Christian Bessiere
email: bessiere@lirmm.fr

Simon De Givry
email: degivry@toulouse.inra.fr

Thomas Schiex
email: tschiex@toulouse.inra.fr

Thi Hông

Hiêp Nguyên

Hiep Nguyen

Triangle-based Consistencies for Cost Function Networks

Keywords:

Triangle-based consistencies for cost function networks

Introduction

Graphical model processing is a central problem in AI. The Cost Function Network framework (CFN [START_REF] Schiex | Valued constraint satisfaction problems: hard and easy problems[END_REF] as an instance of the valued CSP framework.), where the goal is to optimize the combined cost of local cost functions, captures problems such as weighted MaxSAT, Weighted CSP or Maximum Probability Explanation in probabilistic networks. 1 CFNs have applications in resource allocation [START_REF] Cabon | Radio link frequency assignment[END_REF], combinatorial auctions, bioinformatics [START_REF] Traoré | A new framework for computational protein design through cost function network optimization[END_REF][START_REF] Simoncini | Guaranteed discrete energy optimization on large protein design problems[END_REF]. . . Dynamic programming approaches such as bucket or cluster tree elimination can be used to tackle such problems but are inherently limited by their exponential time and space behavior on graphical models with high tree-width. Instead, Depth First Branch and Bound allows to keep a polynomial space complexity but requires good (strong and cheap) lower bounds on the minimum cost to be efficient. In the last years, increasingly better lower bounds have been designed by enforcing soft local consistencies on CFNs. Arc consistencies such as AC*, DAC*, FDAC*, EDAC* [START_REF] Larrosa | Existential arc consistency: getting closer to full arc consistency in weighted CSPs[END_REF] or VAC [START_REF] Cooper | Virtual Arc Consistency for Weighted CSP[END_REF] are inspired from arc consistency in hard constraint networks. They have a small order polynomial enforcing time but do not always provide tight enough lower-bounds. The linear programming based OSAC consistency [START_REF] Cooper | Optimal soft arc consistency[END_REF] provenly gives the strongest lower bound that can be obtained by arc consistency but is usually too expensive to compute. It now becomes useful to look beyond arc consistencies. Up to now, few higher order consistencies have been proposed for CFNs [START_REF] Cooper | High-order consistency in Valued Constraint Satisfaction[END_REF][START_REF] Dehani | Extension des cohérences wcsps aux tuples[END_REF].

In this paper, we show that strong soft consistencies can be defined for CFNs by extending hard high order consistencies defined for CSPs. Among hard high order consistencies, the family of triangle-based consistencies (Restricted Path Consistency or RPC, Path Inverse Consistency or PIC, and maxRestricted Path Consistency or maxRPC) are specifically interesting because they have a stronger pruning power than arc consistency, and a cheaper computational cost than other high order consistencies. Their extension to CFNs is however non trivial, and enforcing algorithms create ternary cost functions.

The rest of the paper is organized as follows. Section 2 is a background section on constraint and cost function networks, associated local consistencies and enforcing operations. The next sections focus on our contributions. Section 3 gives a definition of new local consistencies. Section 4 introduces different ways to compare the strength of soft consistencies in general. This is then used to compare the proposed consistencies to each other and to existing consistencies. Section 5 focuses on the algorithms for enforcing the proposed consistencies. The last section gives experimental results when these consistencies are used as pre-processing or maintained during search on a large set of benchmarks. We observe that the strengthened bound provided by triangle consistencies (TRICs) are necessary to solve some problems that could not be solved otherwise.

We assume the existence of a unary cost function c i for every variable i, and a nullary cost function, noted c ∅ . This constant non-negative cost defines a lower bound on the cost of every solution. A CFN P can be transformed into an equivalent CFN P ′ (i.e., Val P (τ) = Val P ′ (τ) ∀τ) by applying so-called equivalence-preserving transformations (EPTs) that shift costs between cost functions. The EPT Shift(τ S , c S ′ , α) (Algorithm 1) moves an amount of cost α between a cost function c S ′ and a tuple τ S such that S ⊂ S ′ . The conditions [START_REF] Bensana | Earth observation satellite management[END_REF] and [START_REF] Berlandier | Improving domain filtering using restricted path consistency[END_REF] guarantee that the operation will not create any negative cost in the problem. Shift allows to define the three usual EPTs [START_REF] Cooper | Arc consistency for soft constraints[END_REF] Project (from c S ′ to τ S , α > 0), Extend (from τ S to c S ′ , α < 0) and UnaryProject (from i to c ∅ , α > 0, S ′ = {i}, S = ∅). By applying EPTs to an original CFN, it is possible to transform it in an equivalent CFN that satisfies a given local consistency property. This may increase the lower bound c ∅ . The simplest local consistency, node consistency (NC [START_REF] Larrosa | On arc and node consistency in weighted CSP[END_REF]), requires that ∀i ∈ X, ∀a ∈ D i c i (a) + c ∅ < m and there exists a value a ∈ D i such that c i (a) = 0. Definition 2 (Soft arc consistencies) Given a binary CFN P = (X, D, C, m) and an order < on variables, -P is arc consistent (AC [START_REF] Schiex | Arc consistency for soft constraints[END_REF]) iff ∀i ∈ X, ∀a ∈ D i and ∀c ij ∈ C, there exists b ∈ D j such that c ij (a, b) = 0. b is called a (simple) support for (i, a) in c ij .2 -P is directional arc consistent (DAC [START_REF] Cooper | Reduction operations in fuzzy or valued constraint satisfaction[END_REF]) w.r.t < iff ∀i, ∀a ∈ D i , ∀c ij such that i < j, there exists a value b ∈ D j such that c ij (a, b) + c j (b) = 0. b is called a full support for (i, a) in c ij . -P is full directional arc consistent (FDAC [START_REF] Larrosa | In the quest of the best form of local consistency for weighted CSP[END_REF]) w.r.t < iff it is AC and DAC. -P is existential arc consistent (EAC [START_REF] Larrosa | Existential arc consistency: getting closer to full arc consistency in weighted CSPs[END_REF]) iff ∀i ∈ X, there exists a value a ∈ D i such that c i (a) = 0 and ∀c ij ∈ C, there exists b ∈ D j such that c ij (a, b) + c j (b) = 0. Value a is called the existential arc consistent support of i. -P is existential directional arc consistent (EDAC [START_REF] Larrosa | Existential arc consistency: getting closer to full arc consistency in weighted CSPs[END_REF]) iff it is EAC and FDAC.

-Bool(P) is a CSP defined as a CFN (X, D, C, 1) such that ∃c S ∈ C iff ∃c S ∈ C, S ≠ ∅ and τ ∈ c S ⇔ c S (τ) > 0. P is virtual arc consistent (VAC [START_REF] Cooper | Virtual Arc Consistency for Weighted CSP[END_REF]) iff the AC-closure of Bool(P) is non-empty.

For simplicity, we restrict ourselves to binary CFNs. A binary CFN is AC * , DAC * , FDAC * , EAC * , EDAC * if it is NC and respectively AC, DAC, FDAC, EAC, EDAC [START_REF] Larrosa | On arc and node consistency in weighted CSP[END_REF]. Definitions of soft arc consistencies for non-binary CFNs have been given in [START_REF] Cooper | Arc consistency for soft constraints[END_REF][START_REF] Cooper | Soft arc consistency revisited[END_REF][START_REF] Lee | Towards efficient consistency enforcement for global constraints in weighted constraint satisfaction[END_REF][START_REF] Lee | Consistency techniques for flow-based projection-safe global cost functions in weighted constraint satisfaction[END_REF].

3 Soft triangle-based consistencies (TRICs)

In this section, we extend the hard local consistencies RPC, PIC and maxRPC, defined on triangles of variables to CFNs. For each hard consistency, we define six soft variants, also called softening levels: simple, directional, full directional, existential, existential directional, and virtual. This gives rise to eighteen new soft local consistencies. In addition to soft ACs, all these soft versions guarantee the extensibility of arc supports on extra third variables on a so-called witness.

Definition 3 (Witness) Given a value (i, a), a pair of values (i a , j b) and a variable k linked both to i and j, -A simple witness of (i a , j b) on k is a value c ∈ D k such that c ik (a, c) + c jk (b, c)

+ c ijk (a, b, c) = 0. -A full witness of (i a , j b) on k is a value c ∈ D k such that c k (c) + c ik (a, c) + c jk (b, c) + c ijk (a, b, c) = 0.
Definition 4 (Extensibility of a pair of values on a variable) Given a pair of values (i a , j b) and a variable k linked both to i and j, -(i a , j b) is simply extensible on k if there exists a simple witness on k for it.

-(i a , j b) is fully extensible on k if there exists a full witness on k for it.

Definition 5 (Extensibility of a value on a triangle) A triangle is a triple of variables (i, j, k) that are linked one-by-one by binary cost functions.

It is noted as ∆ ijk . Given a value (i, a) and a triangle ∆ ijk .

-(i, a) is simply extensible on triangle ∆ ijk if there exists a simple arc support for (i, a) in c ij that is simply extensible on k. -(i, a) is fully extensible on triangle ∆ ijk if there exists a full arc support for (i, a) in c ij that is fully extensible on k.

Definition 6 (Extensibility of a pair of values) For a pair of values (i a , j b) and an order < on the variables, (i a , j b) is:

simply extensible if it is simply extensible on every k linked to both i and j.

fully extensible if it is fully extensible on every k linked to both i and j.

directionally-fully extensible if it is fully extensible on every k > i linked to both i and j. semi-fully extensible if it is simply extensible on every k < i linked both to i and j and is fully extensible on every k > i linked both to i and j.

Notice that full extensibility implies semi-full extensibility. Semi-full extensibility implies directional-full and simple extensibility. Conversely, both directional-full and simple extensibility do not imply any other extensibility. Examples in Figure 1

< i < j < k 2 .
An edge appears between pairs of values with a non zero cost. In CFN(a), (ia, ja) is not simply extensible on k 1 . In CFN(b), (ia, ja) is simply extensible (on both k 1 , k 2) but is not directionally-fully extensible (because it is not fully extensible on k 2). In CFN(c), (ia, ja) is directionally-fully extensible w.r.t k 2 but is not semi-fully extensible (because it is not simply extensible on k 1). In CFN(d), (ia, ja) is semi-fully extensible (fully extensible on k 2 and simply extensible on k 1) but is not fully extensible (because it is not fully extensible on k 1). In CFN(e), (ia, ja) is fully extensible (on both k 1 , k 2).

Soft restricted path consistencies

The idea of soft RPC consistencies is to only check the extensibility of pairs of values (i a , j b) that will make a value soft arc inconsistent if their binary cost becomes positive. If a value (i, a) has only one simple support (j, b) on c ij and this support (i a , j b) is not extensible on some third variable k, every 3-values tuple over {i, j, k}, involving (i a , j b), has a positive combined cost. Because (j, b) is the unique arc support of (i, a), every complete tuple involving (i, a) has a positive cost evaluation. Thus, the unary cost c i (a) can be increased by equivalence preserving transformations.

