
HAL Id: lirmm-01374523
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01374523v1

Submitted on 18 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computing and Restoring Global Inverse Consistency in
Interactive Constraint Satisfaction�

Christian Bessiere, Hélène Fargier, Christophe Lecoutre

To cite this version:
Christian Bessiere, Hélène Fargier, Christophe Lecoutre. Computing and Restoring Global Inverse
Consistency in Interactive Constraint Satisfaction�. Artificial Intelligence, 2016, 241, pp.153-169.
�10.1016/j.artint.2016.09.001�. �lirmm-01374523�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01374523v1
https://hal.archives-ouvertes.fr

Computing and Restoring Global Inverse Consistency
in Interactive Constraint Satisfaction

Christian Bessierea, Hélène Fargierb, Christophe Lecoutrec

aLIRMM-CNRS, University of Montpellier, France
bIRIT-CNRS, University of Toulouse, France
cCRIL-CNRS, University of Artois, France

Abstract

Some applications require the interactive resolution of a constraint problem by
a human user. In such cases, it is highly desirable that the person who inter-
actively solves the problem is not given the choice to select values that do not
lead to solutions. We call this property global inverse consistency. Existing sys-
tems simulate this either by maintaining arc consistency after each assignment
performed by the user or by compiling offline the problem as a multi-valued
decision diagram. In this article, we define several questions related to global
inverse consistency and analyze their complexity. Despite their theoretical in-
tractability, we propose several algorithms for enforcing and restoring global
inverse consistency and we show that the best version is efficient enough to be
used in an interactive setting on several configuration and design problems.

Keywords: Constraint Satisfaction Problems, Configuration, Global Inverse
Consistency

1. Introduction

Constraint Programming (CP) is widely used to express and solve combina-
torial problems. Once a problem is modeled as a constraint network, efficient
solving techniques generate a solution satisfying the constraints, if such a solu-
tion exists. However, there are situations where the user has strong opinions
about the way to build good solutions to the problem but some of the desir-
able/undesirable combinations will become clear only once some of the variables
are assigned. In this case, the constraint solver should be there to assist the user
in the solution design and to ensure her choices remain in the feasible space,

IThis paper is an invited revision of a paper which first appeared at the 18th International
Conference on Principles and Practice of Constraint Programming (CP 2013) [1]. This article
additionally contains a new section on restoring global inverse consistency after the retraction
of a decision from the user. It also contains additional experiments.

Email addresses: bessiere@lirmm.fr (Christian Bessiere), fargier@irit.fr (Hélène
Fargier), lecoutre@cril.fr (Christophe Lecoutre)

Preprint submitted to Elsevier September 29, 2016

removing the combinatorial complexity from her shoulders. See the Synthia
system for protein design as an early example of using CP to interactively solve
a problem [2]. Another well known example of such an interactive solving of
constraint-based models is product configuration [3, 4]. The person modeling
the product as a constraint network for the company knows its technical and
marketing requirements. She models the feasibility, availability and/or mar-
keting constraints about the product. This constraint network captures the
catalog of possible products, which may contain billions of solutions, but in an
intentional and compact way. Nevertheless, the modeler does not know the con-
straints or preferences of the customer(s). This is the customer who will look
for solutions, with her own constraints and preferences on the price, the color,
or any other configurable feature.

These applications refer to an interactive solving process where the user
selects values for variables according to her own preferences and the system
checks the constraints of the network, until all variables are assigned and satisfy
all constraints of the network. This solving policy raises an important issue:
the person who interactively solves the problem should not be led to a dead-end
where satisfying all constraints of the network is impossible. Existing interactive
solving systems address this issue either by compiling the constraint network
into a multi-valued decision diagram (MDD) at the modeling phase [4, 5, 6] or
by enforcing arc consistency on the network after each assignment performed
by the user [2]. Compiling the constraint network as an MDD can require a
significant amount of time and space. That is why compilation is performed
offline (before the solving session). As a consequence, configurators based on
an MDD compilation are restricted to static constraint networks: non-unary
constraints can neither be added nor removed once the network is compiled.
It is thus not possible for the user to perform complex requirements, e.g. she
is interested in traveling to Venezia only during the carnival period. Arc and
dynamic arc consistencies require a lighter computational effort but the user
can be trapped in dead-ends, which is very risky from a commercial point of
view. It has been shown in [7] that arc consistency (and even higher levels of
local consistency) can be very bad approximations of the ideal state where all
values remaining in the network can be extended to solutions.

