3 Threats to Validity

External validity: Our case study was carried out on a subset of the modifiability

tactics that we were able to detect through static analysis of different releases of a

software system. This is possible for most of the modifiability tactics and some other

tactics such as exception handling (for availability) and creating additional threads or

reducing the number of iterations (for performance). However, other tactics may re-

quire a dynamic analysis of the code or are even not present in the source code (e.g.,

increasing computational efficiency or maintaining multiple copies of data). Thus, our

approach is limited to those tactics that have an observable impact on the source code.

As future work, we plan to extend our work to other tactics and identify precisely the

type of tactics to which our approach may be applied.

Internal validity: Some tactics (e.g., ACS) may be composed of several other

more elementary tactics (e.g., SR). Since we didn’t implement yet a mechanism that

enables to relate and aggregate detected tactics through a number of releases, we tend

to interpret each detected tactic locally and individually. This may have an impact on

our interpretation of the overall architectural evolution trend. Thus, as discussed in

section 6.1., future work is needed to define the relationships between operational

representations and exploit these relationships to correctly aggregate and interpret a

number of successive applications of related tactics. Finally, our results are dependent

on the effectiveness of the other tools used, notably MADMatch that was used to

compute the deltas. We selected MADMatch because it is a recent tool which com-

pared favorably to other techniques [15] but other tools may provide different (better

or worse) results. Future work is planned for experimentation with different parame-

ters of MADMatch and different tools.

7 Conclusion and Future Work

In this paper, we present a first iteration of a tool-supported approach that allows

the definition and detection of architectural tactics or more general evolution patterns

using basic changes extractable from the differencing of software versions. Once

these architectural tactics or patterns are defined, our technique automatically gener-

ates algorithms able to parse the differencing data in order to detect occurrences of the

application or cancellation of these tactics. Experiments conducted on a well-studied

open source system (JFreeChart) suggest that the technique is effective at detecting

the occurrences of the application of defined tactics but is not as successful at detect-

ing their cancellation. While few occurrences of these tactics are missed by our tech-

nique, there is some noise (lack of precision), especially for the detection of cancella-

tions. Many of these errors are related to the parameterizing of the external tool se-

lected to provide differencing data. Nevertheless, the study revealed many instances

of cancellations of tactics that may be ill-advised and could have been prevented if the

developers had access to the history and present of tactics involving the code they are

working on or plan to work on.

The conclusions of this study are still preliminary and future work with case stud-

ies involving different parameters, tools and systems is needed to confirm our find-

ings. Additionally, we intend to experiment with more evolution patterns and eventu-

ally discover desirable or harmful patterns through analyses of the change and defect

proneness of the components they involve.

8 REFERENCES

1. D. Garlan, J. M. Barnes, B. R. Schmerl, and O. Celiku, "Evolution styles: Foundations and

tool support for software architecture evolution", In WICSA/ECSA, pp. 131–140, 2009.

2. D. Garlan, B. Schmerl. “Ævol: A tool for defining and planning architecture evolution”. In

the 31st International Conference on Software Engineering, 2009, pp. 591-594.

3. Tonu, S.A; Ashkan, A; Tahvildari, L., "Evaluating architectural stability using a metric-

based approach," CSMR 2006, vol., no., pp.10 pp.,270, 22-24 March 2006

4. McNair, A; German, D.M.; Weber-Jahnke, J., "Visualizing Software Architecture Evolu-

tion Using Change-Sets," WCRE 2007. vol., no., pp.130,139, 28-31 Oct. 2007

5. M. Abi-Antoun, J. Aldrich, N. Nahas, B. Schmerl, D. Garlan, “Differencing and merging

of architectural views”, ASE, March 2008, Volume 15, Issue 1, pp 35-74

6. H.P. Breivold, I. Crnkovic, M. Larsson, “A systematic review of software architecture evo-

lution research”, IST, January 2012, vol. 54, No. 1, pp. 16-40.

7. D. M. Le, P. Behnamghader, J. Garcia, D. Link, A. Shahbazian and N. Medvidovic, “An

Empirical Study of Architectural Change in Open-Source Software Systems,” IEEE/ACM

12th Working Conference on Mining Software Repositories, Florence, 2015, pp. 235-245.

8. A. H. Eden, R. Kazman, "Architecture, design, implementation," 25th International Con-

ference on Software Engineering, 2003. pp. 149-159.

9. Fairbanks, G.; Just Enough Software Architecture: A Risk-Driven Approach. Marshall &

Brainerd; 1 edition, 2010

10. L. Bass, P. Clements and R. Kazman, Software Architecture in Practice, Addison-Wesley,

2003.

11. Bachmann et al., "Modifiability Tactics", CMU Software Engineering Institute Technical

Report CMU/SEI-2007-TR-002

12. M. D’Ambros, H. Gall, M. Lanza, M. Pinzger, “Analysing Software Repositories to Un-

derstand Software Evolution”, in Software Evolution, Springer , 2008, pp. 37-67

13. M. Kim, M. Gee, A. Loh, N. Rachatasumrit, “Ref-Finder: a refactoring reconstruction tool

based on logic query templates”, FSE 2010, Santa Fe, New Mexico, USA,; 371–372.

14. M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley, 1999.

15. Kpodjedo, S., et al. (2013). "Madmatch: Many-to-many approximate diagram matching for

design comparison." Software Engineering, IEEE Transactions on 39(8): 1090-1111.

16. Aldrich, J., et al., “Language Support for Connector Abstractions”, ECOOP 2003 – Ob-

ject-Oriented Programming, LNCS, Volume 2743, pp. 74-102

17. Y.G. Gueheneuc, G. Antoniol, “DeMIMA: A Multilayered Approach for Design Pattern

Identification,” IEEE Trans. Software Eng., vol. 34, no. 5, pp. 667-684, Sept./Oct. 2008.

18. Gamma E, Helm R, Johnson R, Vlissides J. Design Patterns: Elements of Reusable Object-

Oriented Software. Addison-Wesley: Reading, MA, 1995.

19. J. M. Barnes and D. Garlan, "Challenges in developing a software architecture evolution

tool as a plug-in," 3rd International Workshop on Developing Tools as Plug-ins (TOPI),

San Francisco, CA, 2013, pp. 13-18.