Definition 7 (Soft restricted path consistencies (Soft RPCs)) Given a CFN P = (X, C, D, m) and an order "<" on variables, -P is existential RPC (ERPC) if ∀i ∈ X, there exists a value a ∈ D i such that (1) c i (a) = 0, (2) i a has a full arc support in every cost function (i.e., P is EAC), and (3) ∀c ij ∈ C on which (i, a) has only one full arc support b ∈ D j , (i a , j b) is fully extensible. Such a value (i, a) is the ERPC support for i. -P is existential directional RPC (EDRPC) if it is ERPC and FDRPC.

-P is RPC if it is AC and ∀i ∈ X, ∀a ∈ D i , ∀c ij ∈ C on which (i, a) has only one simple arc support b ∈ D j , (i a , j b) is simply extensible. -P is directional RPC (DRPC) if it is DAC and ∀i ∈ X, ∀a ∈ D i , ∀c ij ∈ C such that i < j and (i, a) has only one full arc support b ∈ D j , (i a , j b) is directionally-fully extensible. -P is full directional RPC (FDRPC) if it is FDAC and ∀i ∈ X, ∀a ∈ D i , ∀c ij ∈ C such that (1) if i > j and (i,
-P is virtual RPC (VRPC) if the RPC-closure of Bool(P) is non-empty.

VRPC is defined based on the hard CSP Bool(P) and hard RPC. The other softening levels of RPC differ from each other by (1) the strength of supports (simple or full) (2) the strength of witnesses (simple, full, directional-full, semifull) and (3) the scope of application of these properties (every domain value or one value per domain, every cost function or some specific cost functions).

Example 1 Consider the CFNs in Figure 1.

-CFN(a) is VRPC because the RPC-closure of Bool(P) is not empty, containing values

(i b), (j, b), (k 1 , a), (k 1 , c), (k 2 , a), (k 2 , c
). However, it is not RPC because the unique support (i a , j a) of (i, a) on c ij is not simply extensible on k 1 -CFN(b) is RPC: both (i a , j a) and (i b , j b) (respectively the unique simple arc support of (i, a), (j, a) on c ij and of (i, b), (j, b) on c ij) are simply extensible on k 1 and k 2 at simple witnesses (k 1 , b) and (k 2 , b) respectively. However, it is not DRPC because the unique full arc support (i a , j a) of

(i, a) in c ij is not fully extensible on k 2 > i. -CFN(c) is DRPC because both (i a , j a) and (i b , j b) (respectively the unique full arc support of (i, a) in c ij and of (i, b) in c ij) are fully extensible on k 2 > i at (k 2 , b). Variable k 1 < i is not involved in DRPC for i.

Soft path inverse consistencies

We now consider soft path inverse consistencies. They guarantee the extensibility of domain values on triangles of variables. For all triangles ∆ ijk sharing two variables i, j of a cost function c ij , PICs require that one of the arc supports of (i, a) in c ij is extensible on k. The arc supports of (i, a) that are extensible on different k can be different. 2. As in the case of RPC, VPIC is defined based on the hard CSP Bool(P) and hard PIC. The other softening levels differ from each other by the strength of supports, the strength of witnesses, and the scope of application of these properties.

Soft max-restricted path consistencies

Stronger than PICs, soft max-restricted path consistencies (soft maxRPCs) check the existence of an extensible arc support for each value on each binary cost function whatever the number of arc supports the value has. In contrast to soft PICs, maxRPCs require the extensibility of the same arc support at the same time on all third variables. If value (i, a) has no such extensible arc support in some binary cost function c ij , each support (i a , j b) of (i, a) in c ij is not extensible in some extra variable k, i.e. the combined cost of every tuple (i a , j b , k c) is positive. Thus, the binary cost of every arc support of (i, a) in c ij can be increased by equivalence preserving transformations and then (i, a) will no longer be arc consistent. 3. Here again, VmaxRPC is defined based on the hard CSP Bool(P) and hard maxRPC. The other softening levels differ from each other by the strength of supports, the strength of witnesses, and the scope of application of these properties.

Comparing soft local consistencies

In this section, we compare the strength of the different soft consistencies proposed in the previous section and soft arc consistencies. Soft consistencies rise specific difficulties when comparison of strength is considered. Most of the consistencies we considered are domain consistencies in the sense that they define properties that values must satisfy and enforcing them may increase unary costs that NC may ultimately use to increase the lower bound c ∅ . However, virtual local consistencies are different because they directly try to increase c ∅ and do not try to increase unary costs for NC. Thus, the strength of virtual consistencies can be directly measured by the quality of the lower bound provided. For the other soft consistencies, this strength is better measured by the ability to move costs to lower arities. We therefore need to introduce two different order relations between local consistencies to capture this difference between virtual and other consistencies. We denote by c ∅ [P] the lower bound c ∅ in a problem P .

Furthermore, soft local consistencies are not confluent. A single problem P may have different equivalent problems satisfying a given local consistency property A. For a given CFN P and a soft local consistency A, A(P) is therefore defined as the set of problems that can be obtained after enforcing A in P . When P already satisfies A, we assume that A(P) = {P } i.e., that enforcing A on a problem satisfying A does not change P (which is effectively the case for all enforcing algorithms). Similarly, focusing on lower bounds, enforcing a weaker consistency will not change the lower bound. We first show that ≥ entails ≥ c∅ .

Proposition 1 Given two soft consistencies A and B, if

A ≥ B then A ≥ c∅ B.
Proof Because A ≥ B, B(P) = {P } for every P that satisfies A. So we have

∀P ′ ∈ B(P), c ∅ [P ′] ≥ c ∅ [P] and thus A ≥ c∅ B. ⊓ ⊔
Similarly to the stronger and strictly stronger relations for hard consistencies, our relations for soft consistencies are transitive.

∀P ′ ∈ C(P), c ∅ [P ′] = c ∅ [P]. i.e. A ≥ c∅ C. ⊓ ⊔
To show that a soft consistency A is not stronger (resp. not stronger in terms of lower bound than B), it is enough to show that there exists a CFN P in which A holds and B does better than A: B(P

) ≠ {P } (resp. ∃P ′ ∈ B(P), c ∅ [P ′] ≠ c ∅ [P]).
Two consistencies A and B are incomparable iff A is not stronger than B and B is not stronger than A.

Definition 11 (Incomparable relation) Given two soft consistencies

A and B, -A and B are incomparable, noted A ≍ B, iff A ≥ B and B ≥ A -A and B are incomparable in terms of lower bound, noted A ≍ c∅ B, if A ≥ c∅ B and A ≥ c∅ B
Figure 4 is the Hasse diagram that summarizes the relations among soft ACs, RPCs, PICs and maxRPCs. A row of the graph corresponds to six soft consistencies associated with a same hard consistency and a column corresponds to the soft consistencies at a same softening level. A directed path from a consistency A to B, without or with dashed arrow, respectively means that A > B or A > c∅ B. If there does not exist any directed path between A and B, they are incomparable. First, we consider the relation between virtual consistencies and domain consistencies. Then, domain consistencies are considered according to the rows and the columns of the graph.

Theorem 1 Given two hard local consistencies A, B ∈ {AC,RPC,PIC,maxRPC}, if we denote by V A, V B their corresponding virtual consistencies and A, B any other softening level of A and B, a. VA

> c∅ A. b. If A > B then b1 VA > VB b2 VA > c∅ B.
Proof a. We first prove that VA ≥ c∅ A by contradiction. Suppose that there exists a CFN P satisfying VA and enforcing A can still increase c ∅ from Fig. 4 Hasse diagram of relations between soft consistencies

A B ∶ A > B A B C implies A C A B ∶ A >c ∅ B A B C implies A C a variable x ∅ .
All values and tuples whose costs have been necessary for increasing c ∅ by A are also forbidden when enforcing A in the classic CSP Bool(P). So, if we eliminate these values and tuples in the same order that costs are moved by A in P , x ∅ will be wiped-out in Bool(P). Thus P is not VA and the assumption is false. This means that VA ≥ c∅ A. Secondly, Figure 12 shows a problem that satisfies every non-virtual variant of AC, RPC, PIC, maxRPC but not the virtual ones. Enforcing the virtual one will lead to a strictly stronger c ∅ . b. Consider first the case of V B. First, we prove that VA ≥ V B. Let P be a CFN which is VA. The A-closure of Bool(P) is not empty. Because A ≥ B, the B-closure of Bool(P) will be not empty.

⊓ ⊔

The following theorem shows that given a softening level, the corresponding soft maxRPC is strictly stronger than the corresponding soft PIC, which is strictly stronger than the corresponding soft RPC, which itself is strictly stronger than the corresponding soft AC.

Theorem 2 (Vertical comparison) a. maxRPC > PIC > RPC > AC. b. DmaxRPC > DPIC > DRPC > DAC. c. FDmaxRPC > FDPIC > FDRPC > FDAC. d. EmaxRPC > EPIC > ERPC > EAC. e. EDmaxRPC > EDPIC > EDRPC > EDAC.
Proof First, we can note that the "stronger than" relation ≥ holds between the considered pairs of consistencies, based on their definition: at each softening level, the soft variant of maxRPC implies the soft variant of PIC. The same applies for PIC and RPC, as well as RPC and AC. Second, we prove the "strictly stronger than" relation between them by showing CFNs in which the weaker consistencies hold while the stronger ones do not. a. Figure 5 shows a CFN that satisfies AC but does not satisfy RPC. Figure 6 shows a CFN that satisfies RPC but does not satisfy PIC. Figure 7 shows a CFN that satisfies PIC but does not satisfy maxRPC. Thus maxRPC > PIC > RPC > AC. b-e. The proof is similar to that for (a) by using Figure 5, 6 and7.

⊓ ⊔

The following theorem will show that for any hard consistency: (1) the associated existential directional consistency is strictly stronger than both the existential and the full directional ones, (2) the associated full directional consistency is strictly stronger than both the non-directional and the directional ones, (3) other pairs of soft consistencies are incomparable. -FDPIC ≍ maxRPC, DmaxRPC: using Figures 7, 8 and9.

-EDAC ≍ (E/FD/D/-)(RPC/PIC/maxRPC): using Figures Fig. 5 A CFN that satisfies all arc consistencies but does not satisfy any soft RPC (hence does not satisfy any soft PIC, maxRPC). j < k < i < l. The table on the right indicates which consistencies are satisfied or not (strikethrough). maxRPC is briefly written as max, and the same for other variants of maxRPCs. The problem does not satisfy any soft RPC because of variable j (the unique support (ja, ka) of (j, a) in c jk is not simply extensible on i and the unique support (j b , k b) of (j, b) is not simply extensible on l). Fig. 7 A CFN that satisfies all PIC consistencies but does not satisfy any maxRPC consistency. i < j 1 < j 2 < j 3 < j 4 < j 5 < j 6 . There are only zero unary costs in this problem, thus simple and full supports (or witnesses) are identical. The problem is EDPIC since both (i, a), (i, b) can be fully extended to all 4 triangles. However, the problem does not satisfy any maxRPC consistency because of variable i (no arc support of value (i, a) in c ij 1 can simultaneously be extended on ∆ ij 1 j 2 and ∆ ij 1 j 3 , the same for value 8 A CFN which is non-directional consistent but is directional inconsistent for order i < j < k. The problem is not DAC because value (i, a) has no full arc support in c ik . Therefore, it does not satisfy FDAC, EDAC, FDRPC, EDRPC, FDPIC, EDPIC, FDmaxRPC, EDmaxRPC. However, the problem is maxRPC (hence PIC, RPC) because it is AC and every domain value is simply extensible to the triangle.