The message of our article is that for many of the problems that require
interactive solving of the problem, and especially for real problems, it is com-
putationally feasible to maintain the domains of the variables in a state where
they only contain those values which belong to a complete solution extending
the current choices of the user. Inspired by the nomenclature used in [8] and
[9], we call this level of consistency global inverse consistency (GIC).

Our contribution addresses several aspects. First, we formally characterize
the questions that underlie the interactive constraint solving loop and we show
that they are all NP-hard. Second, we provide several algorithms with increasing
sophistication to address those tasks. Third, we experimentally show that the
most efficient of our algorithms is efficient enough to be used in an interactive
constraint solving loop of several non trivial configuration and design problems.

2

2. Background

A (discrete) constraint network (CN) N is composed of a finite set of n
variables, denoted by vars(N), and a finite set of e constraints, denoted by
cons(N). Each variable x has a domain which is the finite set of values that can
be assigned to x. The initial domain of a variable x is denoted by dominit(x)
whereas the current domain of x is denoted by dom(x); we always have dom(x) ⊆
dominit(x). Sometimes, we use domN (x) to denote the domain of x in the
context of the CN N . The maximum domain size of a variable in a given CN
is denoted by d. To simplify, a variable-value pair (x, a) such that x ∈ vars(N)
and a ∈ domN (x) is called a value of N ; we note values(N) = {(x, a) | x ∈
vars(N)∧a ∈ domN (x)}. Each constraint c involves an ordered set of variables,
called the scope of c and denoted by scp(c), and is semantically defined by a
relation, denoted by rel(c), which contains the set of tuples allowed for the
variables involved in c. The arity of a constraint c is the size of scp(c), and will
usually be denoted by r.

An instantiation I of a set X = {x1, . . . , xk} of variables is a set {(x1, a1),
. . ., (xk, ak)} such that ∀i ∈ 1..k, ai ∈ dominit(xi); X is denoted by vars(I) and
each ai is denoted by I[xi]. An instantiation I on a CN N is an instantiation
of a set X ⊆ vars(N); it is complete if vars(I) = vars(N). I is valid on N
iff ∀(x, a) ∈ I, a ∈ dom(x). I covers a constraint c iff scp(c) ⊆ vars(I), and
I satisfies a constraint c with scp(c) = {x1, . . . , xr} iff (i) I covers c and (ii)
the tuple (I[x1], . . . , I[xr]) ∈ rel(c). An instantiation I on a CN N is locally
consistent iff (i) I is valid on N and (ii) every constraint of N covered by I
is satisfied by I. A solution of N is a complete locally consistent instantiation
on N ; sols(N) denotes the set of solutions of N . A CN N is satisfiable iff
sols(N) 6= ∅.

The ubiquitous example of constraint propagation is enforcement of gen-
eralized arc consistency (GAC) which removes values from domains without
reducing the set of solutions of the constraint network. A value (x, a) of a CN
N is GAC on N iff for every constraint c of N involving x, there exists a valid
instantiation I of scp(c) such that I satisfies c and I[x] = a. N is GAC iff
every value of N is GAC. Enforcing GAC means removing GAC-inconsistent
values from domains until the constraint network is GAC. In this article, we
shall refer to MAC which is an algorithm considered to be among the most effi-
cient generic approaches for the solution of CNs. MAC [10] explores the search
space depth-first, enforces (generalized) arc consistency after each decision taken
(variable assignment or value refutation) during search, and backtracks when
failures happen. A past variable is a variable explicitly assigned by the search
algorithm whereas a future variable is a variable not (explicitly) assigned. The
set of future variables of a CN N is denoted by varsfut(N).