(i, b) in c ij 4). a b a b a b i j k 1 AC DAC FDAC EDAC RPC DRPC FDRPC EDRPC PIC DPIC FDPIC EDPIC maxRPC DmaxRPC FDmaxRPC EDmaxRPC Fig.

Algorithms

In this section, we present algorithms for enforcing soft PIC, DPIC, FD-PIC, EPIC, EDPIC, maxRPC, DmaxRPC, FDmaxRPC, EmaxRPC, and ED-maxRPC. Soft RPCs have not been implemented because they are weaker than their PIC and maxRPC counterparts and because it is costly to maintain the uniqueness of arc supports per value in each cost function -arc supports can be iteratively created and broken when EPTs are applied. For a value (i, a) that does not satisfy a given TRIC (triangle consistency), the common idea is to create a support for a value (i, a) on c ij that is The queues Q, P, S, T store variables or cost functions which had some change in domain or in cost. They will be used for the propagation of changes in our algorithm.

-Q stores variables i such that some value of D i has been deleted (Procedure PruneVars(), line 24). -P stores variables i such that some value of D i has increased its cost from 0 (Procedure Project3To1 at line 13 and Project2To1 at line 17 -S is an auxiliary queue with the same contents as P (Procedure Project3To1 at line 13 and Procedure Project2To1 at line 17). It is used to efficiently build the propagation queue R which contains variables that need to be checked for the existential consistency. These are all variables of S (those that have values which cost increased from 0) and their neighbors because:

(1) for i ∈ S, the value in D i that has increased its unary cost may be the existential support of i and (2) the existential support of neighbor variables j may be fully supported by this value. -T contains binary cost functions c ij that have been modified (because of a unary cost extension in Procedure Extend1To2, line 4) for which i, j and their common neighbors may have lost simple support/witness and need to be revised.

Enforcing PICs

Enforcing PIC supports

Simple PIC supports are enforced by Procedure findPICSupport in Algorithm 3. To create a simple PIC support for a value i a on ∆ ijk , binary and ternary costs involved in ∆ ijk are moved to i a in such a way that there is a tuple (i a , j b , k c) whose ternary and binary costs decrease to 0. The order for moving costs is presented in Figure 13. First, binary costs c ij , c ik , c jk are extended on ternary cost function c ijk by Procedure Extend2To3 (lines 10-12). Then, ternary costs c ijk are projected on i a by Procedure Project3To1 (line 13). The maximum cost that can be projected on each value a ∈ D i is stored in

P i [a].
It is computed based on the available binary and ternary costs (line 3). Binary cost extensions E ij , E ik , E jk are then computed based on P i [a] and the ternary and binary costs (on the two other sides of the triangle, see lines 4-9). The extensions should be sufficiently large so that later projections of P i [a] will not create negative costs and sufficiently small so that a zero triangle cost remains after projection: there should exist values k c , j b and i a such that the final resulting ternary cost

c ijk (a, b, c)+E ij (a, b)+E ik (a, c)+E jk (b, c)-P i [a] = 0. Each computed pairwise extended cost E⋅⋅(⋅, ⋅
) is sufficient to satisfy the maximum cost requirements on the third variable. Since these extensions are supposed to be done sequentially, line 7 subtracts E ij (a, b), which will be included in the ternary cost, and does not require c ij (a, b). The same reasoning applies for line 9, for both previous extensions. 19 Procedure PruneVars()

20 foreach i ∈ X do 21 foreach a ∈ D i do 22 if c i (a) + c∅ ≥ m then 23 D i ← D i -{a}; 24 Q ← Q ∪ {i}; 25 Procedure isSmallest(i, ∆ ijk) 26 return ((i < j) ∧ (i < k));
In the end, binary cost extensions on ternary functions do not lead to the loss of ternary AC supports. Moreover, binary cost extensions do not lead to the loss of PIC supports because PIC supports involve only zero binary costs which cannot be used for extension.

Full PIC supports are similarly enforced by Procedure findFullPICSupport in Algorithm 3. The difference is that unary costs on j, k are extended on binary functions c ij and c ik by Procedure Extend1To2, in order to create full PIC supports with zero unary costs (lines 23, 24 respectively). Then binary and ternary costs are moved to i a as for simple PIC supports (line 25). The order in which costs are moved to enforce full PIC supports is also visible in Figure 13. The unary costs of j, k are taken into account for the computation of P i [a] as well as for the computation of unary cost extensions E j , E k (lines [START_REF] Larrosa | A logical approach to efficient max-sat solving[END_REF][START_REF] Larrosa | Solving weighted CSP by maintaining arc consistency[END_REF][START_REF] Lee | Consistency techniques for flow-based projection-safe global cost functions in weighted constraint satisfaction[END_REF]. As for binary extensions, unary cost extensions should be sufficiently large to avoid the creation of negative costs by later projections of P i [a] and Fig. 13 The order of cost movements for enforcing simple or full PIC supports on variable i, where unary cost extensions are not included in the enforcement of simple PIC supports. The arcs indicate the direction of cost movements and the numbers under the arcs indicate the order in which the corresponding cost movements are performed.

small enough so that the the final binary costs c ij (a, b)

+ E j (b) -E ij (a, b) and c ik (a, c) + E k (c) -E ik (a, c) are equal to 0.
Therefore, unary cost extensions on binary functions cannot lead to the loss of binary AC supports. However, unary cost extensions on binary functions can lead to the loss of simple PIC supports, thus modified binary functions are stored in the list T in order to later enforce PIC supports for related values.

Example 2 Consider the CFN(a) in Figure 14. It has 4 variables i < j < k < l and 5 binary cost functions c ij , c ik , c il , c jk , c jl . Binary costs are represented by edges (continuous line) and ternary costs are represented by hyper-edges (dashed lines for c ijk and dotted lines for c ijl). The absence of (hyper)edges indicates a zero cost. The initial problem is FDAC but not FDPIC because value (i, a) is not fully extensible on ∆ ijk . Now, consider enforcing full PIC supports for the values of i. Procedure findFullPICSupport(i, j, k) computes the amounts of cost for projections/extensions:

P i [a] = E j [b] = 1.
Other shifted costs are zero. After extending a cost of 1 from (j, b) on c ij , it will call Procedure findPICSupport(i, j, k), compute the amounts of shifted cost as follows:

P i [a] = E ij [a, b] = E ik [a, a] = E jk [a, b] = 1.
and perform the cost shifts. The resulting problem, presented in Sub-figure 14(d) is still not FDPIC because value (i, b) cannot be fully extended on triangle ∆ ijl . Then Procedure findFullPICSupport(i, j, l) computes and performs the following cost shifting:

P i [b] = E ij [b, b] = E il [b, a] = E jl [a, b] = 1.
The final problem, presented in Sub-figure 14(g) is FDPIC. Contrarily to hard PIC, enforcing simple and full PIC supports can create new ternary functions, e.g., c ijk , c ijl . Whenever a binary cost need to be extended to a ternary cost function that does not exist, the ternary cost function needs to be created and initialized with an empty cost for every tuple.

Soft PIC algorithms

Enforcing EDPIC requires enforcing PIC, DPIC, and EPIC simultaneously. We thus only present an algorithm for EDPIC. PIC, DPIC, FDPIC, and EPIC algorithms can be derived by removing blocks of code.

Algorithm 3: Algorithms enforcing PIC supports

1 Procedure findPICSupport(i, ∆ ijk) 2 foreach a ∈ D i do 3 P i [a] ← min b∈D j ,c∈D k ∆ ijk (a, b, c); 4 foreach a ∈ D i , b ∈ D j do 5 E ij [a, b] ← max c∈D k {P i [a] -c ijk (a, b, c) -c ik (a, c) -c jk (b, c)}; 6 foreach a ∈ D i , c ∈ D k do 7 E ik [a, c] ← max b∈D j {P i [a] -c ijk (a, b, c) -c jk (b, c) -E ij (a, b)}; 8 foreach b ∈ D j , c ∈ D k do 9 E jk [b, c] ← max a∈D i {P i [a] -c ijk (a, b, c) -E ij (a, b) -E ik (a, c)}; 10 foreach a ∈ D i , b ∈ D j do Extend2To3(i, a, j, b, c ijk , E ij [a, b]); 11 foreach a ∈ D i , c ∈ D k do Extend2To3(i, a, k, c, c ijk , E ik [a, c]); 12 foreach b ∈ D j , c ∈ D k do Extend2To3(j, b, k, c, c ijk , E jk [b, c]); 13 foreach a ∈ D i do Project3To1(c ijk , i, a, P i [a]); 14 α ← min a∈D i {c i (a)}; 15 UnaryProject(i, α); 16 Procedure findFullPICSupport(i, ∆ ijk) 17 foreach a ∈ D i do 18 P i [a] ← min b∈D j ,c∈D k ∆ ijk (a, b, c) + c j (b) + c k (c); 19 foreach b ∈ D j do 20 E j [b] ← max a∈D i ,c∈D k {P i [a] -∆ ijk (a, b, c) -c k (c); 21 foreach c ∈ D k do 22 E k [c] ← max a∈D i ,b∈D j {P i [a] -c ijk (a, b, c) -E j [b]; 23 foreach b ∈ D j do Extend1To2(j, b, c ji , E j [b]); 24 foreach c ∈ D k do Extend1To2(k, c, c ki , E k [c]); 25 findPICSupport(i, ∆ ijk); 26 Procedure findEPICSupport(i) 27 α ← min a∈D i {c i (a) + ∑ ∆ ijk ,i>j or i>k min b∈D j ,c∈D k {∆ ijk (a, b, c) + c j (b) + c k (c)}}; 28 if α > 0 then 29 foreach ∆ ijk do 30 if ¬isSmallest(i, ∆ ijk) then findFullPICSupport(i, ∆ ijk); 31 R ← R ∪ ⋃∆ ijk {j, k}; 32 UnaryProject(i, α);
EDPIC is enforced by Procedure enforceEDPIC in Algorithm 4. This procedure consists of four inner-while loops that respectively enforce EPIC, DPIC and PIC. It also enforces NC by calling PruneVars at line 24.

The first while-loop (lines 5-7) enforces EPIC. It first puts in R all variables that need to be checked for EPIC based on the auxiliary queue S (line 4). EPIC supports of variables i ∈ R are enforced by Procedure findEPICSupport (line 7). When enforcing the existential support for i, EPIC is only responsible for triangles on which i is not the smallest variable because DPIC will take care of the remaining ones (Algorithm 3, line 27). If i has no fully supported value (i.e., α > 0) such a value can be created by enforcing full PIC supports for every value of i on every triangle in which i is not the smallest variable (Algorithm 3, line 30). The EPIC supports of neighbor variables of i can also be destroyed (due to new values of non-zero cost made by the enforcement of full PIC supports on i) and thus are pushed back to R to be later checked for EPIC (Algorithm 3, line 31).

DPIC is enforced by the second while-loop at line 8. For a variable j ∈ P , only variables that are linked to j by a triangle (line 10) and are the smallest variable of the triangle (lines 11, 12) are considered for checking for DPIC.

PIC is enforced by two while-loops at lines 13 and 18. For a variable j ∈ Q, every neighbor variable of i is checked for PIC. For each c ij ∈ T , i, j and all variables connected to both i and j are checked for PIC. Simple PIC supports are enforced in the reverse direction of the DAC order, i.e. in triangles in which the considered variables are not the smallest (lines [START_REF] Larrosa | On arc and node consistency in weighted CSP[END_REF][START_REF] Larrosa | Existential arc consistency: getting closer to full arc consistency in weighted CSPs[END_REF][START_REF] Lee | Towards efficient consistency enforcement for global constraints in weighted constraint satisfaction[END_REF][START_REF] Lee | Consistency techniques for flow-based projection-safe global cost functions in weighted constraint satisfaction[END_REF][START_REF] Sánchez | Mendelian error detection in complex pedigrees using weighted constraint satisfaction techniques[END_REF].

From Algorithm 4, algorithms for enforcing other levels of PICs can be obtained by appropriately keeping the right inner while-loops: the first loop (lines 4-7) for EPIC, the second one at line 8 for DPIC, the third one at line 13 for PIC, and three loops at lines 8, 13, 18 for FDPIC.

10 foreach ∆ ijk do 11 if isSmallest(i, ∆ ijk)) then findFullPICSupport(i, ∆ ijk); 12 if isSmallest(k, ∆ ijk)) then findFullPICSupport(k, ∆ ijk); 13 while Q ≠ ∅ do 14 j ← Q.pop(); 15 foreach ∆ ijk do 16 if ¬isSmallest(i, ∆ ijk) then findPICSupport(i, ∆ ijk); 17 if ¬isSmallest(k, ∆ ijk) then findPICSupport(k, ∆ ijk); 18 while T ≠ ∅ do 19 c ij ← T .pop(); 20 foreach ∆ ijk do 21 if ¬isSmallest(i, ∆ ijk) then findPICSupport(i, ∆ ijk); 22 if ¬isSmallest(j, ∆ ijk) then findPICSupport(j, ∆ ijk); 23 if ¬isSmallest(k, ∆ ijk) then findPICSupport(k, ∆ ijk); 24 PruneVars()

Enforcing maxRPCs

In contrast to PICs that are enforced on triangles sharing a variable, maxRPCs are enforced on triangles sharing two variables of a binary cost function. The extensible arc support of a value (i, a) in a binary cost function c ij is stored in maxRPCSupport[i, a, j] and the witness for this support on a variable k is stored in maxRPCWitness[i, a, j, k]. In our algorithms for enforcing soft maxRPCs, we will use a parameter named fullLevel, where fullLevel = false indicates that semi-fully extensible arc supports are used (FDmaxRPC) and fullLevel = true indicates that fully extensible supports are used (EmaxRPC). We will use the following functions: b,c) denotes the minimum incompletely combined cost of tuples involving two values (i a , j b). This is the maximum cost that can be projected on the pair of values (i a , j b) from two sides c ik , c jk of the triangle ∆ ijk without creating negative costs.

-ijk (a, b, c) = c ik (a, c) + c jk (b, c) + c ijk (a, b, c): denotes the incompletely combined cost of tuple (a, b, c) (excluding c ij (a, b) from ∆ ijk (a, b, c)). -k ij (a, b) =min c∈D k ijk (a,
argmin k ij (a, b) is used to denote a value c ∈ D k for which this minimum is reached. It is a simple witness for the pair (a, b) on the variable k.

-¨ k ij (a, b, fullLevel) = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ min c∈D k { ijk (a, b, c) + c k (c)} (fullLevel = true) ∨ (i < k) min c∈D k { ijk (a, b, c)} (fullLevel = false) ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ is similar to k ij (a, b
) but it takes into account the unary cost c k of witnesses in the case of (1) fully extensible (fullLevel=true) or (2) semi-fully extensible arc supports on triangles w.r.t DAC order (i < k). argmin ¨ k ij (a, b) is used to denote the value c ∈ D k for which this minimum is reached. It is a (full) witness for the pair (a, b) on the variable k.

-ij (a, b) = ∑ k { k ij (a, b)}
is the maximum sum of costs that can be projected on the pair of values (i a , j b) from all triangles ∆ ijk sharing i, j.

-¨ ij (a, b, fullLevel) = ∑ k { ¨ k ij (a, b, fullLevel)} is similar to ij (a, b
) but takes into account the unary costs of witnesses c k according to fullLevel and the order between i and k as in the definition of ¨ k ij .

Enforcing maxRPC supports and witnesses

Simple maxRPC support for a value (i, a) on c ij is enforced by Procedure findmaxRPCSupport in Algorithm 5. The main idea is to move costs from two sides c ik , c jk of all triangles ∆ ijk to c ij via c ijk (lines 18-20) and finally project costs from c ij to (i, a) (line 21) in such a way that, for each triangle ∆ ijk , there exists a value b ∈ D j and a value c ∈ D k such that the binary and ternary costs involved in the tuple (i a , j b , k c) decrease to 0. The maximum cost P i that can be projected to (i, a) without creating negative costs is the minimum over all b ∈ D j of the binary cost of (i a , j b) that can be obtained by combining the original cost c ij (a, b) and the cost that can be shifted to it from all triangles (computed by function ij , line 8).From this, it becomes possible to compute the actual cost P ij [a, b] that each triangle ∆ ijk provides to (i a , j b) for this amount of projection to (i, a). It is the minimum of what is needed for this pair of values

(P i -c ij (a, b))
and of what can be provided for it by ∆ ijk (line 13). This condition guarantees that c ij has enough costs to make a unary cost projection P i on (i, a) without creating negative costs. Moreover, if more cost is projected on c ij , this cannot lead to a unary cost projection greater than P i . In order to project a cost of P ij Full maxRPC supports (covering both fully extensible supports for EmaxRPC and semi-fully extensible for FDmaxRPC) are enforced by findFullmaxRPCSupport in Algorithm 5. The idea for enforcing a full maxRPC support for value (i, a) on c ij is to extend unary costs from j to c ij (line 28) and from third variables k to c ik (line 32). Then, costs are moved in the same way as for simple maxRPC support in Procedure findmaxRPCSupport (line 33). The maximum cost P i that can be projected on (i, a) is recomputed by taking into account the unary cost c j of supporting values and the unary costs c k of witnesses via ¨ (line 25). In order to achieve this unary projection, each value (j, b), (k, c) needs to extend respectively on c ij and c ik an amount of cost E j , E k (lines 27 and 31). The order in which costs are moved when enforcing full maxRPC supports is described in Figure 15.

An EmaxRPC support for a variable i is enforced thanks to Procedure findEmaxRPCSupport(i) in Algorithm 5. It first checks the EmaxRPC property at line 36. If there does not exist any EmaxRPC support (line 37), the procedure will search for a full maxRPC support for any value of i in any cost function c ij by calling findFullmaxRPCSupport with the option fullLevel=true. It only has to take care of the triangles ∆ ijk in which i is the smallest variable, because DmaxRPC takes care of the remaining cases (the condition at line 29 of Procedure findFullmaxRPCSupport).

Fig. 15 The order of cost movements for enforcing simple full maxRPC supports where unary cost extensions are not included in the enforcement of simple PIC supports.

Example 3 Consider the CFN(a) in Figure 16. It is FDPIC but not FD-maxRPC because i a has no full AC support in c ij which can be can be extended on both ∆ ijk and ∆ ijl : (i a , j a) can be extended on ∆ ijl but not on ∆ ijk while (i a , j c) can be extended on ∆ ijk but ∆ ijl . The positive projection/extension costs computed by Procedure findFullmaxRPCSupport(i, a, j, false) are:

P i = 2, E j [b] = 1.
The procedure extends a cost of 1 from j b on c ij and then calls f indmaxRP C(i, a, j) which computes the following positive projections/extension costs:

P i = E jk [a, b] = P ij [a, a] = E jl [c, b] = E jl [c, b] = P ij [a, a] = 2. The final problem presented in Sub-figure 16(g) is FDmaxRPC.
Let j be a variable that had a change in the domain D j or in unary cost c j (increasing from 0). The former case can break the witness for simple or semi-full supports of variable i neighbor to j in some c ij , while the last case can break the witness for semi-full and full supports. The check and search for new witnesses is performed by Algorithm 6.

Procedure findWitness remove (i, k, j) handles the case of domain reduction in D j . For any value (i, a), it checks the availability of its current (simple or semi-full) support in c ik (line 5, algorithm 6), as well as the availability of Algorithm 5: Algorithms enforcing maxRPC supports 1 Procedure findmaxRPCSupport(i, j) 2 foreach a ∈ D i do findmaxRPCSupport(i, a, j) ; 3 UnaryProject(i, min a∈D i {c i (a)});

4 Procedure findFullmaxRPCSupport(i, j, fullLevel) 5 foreach a ∈ D i do findFullmaxRPCSupport(i, a, j, fullLevel) ; 6 UnaryProject(i, min a∈D i {c i (a)});

7 Procedure findmaxRPCSupport(i, a, j)

8 P i ← min b∈D j {c ij (a, b) + ij (a, b)}; 9 b * ← argmin b∈D j {c ij (a, b) + ij (a, b)}; 10 if P i = 0 then return; 11 foreach ∆ ijk do 12 foreach b ∈ D j do 13 P ij [a, b] ← min{P i -c ij (a, b), k ij (a, b)}; 14 foreach c ∈ D k do 15 E ik [a, c] ← min{c ik (a, c), max b∈D j {P i -c ijk (a, b, c) -c ij (a, b) -c jk (b, c)}}; 16 foreach b ∈ D j , c ∈ D k do 17 E jk [b, c] ← min{c jk (b, c), P i -c ijk (a, b, c) -c ij (a, b) -E ik [a, c]}; 18 foreach b ∈ D j , c ∈ D k do Extend2To3(j, b, k, c, c ijk , E jk [b, c]); 19 foreach c ∈ D k do Extend2To3(i, a, k, c, c ijk , E ik [a, c]); 20 foreach b ∈ D j do Project3To2(c ijk , i, a, j, b, P ij [a, b]); 21 Project2To1(c ij (a, b), i, a, P i); 22 maxRPCSupport[i, a, j] ← b * ; 23 foreach ∆ ijk do maxRPCWitness[i, a, j, k] ← argmin k ij (a, b *);
24 Procedure findFullmaxRPCSupport(i, a, j, fullLevel) // condition: i < j or fullLevel = true

25 P i ← min b∈D j {c j [b] + c ij (a, b) + ¨ ij (a, b)}; 26 foreach b ∈ D j do 27 E j ← P i -¨ ij (a, b) -c ij (a, b); 28 Extend1To2(j, b, c ij , E j);
29 foreach ∆ ijk s.t (fullLevel and ¬isSmallest(i, ∆ ijk)) or (¬fullLevel and i < k) do the current witness for this support on D j (line 7, algorithm 6). When the current support has been lost, another support needs to be created for (i, a) (line 11). Similarly, if the current witness is no longer available (line 7), another witness will be searched (line 8). If no witness exists (line 10), another simple or full support needs to be searched for (i, a) according to i > k (line 13) or i < k (line 14) respectively. Procedure findWitness project (i, k, j) handles the case where unary costs c j become positive. This procedure is responsible for semi-full supports as it is only called in the while-loop enforcing DmaxRPC at line 7 of Algorithm 7. It differs from findWitness remove() by the fact that unary costs are taken into account when checking the availability of the current supports and witnesses (line [START_REF] Larrosa | In the quest of the best form of local consistency for weighted CSP[END_REF][START_REF] Lee | Towards efficient consistency enforcement for global constraints in weighted constraint satisfaction[END_REF] and when looking for another witness (¨ instead of , line 22).