3. Problems Raised by Interactive Constraint Solving

In this section, we formally characterize the questions that underlie the in-
teractive constraint solving loop and we study their theoretical complexity.

3

3.1. Formalization

We first define the level of local consistency that is desirable in any inter-
active solving loop involving a human, that is, the level of consistency that
guarantees that all values in all domains belong to a solution. In the nomencla-
ture introduced by Freuder in [11] it corresponds to (1, n− 1)-consistency if the
constraint network contains n variables. To avoid the reference to n, Freuder
has called it variable completability in [12], and Dechter has called it global
consistency of values in [13]. To be consistent with the now widely accepted
nomenclature introduced in [8], we decided to call it global inverse consistency.

Definition 1 (Global Inverse Consistency). A value (x, a) of a CN N is
globally inverse consistent (GIC) iff ∃I ∈ sols(N) | I[x] = a. A CN N is GIC
iff every value in values(N) is GIC. The GIC closure of a CN N is the CN
obtained from N by removing all the values that do not belong to a solution of
N .

We can observe that, as usual for levels of consistency, the GIC closure of a
constraint network has the same set of solutions as the original network.

There is a close relationship between GIC and minimality of constraint net-
works as defined by Montanari [14]. A constraint network is minimal according
to Montanari if and only if any locally consistent instantiation of length 2 can
be extended to a solution. Minimal networks are only defined for binary net-
works, that is, when the arity of all constraints is 2. Despite similarities in the
definitions of GIC and minimal networks —they are both based on the notion
of extensibility to solutions, a binary constraint network can be GIC and not
minimal or minimal and not GIC. Take for instance the constraint network with
dom(x1) = dom(x2) = {1, 2, 3} and the single constraint x1 · x2 = 3. It is obvi-
ously minimal, but it is not GIC because 2 does not belong to any solution. Take
now the constraint network with dom(x1) = dom(x2) = dom(x3) = {1, 2, 3} and
the constraints x1 + x2 = 4, x2 + x3 = 4, and |x1 − x3| ≤ 1. It is GIC, but it
is not minimal because the tuple ((x1, 2), (x3, 1)) is accepted by the constraint
|x1 − x3| ≤ 1 and does not extend to any solution.

The obvious problems that follow from the definition of GIC are to check
whether a constraint network is GIC or not, and to enforce GIC.

Problem 1 (Deciding GIC). Given a CN N , is N GIC?

Problem 2 (Computing GIC). Given a CN N , compute the GIC closure of
N .

As we are interested in interactive solving, we define the problem of maintain-
ing GIC after the user has performed a variable assignment or, more generally,
added any arbitrary constraint.

Problem 3 (Maintaining GIC). Given a CN N that is GIC, and a con-
straint cnew with scp(cnew) ⊆ vars(N), recompute GIC after the addition of
cnew to cons(N).

4

We also define the problem of restoring GIC after the user has decided to
discard an existing constraint.

Problem 4 (Restoring GIC). Given a CN N and its GIC closure NGIC ,
given a constraint c ∈ cons(N), recompute the GIC closure of N after the
retraction of c from cons(N).

In a configuration setting, as soon as some mandatory variables have been
set, the user can ask for an automatic completion of the remaining variables.
Hence the definition of the following problem:

Problem 5 (Solving a GIC network). Given a CN N that is GIC, find a
solution to N .

3.2. Complexity Results

Not surprisingly, the basic questions related to GIC (Problems 1 and 2) are
intractable.

Theorem 1 (Problem 1). Deciding whether a constraint network N is GIC
is NP-complete, even if N is satisfiable.

Proof. We first prove membership to NP. For each value (x, a) of N , it is
sufficient to provide a solution I of N such that the projection I[x] of I on
variable x is equal to a. This certificate has size n · n · d and can be checked in
polynomial time.

Completeness for NP is proved by reducing 3Col2 to the problem of deciding
whether a satisfiable CN is GIC. Take any instance of the 3Col problem, that
is, a graph G = (V,E), and denote the three colors by 1, 2, 3. Consider the
CN N where vars(N) = {xi | i ∈ V }, dom(xi) = {0, 1, 2, 3},∀i ∈ V , and
cons(N) = {(xi 6= xj) ∨ (xi = 0 ∧ xj = 0) | (i, j) ∈ E}. Clearly the assignment
{(xi, 0) | i ∈ V } is a solution of N , so N is satisfiable. If N is GIC then G is 3-
colorable because, by construction, N has solutions other than {(xi, 0) | i ∈ V }
iff G is 3-colorable. If G is 3-colorable then for any variable xi, there exists a
solution of N in which xi is assigned a value in 1, 2, 3. By swapping 1 with 2,
2 with 3 and 3 with 1 on all variables of this solution, we still have a solution.
Similarly by swapping 1 with 3, 2 with 1 and 3 with 2 on all variables. Thus, if
G is 3-colorable then N is GIC. Therefore, N is GIC iff G is 3-colorable. 2

Our proof shows that hardness for deciding GIC holds for binary CNs (i.e.,
CNs only involving binary constraints). We have another proof, inspired from
that used in Theorem 3 in [15], that shows that deciding GIC is still hard for
Boolean domains and quaternary constraints.

2The graph 3-colorability problem (3Col) aims at deciding whether the vertices of a graph
can be colored by using three colors such that no edge links two vertices having the same
color.

5

Theorem 2 (Problem 2). Computing the GIC closure of a constraint net-
work N is NP-hard and NP-easy, even if N is satisfiable.

Proof. We prove NP-easiness by showing that a polynomial number of calls
to a NP oracle are sufficient to build the GIC closure of N . For each value
(x, a) of N , we ask the NP oracle whether N with the extra constraint x = a
is satisfiable (we call this an inverse check). Once all values have been tested,
we build the GIC closure of N by removing from each dom(x) all values a for
which the oracle test returned ’no’. Hardness is a direct corollary of Theorem 1.

2

Notice that the two previous intractability results are still valid when the
CN is satisfiable, as is the case at the beginning of an interactive resolution
session.

We finally show that Problems 3, 4 and 5 are unfortunately not easier than
checking GIC or enforcing GIC from scratch. But they are not harder.

Theorem 3 (Problem 3). Given a CN N that is GIC, and a constraint cnew
with scp(cnew) ⊆ vars(N), computing the GIC closure of the CN N ′, where
vars(N ′) = vars(N) and cons(N ′) = cons(N) ∪ {cnew} is NP-hard and NP-
easy even if cnew is simply a variable assignment y = b.

Proof. NP-easiness is proved as in the proof of Theorem 2 by showing that a
polynomial number of calls to a NP oracle are sufficient to build the GIC closure
of N ′. For each value (x, a) of N we ask the NP oracle whether N ′ with the
extra constraint x = a is satisfiable. Once all values have been tested, we build
the closure of N ′ by removing from dom(y) all values a 6= b and removing from
each dom(x) all values a for which the oracle test returned ’no’.

We prove hardness by reducing 3Col to the problem of computing the GIC
closure of a GIC network after a variable assignment. Take any instance of the
3Col problem, that is, a graphG = (V,E), and denote the three colors by 1, 2, 3.
Consider the constraint network N where vars(N) = {xi | i ∈ V } ∪ {y1, y2},
dom(xi) = {0, 1, 2, 3},∀i, dom(y1) = dom(y2) = {0, 1}. cons(N) = {c(xi, xj) |
(i, j) ∈ E} ∪ {c′(xi, y1, y2) | i ∈ 1..n}, with c(xi, xj) satisfied iff (xi 6= xj ∨ xi =
xj = 0) and c′(xi, y1, y2) satisfied iff at most two variables among xi, y1 and y2

are assigned 0. N is GIC because for any i ∈ 1..n, the instantiation where xi
is assigned any of its values, xj = 0,∀j 6= i, and y1 and y2 take 0 and 1 or vice
versa, is a solution.