30 foreach c ∈ D k do 31 E k ← min(c k [c], max b∈D j {P i -∆ ijk (a, b, c)}); 32 Extend1To2(k, c, c ik , E k); 33 findmaxRPCSupport(i, a, j); 34 Procedure findEmaxRPCSupport(i) 35 fullLevel ← true; 36 α ← min a∈D i {c i (a) + ∑ c ij min b∈D j {c ij (a, b) + ¨ ij (a, b, fullLevel)}}; 37 if α > 0 then 38 foreach c ij do 39 foreach a ∈ D i do findFullmaxRPCSupport(i, a, j, fullLevel) ; 40 R ← R ∪ ⋃c ij {j}; 41 UnaryProject(i, α);

Soft maxRPC algorithms

Like PIC, EDmaxRPC includes all softening levels. We thus only present an algorithm for EDmaxRPC. maxRPC, DmaxRPC, FDmaxRPC, and EmaxRPC algorithms can be derived by keeping suitable blocks of code. EDmaxRPC is Algorithm 6: Algorithms enforcing maxRPC witnesses enforced by Procedure enforceEDmaxRPC() in Algorithm 7. It consists of four inner-while loops that handle the same propagation queues S, P, Q, T as in the EDPIC algorithm. The loop in line 12 enforces maxRPC by propagating domain reductions of j stored in the queue Q. For any neighbor value (i, a) of j, the deleted values in D j could have been: (1) the simple maxRPC support for (i, a) when i > j; (2) the simple witness for the simple maxRPC supports of (i, a) in some c ik when i > k; and (3) the simple witness for semi-full maxRPC supports of (i, a) in c ik (of course i < k) when i > j. The deleted values in D j could not have been the full supports and witnesses because they must have a cost of m to be removed. The loop must check and search for (1) a simple maxRPC (line [START_REF] Hurley | Multi-Language Evaluation of Exact Solvers in Graphical Model Discrete Optimization[END_REF][START_REF] Larrosa | On arc and node consistency in weighted CSP[END_REF] and (2) a simple witness (line 17). The loop at line 7 enforces DmaxRPC by propagating the increase from 0 of a unary cost c j stored in P . The predecessors i of j (such that c ij exists with i < j, line 9) may have lost full supports in c ij and thus new full supports need to be searched for values of i (line 10). Moreover, the full supports in c ik , i < k (line 11) can have lost full witnesses on j if i < j (line 9) and thus need to be searched for new witnesses (line 11).

The loop at line 4 enforces EmaxRPC by processing variables in the propagation queue R. The construction of R from the auxiliary queue S (line 3) is the same as in EDPIC. The search for a EmaxRPC support for a variable i is done by Procedure findEmaxRPCSupport(i) in Algorithm 5.

The loop at line 18 enforces maxRPC by propagating changes in binary costs c ij (caused by unary cost extensions from the greater variable between i and j on c ij) stored in queue T . Let i * and j * be respectively the greater and the smaller variable between i and j. The modified c ij : cannot break the full or semi-full maxRPC supports of the smaller variable j * because its values have been supported by values of zero cost.

can break the simple maxRPC supports for the values of the greater variable i * and thus new supports need to be searched for such values (line 21). can break the witnesses for maxRPC supports in c ik (line [START_REF] Sánchez | Mendelian error detection in complex pedigrees using weighted constraint satisfaction techniques[END_REF][START_REF] Schiex | Arc consistency for soft constraints[END_REF] or in c jk (line [START_REF] Schiex | Valued constraint satisfaction problems: hard and easy problems[END_REF][START_REF] Simoncini | Guaranteed discrete energy optimization on large protein design problems[END_REF].

From Algorithm 7 enforcing EDmaxRPC, we can obtain algorithms for enforcing other levels of maxRPCs by keeping the first while-loop at line 4 for EmaxRPC, the loop at line 7 for DmaxRPC, the loop at line 12 for maxRPC, and the three loops at lines 7, 12, 18 for FDmaxRPC.

Experimentation

In this section we provide an experimental evaluation of our soft consistencies. During experimentation, it quickly appeared that maintaining such strong consistencies during search was too time consuming. We therefore decided to relax them in three different ways, denoted as our three use cases.

The three use cases we have considered for our TRICs (triangle-based consistencies) are denoted as: -TRIC p : uses some TRIC for pre-processing and EDAC during search.

-TRIC rp : uses a restriction of some TRIC, a resTRIC (that will be explained later) for pre-processing, and EDAC during search. -TRIC rs : uses some resTRIC for both pre-processing and during search.

Restricted TRICs (resTRICs) are defined by limiting the number of triangles to be checked by the consistencies to some maximum. Defining the triangle density of a problem as the ratio of its number of triangles over the number of triangles in a complete graph, we observed that our soft consistencies are often too expensive when used for pre-processing problems having a triangle density larger than 10 -4 . We have therefore chosen to bound the number of triangles that are processed in our restricted TRICs to a maximum number (n(n -1)(n -2) 6) 10 4 denoted as c * . If c * < 10, we do not enforce resTRICs and use EDAC only. Otherwise, we bound the number of processed triangles to c * . When needed, the triangles chosen to be processed are selected as follows: for each binary cost function c ij we compute its mean cost as (∑ a∈Di,b∈Dj c ij (a, b)) (D i × D j). Triangles are then ranked by decreasing sum of the mean cost of the three involved binary cost functions and the first c * are selected.

In order to evaluate the practical interest of establishing TRICs and their variants, we compared them to the default local consistency enforced in toulbar23 : EDAC. Indeed, EDAC is still the preferred local consistency for Depth First Branch-and-Bound search. We used a large set of benchmarks, as described in Table 1, which has recently been used in [START_REF] Hurley | Multi-Language Evaluation of Exact Solvers in Graphical Model Discrete Optimization[END_REF] for comparing the performance of the toulbar2 solver with other solvers 4 . This set consists of the following groups of benchmarks 5 :

Table 1 The set of benchmarks where each line corresponds to a category of benchmarks (#inst: number of instances, n: mean number of variables, d: mean domain size, e: mean number of cost functions, r: mean arity of cost functions, c: mean number of triangles, c ′ : mean number of triangles used by TRICs rp , and ∆dens: mean triangle density). -WCSP: contains cost function networks extracted from the Cost Function Library 6 , including Combinatorial Auctions [START_REF] Larrosa | A logical approach to efficient max-sat solving[END_REF], Radio Link Frequency Assignment problems [START_REF] Cabon | Radio link frequency assignment[END_REF], Mendelian error correction problems on complex pedigree [START_REF] Sánchez | Mendelian error detection in complex pedigrees using weighted constraint satisfaction techniques[END_REF], Computational Protein Design problems [START_REF] Allouche | Decomposing global cost functions[END_REF] Our algorithms were all implemented with a time-limit after which we consider the instance as not solved by this algorithm. For all categories of instances except ChineseChars and GeomSurf7, the time-limit was set to 1200 seconds. For ChineseChars and GeomSurf7 we set the time-limit to 3600 seconds as the instances in these categories were significantly harder.

Categories

Number of solved instances

Table 2 reports the number of instances per category of benchmarks that are solved by a Depth-First Branch&Bound algorithm using each consistency (EDAC and TRICs implemented in the three use cases). The first block of three lines reports the total number of instances solved by each algorithm in all categories. The remaining lines focus on selected categories where a difference in behavior was observed. These results show that in general TRIC rp is the best choice, independently of the chosen triangle consistency. It however works best in combination with the strongest EDmaxRPC consistency. Then EDAC, TRIC rs , and finally TRIC p follow. One can observe that for the three use cases, TRICs (especially EDmaxRPC) are very efficient on the ChineseChars and GeomSurf7 problems, which are defined on grid graphs. While EDAC cannot solve any ChineseChars instance (this is also the case for all the other solvers reported in [START_REF] Hurley | Multi-Language Evaluation of Exact Solvers in Graphical Model Discrete Optimization[END_REF], including ILP and toulbar2 using VAC), TRICs can solve a certain number of instances (8 for PIC and 16 EDmaxRPC). Similarly, TRICs can solve up to 5% instances more than EDAC on GeomSurf-7. The advantage of TRICs on these problems are more clearly shown in Table 3: many instances cannot be solved in 1 hour by maintaining EDAC but can be solved by TRICs in less than 100 seconds.

On the rest of the benchmarks, especially on categories having a very large mean triangle density such as Geometric, MaxClique, ProteinFold, Auction and CELAR (respectively 0.086, 0.079, 0.52, 0.0869 and 0.228), TRIC p becomes worse than EDAC and solves 5,5%, 64%, 47%, 25% and 75% less instances respectively. The same behavior is observed on PackupWei (decrease by 11,5%). For these problems, the restricted versions TRIC rp can significantly improve the efficiency of TRIC p and give results comparable to EDAC, thanks to the reduction in the number of triangles processed. In all cases, TRIC rs are less efficient than TRIC rp . In Figure 17 we present a cactus plot over all instances of all categories. This gives us an overall view on the performance of our 18 TRICs and EDAC. This cactus plot makes obvious that TRICs rp are consistently the best while TRICs p are the worst, not only in terms of the number of solved instances, as shown in Table 2, but also in terms of running time. EDAC is ranked somewhere among the worst of the TRICs rp use case. EDmaxRPC rp , FDmaxRPC rp , and DmaxRPC rp are the three algorithms that seem to be the more reliable, being among the best whatever the time allowed. Surprisingly, there is no consistency that clearly outperforms the others on all use cases.

The apparent dominance of TRICS rp over TRICS p is also the direct consequence of the presence of a number of relatively easy instances in our set of benchmark problems. As we have seen, on families of hard instances, TRICS p can be more efficient than TRICS rp .

Number of backtracks

Figure 18 presents the mean number of backtracks, computed over all instances that could be solved by all approaches, for EDAC and the three use cases of TRICs. It shows that the number of backtracks is consistent with the Fig. 17 Cactus plot on the full set of benchmarks. A point (x, y) for a method m on this diagram means that method m is able to solve x problems if a deadline of y seconds is used for each problem independently.

Fig. 18 The mean number of backtracks, computed on the overall set of benchmarks, that are used by EDAC and TRICs in the three use cases bounds offered by TRICs to be solved. On these problems, when using TRICs for pre-processing, we can actually solve more instances in less time than EDAC. On these problems, restricted versions slightly reduce the advantage of TRICs. However, on problems having large triangle density, TRICs becomes significantly slower and thus solve less instances than EDAC. In these cases, using the restricted versions for pre-processing allows to improve the results. Finally, when the restricted TRICs are applied during both pre-processing and search, they always behave worse than when used for pre-processing only.

Conclusion

In this paper, we have proposed six softening levels for strong triangle-based consistencies. This gives rise to eighteen soft extensions of hard RPC, PIC and maxRPC to CFNs. We have done a pairwise comparison of all these consistencies, among themselves and against their AC counterparts. We have shown that the new consistencies are strictly stronger than their AC counterparts in the sense that they provide tighter lower bounds than ACs. This improvement in lower bound is important for reducing the number of backtracks and for accelerating search. We have proposed algorithms for enforcing the soft consistencies of the PIC and maxRPC families. The experimentation shows that our soft consistencies are efficient when applied as a pre-processing on graphs with a relatively low triangle density such as ChineseChars and GeomSurf-7, defined on grid graphs. However, their performance decreases on graphs having a large triangle density. To make these soft consistencies practicable on problems where the number of triangles is large, we designed a restricted version by limiting the number of triangles to be processed. The best choice overall seems to be to use this restricted version for pre-processing and to switch to EDAC during search.

Algorithm 1 :

 1 Operation for shifting costs in CFNs1 Procedure Shift(τ S , c S ′ , α) // condition:(1) S ⊂ S ′ , (2)c S (τ S)+m α ≥ 0, (3)c S ′ (τ ′ S ′) ≥ α ∶ ∀τ ′ S ′ ∈ (S ′), τ ′ S ′ [S] = τ S 2 c S (τ S) ← c S (τ S) +m α; 3 foreach τ ′ S ′ ∈ (S ′) s.t τ ′ S ′ [S] = τ S do

Fig. 1

 1 Fig.1Example of different extensibilities of the pair of values (ia, ja). k1 < i < j < k 2 .An edge appears between pairs of values with a non zero cost. In CFN(a), (ia, ja) is not simply extensible on k 1 . In CFN(b), (ia, ja) is simply extensible (on both k 1 , k 2) but is not directionally-fully extensible (because it is not fully extensible on k 2). In CFN(c), (ia, ja) is directionally-fully extensible w.r.t k 2 but is not semi-fully extensible (because it is not simply extensible on k 1). In CFN(d), (ia, ja) is semi-fully extensible (fully extensible on k 2 and simply extensible on k 1) but is not fully extensible (because it is not fully extensible on k 1). In CFN(e), (ia, ja) is fully extensible (on both k 1 , k 2).

 a) has only one simple arc support b ∈ D j then (i a , j b) is simply extensible, or (2) if i < j and (i, a) has only one full arc support b ∈ D j then (i a , j b) is semi-fully extensible.

 However, it is not FDRPC because the unique full support (i a , j a) of value (i, a) on c ij is not simply extensible on k 1 . -CFN(d) is FDRPC where the supports (i a , j a) and (i b , j b) are fully extensible on k 2 at (k 2 , b) and simply extensible on k 1 at (k 1 , b). At the same time, it is ERPC where (i, b), (j, b), (k 1 , a), (k 2 , a) are ERPC supports for variables i, j, k 1 and k 2 .

 Fig.2Example of soft PIC consistencies.k 1 < i < k 2 < j and ∃∆ ijk 1 , ∆ ijk 2 . The CFN(a) is not PIC because value (i, b) is not simply extensible to triangle ∆ ijk 1 . The CFN(b) is PIC but is not DPIC because value (i, b) is not fully extensible to triangle ∆ ijk 2 with i < j, i < k 2 .The CFN(c) is DPIC (because every value in D i can be fully extended to ∆ ijk 2 (the only triangle concerned by DPIC for i) but it is not FDPIC (because value (i, b) is not simply extensible to triangle ∆ ijk 1). The CFN(d) is FDPIC where every variable is simply extensible to 2 triangles and i is fully extensible to (i, j, k 2). The CFN(d) is also EPIC where (i, a), (j, a), (k 1 , a), (k 2 , a) are respectively EPIC supports of i, j, k 1 , k 2 .

 Fig.3Example of soft maxRPCs. k 1 < i < k 2 < j and ∃ ∆ ijk 1 , ∆ ijk 2 . The CFN(a) is not maxRPC because value (i, b) has no arc support in c ij (between (i b , ja) and (i b , jc)) that is simply extensible on both k 1 , k 2 . The CFN(b) is maxRPC but is not DmaxRPC because value (i, b) has no full arc support in c ij (between (i b , ja) and (i b , jc)) that is fully extensible to k 2 . The CFN(c) is DmaxRPC (because every value in D i has full arc support in c ij , c ik 2 that is respectively fully extensible on k 2 and j. Triangle ∆ ijk 1 is not involved in DmaxRPC for i). The CFN(c) is not FDmaxRPC because value (i, b) has no full support in c ij (between (i b , ja) and (i b , jc)) that is simply extensible on k 1 . The CFN(d) is both FDmaxRPC and EmaxRPC where (i, a), (k 1 , a), (j, a), (k 2 , a) are respectively EmaxRPC supports of variables i, k 1 , j, k 2 .

Definition 10 (

 10 Stronger relation) Given two soft consistencies A and B, -A is stronger than B, noted by A ≥ B, iff for every CFN P that satisfies A, P also satisfies B, i.e. B(P) = {P }. -A is stronger than B in terms of lower bound, noted by A ≥ c∅ B, iff for every CFN P that satisfies A and any P ′ ∈ B(P), then c ∅ [P ′] = c ∅ [P]. -A is strictly stronger than B, noted A > B, iff A ≥ B and ∃ a CFN P such that P satisfies B and A(P) ≠ {P }. -A is strictly stronger than B in terms of lower bound, noted A > c∅ B, iff A ≥ c∅ B and ∃ a CFN P such that P satisfies B and ∀P ′ ∈ A(P), c ∅ [P ′] > c ∅ [P].

Proposition 2 (

 2 Transitivity) Given three soft consistencies A, B, and C, a. If A ≥ B and B ≥ C then A ≥ C. b. If A > B and B > C then A > C. c. If A > B and B ≥ c∅ C then A ≥ c∅ C. Proof a. Let P be a CFN that satisfies A. Because A ≥ B and P satisfies A, B(P) = {P }, i.e. P also satisfies B. Because B ≥ C and P satisfies B, C(P) = {P }. Thus, if P satisfies A, C(P) = {P }, i.e. A ≥ C. b. (1) Because > implies ≥, we have A ≥ B and B ≥ C. So A ≥ C from the property (a). (2) Because A > B, there exists a CFN P satisfying B and A(P) ≠ {P }. Because P satisfies B and B ≥ C, P also satisfies C. Thus there exists P that satisfies C and A(P) ≠ {P }. So A > C. c. Because > implies ≥, we have A ≥ B. Let P be a CFN that satisfies A, P also satisfies B. Because B ≥ c∅ C and P satisfies B, ∀P ′ ∈ C(P), c ∅ [P ′] = c ∅ [P]. Thus, for every CFN which satisfies A,

Theorem 3 (

 3 Horizontal comparison) Given two different hard consistencies A and B in {AC, RP C, P IC, maxRP C}, given A, DA, F DA, EA, EDA the simple, directional, full directional, existential, existential directional variant of A and B, DB, F DB the simple, directional, full directional variant of B, a. (column 2-1): A ≍ DB b. (column 3-1,2): F DA > A, DA c. (column 4-1,2,3): EA ≍ B, DB, F DB d. (column 5-3,4): EDA > F DA, EA Proof a. A ≍ DB: using Figures 8 and 9. b. F DA > A, DA. The "stronger than" relation ≥ is implied by the definition of the consistencies. F DA > A: Figure 8 shows a problem which is maxRPC, PIC, RPC, AC but is not FDmaxRPC, FDPIC, FDRPC, FDAC. F DA > DA: Figure 9 shows a problem which is DmaxRPC, DPIC, DRPC, DAC but is not FDmaxRPC, FDPIC, FDRPC, FDAC. c. EA ≍ B, DB, F DB: using Figures 10 and 11. d. EDA > F DA, EA. The proof directly follows from the definitions. ⊓ ⊔ Theorem 4 (Incomparability) For any pair of consistencies which is not covered by the three previous theorems, the consistencies are incomparable. Proof -FDAC ≍ RPC,PIC,maxRPC, DRPC,DPIC,DmaxRPC: using Figures 5, 8 and 9. -FDRPC ≍ PIC,maxRPC, DPIC,DmaxRPC: using Figures 6, 8 and 9.

Fig. 9 A

 9 Fig.9A CFN which is directional consistent (i > j > k) but is non-directional inconsistent. The problem is not AC because (i, a) has no arc support in c ij . However, the problem is DAC because every value of j and k has full arc support in c ji , c ki . Moreover, the problem is DmaxRPC (hence DPIC, DRPC) because every value of j and k can be fully extended on the triangle (in the triangle ∆ ijk , only the smallest variable k and c ki , c kj are concerned by triangle-based directional consistencies).

Fig. 11 AFig. 12 A

 1112 Fig.11A CFN which is existential consistent but not full directional consistent for i > j > k. The problem is not AC (hence is not RPC, PIC, maxRPC) because of value (i, a) (no arc support in c ij) and is not DAC (hence is not DRPC, DPIC, DmaxRPC) because of value (j, b) (no full arc support in c ij). However, the problem is EmaxRPC (hence EPIC, ERPC, EAC) where (i, b), (j, a), (k, a) are respectively EmaxRPC supports of i, j, k.

Algorithm 2 : 2 /3 4 T6 8 / 11 / 13 P

 22481113 Elementary operations1 Procedure Extend1To2(i, a, c ij , α) / precondition: c i (a) ≥ α > 0 Shift((i, a), c ij , -α); ← T ∪ {c ij }; 5 Procedure Extend2To3(i, a, j, b, c ijk , α) // precondition: c ij (a, b) ≥ α > 0 Shift((ia, j b), c ijk , -α); 7 Procedure Project3To2(c ijk , i, a, j, b, α) / precondition: ∀c ∈ D k , c ijk (a, b, c) ≥ α 9 Shift((ia, j b), c ijk , α); 10 Procedure Project3To1(c ijk , i, a, α) / precondition: ∀b ∈ D j , c ∈ D k , c ijk (a, b, c) ≥ α 12 if c i (a) = 0 ∧ α > 0 then ← P ∪ {i}; S ←S ∪ {i}; 14 Shift(ia, c ijk); 15 Procedure Project2To1(c ij , i, a, α) // precondition: ∀b ∈ D j , c ij (a, b) ≥ α 16 if c i (a) = 0 ∧ α > 0 then 17 P ← P ∪ {i}; S ← S ∪ {i}; 18 Shift(ia, c ij);

Fig. 14

 14 Fig. 14 Cost evolution in a CFN during the enforcement of full PIC supports (a) original problem with 5 binary cost functions c ij , c ik , c il , c jk , c jl , i < j < k < l. It is FDAC but not FDPIC because of variable i where (i, a) and (i, b) cannot be fully extended on ∆ ijk and ∆ ijl respectively. (b) extending a cost of 1 from j b on c ij with E j [b] = 1. (c) extending a cost of 1 from (ia, j b), (ia, ka) and (ja, k b) on c ijk with E ij [a, b] = E ik [a, a] = E jk [a, b] = 1. (d) projecting a cost of 1 from c ijk on ia with P i [a] = 1. (e) extending a cost of 1 from (i b , j b), (i b , la) and (ja, l b) on c ijk with E ij [b, b] = E il [b, a] = E jl [a, b] = 1. (f) projecting a cost of 1 from c ijk on i b with P i [b] = 1 and then enforcing NC by projecting a cost of 1 from c i on c∅. The resulting problem is FDPIC.