We reduce the 3Col problem to the problem of enforcing GIC on the network
N ′ with vars(N ′) = vars(N) and cons(N ′) = cons(N)∪{y1 = 0}. Let domGIC

be the domain of the GIC closure of N ′. If G is 3-colorable then assigning all xi’s
to a solution of the 3-coloring and y2 = 0 is a solution of N ′. If 0 ∈ domGIC(y2),
then y2 = 0 must belong to a solution, say s. xi’s cannot take value 0 in s
otherwise constraints c′(xi, y1, y2) would be violated. Thus, the restriction of s
to xi’s variables is a 3-coloring. Therefore, G is 3-colorable iff 0 ∈ domGIC(y2).

2

6

Theorem 4 (Problem 4). Given a CN N , its GIC closure NGIC , and a con-
straint cold ∈ cons(N), computing the GIC closure of the CN N ′, where vars(N ′) =
vars(N) and cons(N ′) = cons(N) \ {cold} is NP-hard and NP-easy even if cold
is simply a variable assignment y = b.

Proof. NP-easiness is proved as in the proof of Theorem 2. We prove hardness
by reducing 3Col to the problem of taking a network N for which we know the
GIC closure NGIC , and computing the GIC closure of the network N ′ obtained
from N by retracting a variable assignment. Take any instance of the 3Col
problem, that is, a graph G = (V,E). Consider the constraint network N where
vars(N) = {xi | i ∈ V } ∪ {y}, dom(xi) = {0, 1, 2, 3},∀i, dom(y) = {0, 1}.
cons(N) = {c1(xi, xj) | (i, j) ∈ E} ∪ {c2(xi, y) | i ∈ 1..n} ∪ {y = 0}, with
c1(xi, xj) satisfied iff (xi 6= xj) ∨ (xi = xj = 0) and c2(xi, y) satisfied iff (xi =
y = 0) ∨ (xi 6= 0 ∧ y 6= 0). The only solution is the assignment where every xi
is assigned 0 and y is assigned 0. Thus, NGIC has the domain domGIC defined
by domGIC(xi) = {0},∀i, and domGIC(y) = {0}.

We show that the 3Col problem can be decided polynomially if we have
an oracle enforcing GIC on the network N ′ with vars(N ′) = vars(N) and
cons(N ′) = cons(N) \ {y = 0}. Let dom′GIC be the domain of the GIC closure
of N ′. If G is not 3-colorable then, by construction of c1 and c2, the only
solution is the same as in N , that is, the tuple containing only 0’s. If G is
3-colorable then assigning a solution of the 3-coloring to the xi’s and 1 to y is
a solution of N ′. Therefore, knowing NGIC does not help and G is 3-colorable
iff 1 ∈ domGIC(y). 2

Theorem 5 (Problem 5). Generating a solution to a GIC constraint network
cannot be done in polynomial time, unless P = NP .

Proof. The following proof is derived from [16]. It is also a corollary of the
recent and more complex Theorem 3.1 in [17].

Suppose we have an algorithm A that generates a solution to a GIC con-
straint network N in time bounded by a polynomial p(|N |). Take any in-
stance of the 3Col problem, that is, a graph G = (V,E). Consider the
CN N where vars(N) = {xi | i ∈ V }, dom(xi) = {1, 2, 3},∀i ∈ V , and
cons(N) = {xi 6= xj | (i, j) ∈ E}. N has a solution iff G is 3-colorable. Now,
if G is 3-colorable then N is GIC because any permutation of the three colors
applied to all variables remains a solution (as in the proof of Theorem 1). Thus,
it is sufficient to run A during p(|N |) steps. If it returns a solution to N , then
the 3Col instance is satisfiable. Otherwise, the 3Col instance is unsatisfiable.
Therefore, as 3Col is NP-complete, there cannot exist a polynomial algorithm
for generating a solution to a GIC constraint network, unless P = NP . 2