Algorithm 4 : 2 S 4 R 5 while R ≠ ∅ do 6 i 7 findEPICSupport(i); 8 while P ≠ ∅ do 9 j

 42456789 Algorithm enforcing EDPIC 1 Procedure enforceEDPIC() = P = Q = X; T ← ∅; 3 while Q ≠ ∅ or P ≠ ∅ or S ≠ ∅ or T ≠ ∅ do ← S ∪ ⋃i∈S,∆ ijk {j, k}; ← R.pop(); ← P .pop();

 [a, b] from c ijk to (i a , j b) (line 20), each side (i a , k c) and (j b , k c) has to extend an amount of cost E ik [a, c] and E jk [b, c] to c ijk (lines 19 and 18). These binary cost extensions E ik [a, c], E jk [b, c] are also the minimum of the available cost c ik (a, c), c jk (b, c) that (i a , k c), (j b , k c) have and the cost that they need to provide to c ijk (lines 15, 17).

Fig. 16

 16 Fig. 16 Cost evolution during enforcing full maxRPC supports in a CFN (a) original problem with 5 binary cost functions c ij , c ik , c il , c jk , c jl and 2 ternary functions c ijk , c ijl , i < {j, k, l}. It is FDPIC but not FDmaxRPC due to ia (no full maxRPC support in c ij) (b) extending a cost of 1 from j b on c ij with E j [b] = 1 (c) extending a cost of 2 from (ja, k b) on c ijk with E jk [a, b] = 2 (d) projecting a cost of 2 from c ijk on (ia, ja) with P ij [a, a] = 2 (e) extending a cost of 2 from (jc, l b) on c ijk with E jl [c, b] = 2 (f) projecting a cost of 2 from c ijk on (ia, jc) with P ij [a, a] = 2 (g) projecting a cost of 2 from c ij on ia with P i = 2 and then making NC by projecting a cost of 2 from i to c∅. The resulting problem is FDmaxRPC.

Algorithm 7 : 3 R 4 while R ≠ ∅ do 5 j ← R; 6 findEmaxRPCSupport (j); 7 while P ≠ ∅ do 8 j ← P ; 9 foreach 12 while Q ≠ ∅ do 13 j ← Q; 14 foreach c ij do 15 if i > j then 16 foreach

 734567891213141516 Algorithm enforcing EDmaxRPC1 Procedure enforceEDmaxRPC 2 while S ≠ ∅ or P ≠ ∅ Q ≠ ∅ or T ≠ ∅ do ← S ∪ ⋃i∈S,c ij {j}; c ij , i < j do 10 foreach a ∈ D i do findFullmaxRPCSupport (i, a, j, ¬fullLevel) ; 11 foreach ∆ ikj , i < k do findWitness project (i, k, j) ; a ∈ D i do findmaxRPCSupport (i, a, j) ; 17 foreach ∆ ikj s.t. i > j or i > k do findWitness remove (i, k, j) ;18 while T ≠ ∅ do 19 c ij ← T ; i * ←max{i, j}; j * ←min{i, j}; 20 foreach a ∈ D i * do 21 findmaxRPCSupport(i * , a, j *); 22 foreach ∆ ijk do 23 findWitness remove(i, k, j); 24 findWitness remove(k, i, j); 25 findWitness remove(j, k, i); 26 findWitness remove(k, j, i); 27 PruneVars();

 -P is PIC if it is AC and ∀i ∈ X, ∀a ∈ D i , ∀∆ ijk , (i, a) is simply extensible on ∆ ijk .-P is directional PIC (DPIC) if it is DAC and ∀i ∈ X, ∀a ∈ D i , ∀∆ ijk such that i < j, i < k, (i, a) is fully extensible on ∆ ijk . -P is full directional PIC (FDPIC) if it is FDAC and ∀i ∈ X, ∀a ∈ D i , ∀∆ ijk , (i, a) is fully extensible on ∆ ijk if i < j, i < k and simply extensible on ∆ ijk

	otherwise.
	-P is existential PIC (EPIC) if ∀i ∈ X, there exists a value a ∈ D i such that
	(1) c i (a) = 0, (2) i a has a full arc support in every cost function (i.e., P is
	EAC) and (3) (i, a) is fully extensible on every triangle.
	-P is existential directional PIC (EDPIC) if it is EPIC and FDPIC.
	-P is virtual PIC (VPIC) if the PIC-closure of Bool(P) is non-empty.
	See examples in Figure
	Definition 8 (Soft path inverse consistencies (Soft PICs)) Given a
	CFN P = (X, C, D, m) and an order < on variables,

2

 Example of soft PIC consistencies. k 1 < i < k 2 < j and ∃∆ ijk 1 , ∆ ijk 2 . The CFN(a) is not PIC because value (i, b) is not simply extensible to triangle ∆ ijk 1 . The CFN(b) is PIC but is not DPIC because value (i, b) is not fully extensible to triangle ∆ ijk 2 with i < j, i < k 2 .The CFN(c) is DPIC (because every value in D i can be fully extended to ∆ ijk 2

	(the only triangle concerned by DPIC for i) but it is not FDPIC (because value (i, b) is not
	simply extensible to triangle ∆ ijk 1). The CFN(d) is FDPIC where every variable is simply
	extensible to 2 triangles and i is fully extensible to (i, j, k 2). The CFN(d) is also EPIC where (i, a), (j, a), (k 1 , a), (k 2 , a) are respectively EPIC supports of i, j, k 1 , k 2 .

 Given a CFN P = (X, D, C, m) and an order < on the variables,-P is maxRPC if it is AC and ∀i ∈ X, ∀a ∈ D i , ∀c ij ∈ C there exists a simple arc support b ∈ D j such that (i a , j b) is simply extensible. -P is directional maxRPC (DmaxRPC) if it is DAC and ∀i ∈ X, ∀a ∈ D i , ∀c ij ∈ C such that i < j,there exists a full arc support b ∈ D j such that (i a , j b) is directionally-fully extensible. -P is full directional maxRPC (FDmaxRPC) if it is FDAC and for ∀i ∈ D, ∀a ∈ D i , ∀c ij ∈ C (1) if i > j, there exists a simple arc support b ∈ D j such that (i a , j b) is simply extensible. (2) otherwise, if i < j, there exists a full arc support b ∈ D j such that (i a , j b) is semi-fully extensible. -P is existential maxRPC (EmaxRPC) if ∀i ∈ X, there exists a value a ∈ D i

	Definition 9 (Soft max-restricted path consistencies (Soft maxR-
	PCs)) such that (1) c i (a) = 0, (2) i a has a full arc support in every cost function
	(i.e., P is EAC) and (3) ∀c ij ∈ C, there exists a full arc support b ∈ D j such
	that (i a , j b) is fully extensible.
	-P is existential directional maxRPC (EDmaxRPC) if it is EmaxRPC and
	FDmaxRPC.
	-P is virtual maxRPC (VmaxRPC) if the maxRPC-closure of Bool(P) is
	non-empty
	See examples in Figure

 [START_REF] Berlandier | Improving domain filtering using restricted path consistency[END_REF] Example of soft maxRPCs. k 1 < i < k 2 < j and ∃ ∆ ijk 1 , ∆ ijk 2 . The CFN(a) is not maxRPC because value (i, b) has no arc support in c ij (between (i b , ja) and (i b , jc)) that is simply extensible on both k 1 , k 2 . The CFN(b) is maxRPC but is not DmaxRPC because value (i, b) has no full arc support in c ij (between (i b , ja) and (i b , jc)) that is fully extensible to k 2 . The CFN(c) is DmaxRPC (because every value in D i has full arc support in c ij , c ik 2 that is respectively fully extensible on k 2 and j. Triangle ∆ ijk 1 is not involved in DmaxRPC for i). The CFN(c) is not FDmaxRPC because value (i, b) has no full support in c ij (between (i b , ja) and (i b , jc)) that is simply extensible on k 1 . The CFN(d) is both FDmaxRPC and EmaxRPC where (i, a), (k 1 , a), (j, a), (k 2 , a) are respectively EmaxRPC supports of variables i, k 1 , j, k 2 .

 5, 10 and 11. -EDRPC ≍ EPIC, EmaxRPC, FDPIC, FDmaxRPC, DPIC, DmaxRPC, PIC, maxRPC: using Figures 6, 10 and 11. -EDPIC ≍ EmaxRPC, FDmaxRPC, DmaxRPC, maxRPC: using Figures 7, 10 and 11. -VAC ≍ c∅ (ED/E/FD/D/-)(RPC/PIC/maxRPC): using Figures 5 and 12.-VRPC ≍ c∅ (ED/E/FD/D/-)(PIC/maxRPC): using Figures6 and 12.-VPIC ≍ c∅ (ED/E/FD/D/-)maxRPC: using Figures7 and 12.

											⊓ ⊔
		i	a	b							
	a			a	AC RPC DRPC FDRPC DAC FDAC	EAC ERPC EDRPC EDAC	VAC VRPC
	b				b	PIC	DPIC	FDPIC	EPIC	EDPIC	VPIC
	j	l	a	b	k	max	Dmax	FDmax	Emax	EDmax	Vmax

 A CFN that satisfies all RPC consistencies but does not satisfy any PIC consistency.

			FDRPC ERPC EDRPC VRPC
	PIC	DPIC	FDPIC	EPIC	EDPIC	VPIC
	max	Dmax	FDmax	Emax	EDmax	Vmax
	Fig. 6					

i < j < k < l < m. Every value of i satisfies RPC consistencies because it has more than 2 full (hence simple) arc supports in c ik , c ij , c il , c im . The problem does not satisfy any PIC consistency because of variable i (value (i, a) is not simply (hence not fully) extensible to triangle ∆ ilm while (i, b) is not simply (hence not fully) extensible to triangle ∆ ijk).

 Fig.10A CFN which is full directional consistent but is existential inconsistent for l < j < k < i. The problem is not EAC (hence not ERPC, EPIC, EmaxRPC) because of value i (ia has no full support in c ij while i b has no full support in c il). However, the problem is FDmaxRPC (hence FDPIC, FDRPC) because it is FDAC and every value of i, k can be simply extended to both triangles and every value of j, l can be fully extended to ∆ jik and ∆ lik respectively.

		i					
			a	AC	DAC	FDAC	EAC	EDAC
	1		1	RPC	DRPC	FDRPC	ERPC	EDRPC
				PIC	DPIC	FDPIC	EPIC	EDPIC
				maxRPC	DmaxRPC	FDmaxRPC	EmaxRPC	EDmaxRPC
	j k	l				
	b		b	AC	DAC	FDAC	EAC	EDAC
	a		a	RPC	DRPC	FDRPC	ERPC	EDRPC
	i		j	PIC maxRPC DmaxRPC FDmaxRPC EmaxRPC EDmaxRPC DPIC FDPIC EPIC EDPIC
	k	a	b				

1

 Procedure findWitness remove (i, k, j) // called upon reduction of domain D j , used to search for a witness in D j for the support of values of i in c ik such that i > j or i > k Procedure findWitness project (i, k, j) // called upon cost projection on a value of zero cost in D j , used to search for a full witness in D j for the full supports of values of i in c ik such that i < j, i < k

	2 3 4	foreach a ∈ D i do s ← maxRPCSupport[i, a, k]; need ← false; // need to search for a new simple support from
		scratch
	5 6 7 8 9	if s ∈ D k and c ik (a, s) = 0 and (i > k or c k (s) = 0) then w ← maxRPCWitness[i, a, k, j]; if w ∉ D j or ∆ ikj (a, s, w) > 0 then if j ik (a, s) = 0 then maxRPCWitness[i, a, k, j] ← argmin j ik (a, s);
	10	else need ← true;
	11	else need ← true;
	12	if need=true then
	13 14	if i > k then findmaxRPCSupport (i, a, k); else findFullmaxRPCSupport (i, a, k, ¬fullLevel);
	16 17	foreach a ∈ D i do s ← maxRPCSupport[i, a, k];
	22 23	if ¨ j ik (a, s, ¬fullLevel) = 0 then maxRPCWitness[i, a, k, j] ← argmin ¨ j ik (a, s);

15 18 need ← false; // need to search for a new full support from scratch 19 if s ∈ D k and c k (s) + c ik (a, s) = 0 then 20 w ← maxRPCWitness[i, a, k, j]; 21 if w ∉ D j or c j (w) > 0 or ∆ ikj (a, s, w) > 0 then 24 else need ← true; 25 else need ← true; 26 if need=true then findFullmaxRPCSupport (i, a, k, ¬fullLevel);

 We only excluded from the set all 35 Minizinc instances as well as two subcategories (UAI/DBN, 108 instances and CSP/warehouse, 55 instances) that contain no triangle of binary cost functions. Over the original 3,018 original instances, 2,820 remain.5 All the instances are available at http://genoweb.toulouse.inra.fr/ ~degivry/evalgm.

		#inst	n	d	e	r	c	c ′	∆dens
	CVPR	1453							
	ChineseChars	100	9147	2	276677	2	86557	86557	1.14E-06
	ColorSeg	21	108910	9	474745	2	131805	32998	2.73E-09
	GeomSurf-3	300	505	3	2140	3	8	8	4.46E-07
	GeomSurf-7	300	505	7	2140	3	1366	1265	0.00018
	InPainting	4	14400	4	57121	2	17732	17732	3.56E-08
	Matching	4	19	19	166	2	701	0	0.679
	MatchingSte	2	138407	18	414477	2	8	8	2.70E-14
	ObjectSeg	5	68160	6	203947	2	31	31	5.91E-13
	PhotoMont	2	469856	6	1408134	2	521	521	4.03E-14
	SceneDecp	715	183	8	672	2	48	42	4.80E-05
	MaxCSP	503							
	BlackHole	37	114	27	657	2	5375	38	0.01
	Coloring	22	120	4	1323	2	1227	277	0.024
	Composed	80	58	10	517	2	791	0	0.079
	EHI	200	306	7	4549	2	13604	475	0.0029
	Geometric	100	50	20	471	2	1694	0	0.086
	Langford	4	25	22	352	2	2722	0	0.736
	QCP	60	159	7	1384	2	2671	108	0.0057
	MaxSAT	427							
	Haplotyping	100	150428	2	534105	483	61646	61646	2.39E-10
	MaxClique	62	484	2	50093	2	1070886	2019	0.079
	MIPLib	12	10523	2	45991	20	104	104	5.92E-07
	PackupWei	99	9492	2	23731	61	9236	9236	6.87E-07
	PlanWithPre	29	14991	2	111259	64	8026	8026	1.76E-06
	TimeTabling	25	128243	2	785222	21	40052	40052	1.58E-09
	Upgrad	100	18169	2	105097	77	1884	1884	1.88E-09
	UAI	211							
	Grid	21	3143	2	9379	2	2	2	3.74E-08
	ImageAlign	10	191	70	1819	2	6218	37	0.0058
	Linkage	22	917	5	1560	4	13	13	2.23E-07
	ObjDetect	37	60	17	1830	2	34220	0	1
	ProteinFold	21	486	267	2291	2	4698	273	0.52
	Segment	100	229	12	851	2	315	185	0.00016
	CFN	226							
	Auction	170	140	2	3593	2	47707	57	0.0869
	CELAR	16	126	44	641	2	837	46	0.228
	Pedigree	10	1758	11	3247	3	70	70	3.96E-06
	ProteinDsn	10	13	123	97	2	311	0	0.966
	SPOT5	20	385	4	6603	3	35976	2900	0.0055

4

 and SPOT5 satellite scheduling problems[START_REF] Bensana | Earth observation satellite management[END_REF].-MaxCSP 7 : contains unsatisfiable binary CSP instances with constraints defined in extension, including BlackHole, Langford, Quasi-group completion problem,graph coloring, random composed, and random Geometric. -UAI: consists of Markov Random Field problems that are collected from the Probabilistic Inference Challenge 2011 8 and Genetic Linkage Analysis problems[13]. -MaxSAT: contains Max-SAT instances that are collected from the Max-SAT Evaluation 9 . -CVPR: contains MRF instances from the Computer Vision and Pattern Recognition (CVPR) OpenGM2 benchmark 10 .

Table 2 :

 2 The number of instances per category solved in less than 1200 seconds (1 hour for the CVPR group). Each block corresponds to a category of benchmarks whose name and size are given in the two first columns. The number of instances per category solved by EDAC and TRICs are respectively given in the 3rd and the 8 last columns. Three lines of the combined blocks correspond respectively to the three use cases: TRICs p , TRICs rp and TRICs rs . For the categories absent from the table, TRICs p , TRICs rp and TRICs rs give the same result as EDAC. Best results are in bold.

	Problems	inst	EDAC	PIC	DPIC	FDPIC	EDPIC	maxRPC	DmaxRPC	FDmaxRPC	EDmaxRPC
	Summary	2820 p 2053 1972 1980 1979 1979 1967 1982 1980 1981
			rp	2051 2055 2060 2058 2059 2069 2072 2074
			rs	2013 2031 2030 2018 1993 2010 1992 1998
	ChineseChars 100	p 0	8	8	10	10	10	9	10	16
			rp	9	7	9	10	14	10	13	15
			rs	9	9	10	10	11	10	12	11
	GeomSurf-7	300	p 281	280	287	285	288	281	292	292	295
			rp	280	284	288	290	280	292	292	294
			rs	278	283	289	287	273	285	281	282
	Coloring	22	p 17	18	18	17	17	18	18	18	18
			rp	17	17	17	17	17	17	17	17
			rs	17	17	16	16	17	16	16	16
	Geometric	100	p 91	88	87	87	86	87	87	86	86
			rp	92	91	92	92	92	93	91	92
			rs	90	90	90	86	87	87	88	86
	QCP	60	p 14	14	14	14	14	14	14	14	14
			rp	14	14	14	14	14	14	14	14
			rs	14	14	14	14	13	13	13	14
	Haplotyping	100	p 1	1	1	1	1	1	2	2	1
			rp	1	1	1	1	2	2	2	2
			rs	1	1	1	1	1	1	1	1
	MaxClique	62	p 33	15	14	15	14	13	12	14	13
			rp	28	29	30	29	29	29	30	30
			rs	24	27	24	26	23	23	22	22
	MIPLib	12	p 3	3	3	3	3	3	3	3	3
			rp	3	3	3	3	3	3	3	3
			rs	2	2	2	2	2	2	2	2
	PackupWei	99	p 52	48	47	47	47	47	46	47	47
			rp	48	46	48	47	48	47	47	47
			rs	41	39	42	40	41	39	40	40
	Upgrad	100	p 100 100 100 100 98	100 100 99	98
							Continued on next page	

Table 2 -

 2 Continued from previous page

	Problems	inst	EDAC	PIC	DPIC	FDPIC	EDPIC	maxRPC	DmaxRPC	FDmaxRPC	EDmaxRPC
			rp	96	100 96	92	97	99	98	97
			rs	92	100 94	92	89	96	93	91
	ImageAlign	10	p 10	7	9	7	7	6	7	5	5
			rp	10	10	10	10	10	10	10	10
			rs	10	10	10	10	10	10	10	10
	Linkage	22	p 13	13	13	13	14	14	13	15	15
			rp	14	13	14	14	14	14	15	15
			rs	11	10	11	10	9	10	10	9
	ProteinFold	21	p 19	10	10	10	10	10	10	10	10
			rp	20	20	20	20	20	20	20	20
			rs	20	20	20	20	20	20	19	20
	Segment	100	p 100 100 100 100 100 100 100 100 100
			rp	99	100 100 100 99	99	100 100
			rs	98	100 99	98	98	100 98	98
	Auction	170	p 166	126	128	130	129	125	129	129	125
			rp	167 167 166	167 167 167 167 165
			rs	154	156	156	154	147	146	146	144
	CELAR	16	p 12	4	4	3	3	3	3	3	3
			rp	12	12	11	11	12	12	12	12
			rs	11	12	11	11	11	11	11	11
	Matching	4	p 4	4	4	4	4	2	4	0	0
			rp	4	4	4	4	4	4	4	4
			rs	4	4	4	4	4	4	4	4
	ProteinDsn	10	p 9	5	5	5	5	5	5	5	4
			rp								

c S ′ (τ ′ S ′) ← c S ′ (τ ′ S ′) -m α;

There exists tiny variations on the definition of AC for CFNs. This paper uses the definition in[START_REF] Larrosa | Solving weighted CSP by maintaining arc consistency[END_REF] which simplifies the definition in[START_REF] Cooper | Arc consistency for soft constraints[END_REF] by not considering the propagation of inconsistent tuples.

http://mulcyber.toulouse.inra.fr/projects/toulbar2/ version 0.9.6 branch maxrpc.

Acknowledgements This work has been partly funded by the "Agence nationale de la Recherche", reference ANR-10-BLA-0214.

strength of the consistencies. In almost all use cases, TRICs use less backtracks than EDAC, TRICs p being the best. Compared to EDAC, (1) TRICs p reduce the number of backtracks by 35% (2) TRICs rp only slightly decrease the number of backtracks because of their reduced strength, and on many categories of benchmarks with a significantly reduced number of triangles they become almost equivalent to EDAC (3) TRICs rs produce a smaller number of backtracks than TRICs rp (thanks to the strengthened filtering during search) but still larger than TRICs p (because of their significant reduced strength).

To summarize these experiments, it appears that some problems, as illustrated by the ChineseChars and GeomSurf7 cases, require the tightened lower