4. Algorithms for Enforcing/Maintaining GIC

In this section, we introduce four algorithms to enforce global inverse con-
sistency. These GIC algorithms use increasingly sophisticated data structures

7

and techniques that have recently proved their worth in propagation algorithms
proposed in the literature. To simplify our presentation, we assume that the
CNs are satisfiable, which is the case in interactive resolution, allowing us to
avoid handling domain wipe-outs in the GIC procedures. Note that these algo-
rithms can be used to enforce GIC, but also to maintain it during a user-driven
search. This is why we refer to the set varsfut(N) of future variables in some
instructions.

The first algorithm, GIC1, is similar to an algorithm proposed in [18]. GIC1
is described in Algorithm 1. It is really basic: it will be used as our baseline
during our experiments. For each value a in the domain of a future variable x,
a solution for the CN N where x is assigned the value a, denoted by N |x=a, is
sought using a complete search algorithm. This search algorithm, called here
searchSolutionFor, either returns the first solution that can be found, or the
special value nil. Our implementation choice will be the algorithm MAC that
maintains (G)AC during a backtrack search [10]. Hence, in Algorithm 1, when it
is proved with searchSolutionFor that no solution exists, i.e. I = nil, the value
a can be deleted. Note that, in contrary to weaker forms of consistency, when a
value is pruned there is no need for GIC to repeat the process of iterating over
the values remaining in the CN.

The second algorithm, GIC2 described in Algorithm 4 (ignoring light grey
lines), uses timestamping. This is useful when GIC is maintained during a
user-driven search. We use an integer variable time for counting time, and we
introduce a two-dimensional array stamp that associates with each value (x, a)
of the CN the last time (value of stamp[x][a]) a solution was found for that
value (0, initially). We also assume that variables are implicitly totally ordered
(for example, in lexicographic order). Then, the idea is to increment the value
of the variable time whenever a new call to GIC2 is performed (see line 1)
and to test time against each value (x, a) of the CN (see line 5) to determine
whether it is necessary or not to search for a solution for (x, a). When a solution
I is found, function handleSolution2/3 is called at line 10 in order to update
stamps. Actually, we only update the stamps of values in I corresponding to
variables that are processed after x in the loop of revisions (line 4) in Algorithm
4. These are the variables that have not been processed yet by the loop at
line 4 of Algorithm 4. Finally, by further introducing a one-dimensional array
nbGic that associates with each variable x of the CN the number of values in
dom(x) that have been proved to be GIC, it is possible to avoid some iterations
of loop 5; see initialization at lines 2-3, testing at line 4 and update at line 4 of
Algorithm 2.

The third algorithm, GIC3, described in Algorithm 4 when considering light
grey lines, can be seen as a refinement of GIC2 obtained by exploiting residues,
which correspond to solutions that have been previously found. Here, we in-
troduce a two-dimensional array residue that associates with each value (x, a)
of the CN the last solution found for this value (potentially, during another
call to GIC3). Because residual solutions may not be valid anymore, for each
value (x, a) we need to test the validity of residue[x][a] by calling the function
isValid; see instructions between lines 5 and 6. If the residue is valid, we call

8

Algorithm 1: GIC1(N : CN)

1 foreach variable x ∈ varsfut(N) do
2 foreach value a ∈ dom(x) do
3 I ← searchSolutionFor(N |x=a)
4 if I = nil then
5 remove a from dom(x)

Algorithm 2: handleSolution2/3(x: variable, I: instantiation)

1 foreach variable y ∈ varsfut(N) such that y is revised after x do
2 if stamp[y][I[y]] 6= time then
3 stamp[y][I[y]]← time

4 nbGic[y]++

Algorithm 3: isValid(X : set of variables, I : instantiation): Boolean

1 foreach variable x ∈ X do
2 if I[x] /∈ dom(x) then
3 return false

4 return true

Algorithm 4: GIC2/3(N : CN)

// GIC3 is obtained by considering light grey colored

instructions between lines 5 and 6, and after line 10

1 time++

2 foreach variable x ∈ varsfut(N) do
3 nbGic[x]← 0

4 foreach variable x ∈ varsfut(N) such that nbGic[x] < |dom(x)| do
5 foreach value a ∈ dom(x) such that stamp[x][a] < time do

if isValid(vars(N),residue[x][a]) then
handleSolution2/3(x,residue[x][a])
continue

6 I ← searchSolutionFor(N |x=a)
7 if I = nil then
8 remove a from dom(x)
9 else

10 handleSolution2/3(x,I)

residue[x][a]← I

9

handleSolution2/3 to update the other data structures, and we continue with
the next value in the domain of x. A validity test, Algorithm 3, only checks
that all values in a given complete instantiation are still present in the current
domains. Of course, when a new solution is found, we record it as a residue; see
instruction after line 10.

Our last algorithm, GIC4 described in Algorithm 6, is based on an original
use of simple tabular reduction [19]. The principle is to record all solutions
found during the enforcement of GIC in a table, so that an (adaptation of an)
algorithm such as STR2 [20] can be applied. The current table is given by all
elements of an array solutions at indices ranging from 1 to nbSolutions. As
for STR2, we introduce two sets of variables called Sval and Ssup. The former
allows us to limit validity control of solutions to the variables whose domains
have changed recently (i.e., since the last execution of GIC4). This is made
possible by reasoning from domain cardinalities, as performed at lines 3 and
26–27 with the array lastSize. The latter (Ssup) contains any future variable
x for which at least one value is not in the array gicValues[x], meaning that
it has still to be proved GIC. Related details can be found in [20]. After the
initialization of Sval and Ssup (lines 1–8), each instantiation solutions[i] of the
current table is processed (lines 11–16). If it remains valid (hence, a solution), we
update structures gicValues and Ssup by calling the function handleSolution4.
Otherwise, this instantiation is deleted by swapping it with the last one. The
rest of the algorithm (lines 17–25) just tries to find a solution support for each
value not present in gicValues. When a new solution is found, it is recorded
in the current table (lines 23–24) and handleSolution4 is called (line 25).

Theorem 6. Algorithms GIC1, GIC2, GIC3, and GIC4 enforce GIC.

Proof. Soundness. Soundness is clear for all four algorithms. GIC1 (Algo-
rithm 1) only removes a value (x, a) in line 5, which means that line 3 has not
found any solution containing (x, a). Thus (x, a) is not GIC. GIC2 and GIC3
(Algorithm 4) only remove a value (x, a) in line 8, which means that line 6 has
not found any solution containing (x, a). Thus (x, a) is not GIC. GIC4 (Algo-
rithm 6) only removes a value (x, a) in line 21, which means that line 19 has
not found any solution containing (x, a). Thus (x, a) is not GIC.
Completeness. Completeness of GIC1 is obvious: searchSolutionFor is called for
all values (line 3), so if a value (x, a) is not GIC, it will necessarily be removed
in line 5.

In GIC2 (Algorithm 4), a value (x, a) is let in the domain without checking if
it belongs to a solution when nbGic[x] ≥ |dom(x)| (line 4) or stamp[x][a] ≥ time

(line 5). As time is incremented at each new call to GIC2 (line 1), stamp[x][a] is
(greater than or) equal to time only if line 3 of Algorithm 2 has been executed,
which means that a solution containing (x, a) has already been found, and thus
(x, a) is GIC. Lines 2 and 4 of Algorithm 2 ensure that nbGic[x] is equal to the
number of values in dom(x) that GIC2 has already found in a solution at the
current call to GIC2 (timeth call). Hence, if nbGic[x] ≥ |dom(x)|, all values of
x have been proved GIC.

10

Algorithm 5: handleSolution4(I : instantiation)

1 foreach variable x ∈ Ssup do
2 if I[x] /∈ gicValues[x] then
3 gicValues[x]← gicValues[x] ∪ {I[x]}
4 if |gicValues[x]| = |dom(x)| then
5 Ssup ← Ssup \ {x}

Algorithm 6: GIC4(N : CN)

// Initialization of structures

1 Sval ← ∅
2 foreach variable x ∈ vars(N) do
3 if |dom(x)| 6= lastSize[x] then
4 Sval ← Sval ∪ {x}

5 Ssup ← ∅
6 foreach variable x ∈ varsfut(N) do
7 gicValues[x]← ∅
8 Ssup ← Ssup ∪ {x}
// The table of current solutions is traversed

9 i← 1
10 while i ≤ nbSolutions do
11 if isValid(Sval,solutions[i]) then
12 handleSolution4(solutions[i])
13 i++

14 else
15 solutions[i]← solutions[nbSolutions]
16 nbSolutions- -

// Search for values not currently supported is performed

17 foreach variable x ∈ Ssup do
18 foreach value a ∈ dom(x) \ gicValues[x] do
19 I ← searchSolutionFor(N |x=a)
20 if I = nil then
21 remove a from dom(x)
22 else
23 nbSolutions++
24 solutions[nbSolutions]← I
25 handleSolution4(I)

26 foreach variable x ∈ varsfut(N) do
27 lastSize[x]← |dom(x)|

11

Like GIC2, GIC3 (Algorithm 4) lets a value (x, a) in the domain without
checking if it belongs to a solution when nbGic[x] ≥ |dom(x)| or stamp[x][a] ≥
time. But in addition, GIC3 avoids checking if (x, a) belongs to a solution when
isValid(vars(N),residue[x][a]) is true (grey colored line between lines 5 and 6).
residue[x][a] stores a solution containing (x, a) found at a previous call to GIC3
(grey colored line after line 10). Function isValid checks if that solution is still
valid at the current call to GIC3. If yes, residue[x][a] is a proof of GIC for (x, a)
(and also for other values appearing in residue[x][a] —call to handleSolution2/3
in grey colored lines between lines 5 and 6).

In GIC4 (Algorithm 6) the conditions to avoid checking if a value (x, a)
belongs to a solution are x /∈ Ssup (line 17) and a ∈ gicValues[x] (line 18).
gicValues[x] is initialized to the empty set in line 7 and values are only added
to gicValues[x] in line 3 of Algorithm 5. To prove that these added values are
GIC we have to prove that handleSolution4 is always called with valid solutions.
handleSolution4 is called in lines 12 and 25 of Algorithm 6. In the call of line 25
I is obviously a valid solution as it is the result of the call to searchSolutionFor
in line 19. In line 12 handleSolution4 is called with solutions[i]. Thanks
to lines 24 and 15, we know that solutions is an array that only contains
instantiations that were valid solutions at the previous call to GIC4. As in line
11 isValid has checked that all values of variables with a modified domain are still
in the domain, solutions[i] is a valid solution. Thus, values in gicValues[x]
are GIC. As for the other condition (x /∈ Ssup), thanks to line 8 we know that
GIC4 puts all variables in Ssup in the initialization phase. The only place where
a variable is removed from Ssup is line 5 of Algorithm 5. This line is executed
only if gicValues[x] contains all values in dom(x) (test in line 4). Thus, by
avoiding checking GIC on values of variables which are not in Ssup we do not
miss the pruning of any GIC-inconsistent value. 2

The worst-case space complexity (for the specific data structures) of GIC1 is
in O(1). For GIC2 and GIC3, this is in O(nd) because nbGic is in O(n), stamp
and residue are in O(nd). For GIC4, Sval, Ssup and lastSize are in O(n),
gicValues is in O(nd), and the structure solutions is in O(n2d) because for
each of the nd values, we may need to record a solution (of size n). The time
complexity of the GIC algorithms can be expressed in term of the number of
calls to the (oracle) searchSolutionFor. For GIC1, this is in O(nd). For GIC2,
in the best-case, only d calls are necessary, each call allowing to prove (through
timestamping) that n values are GIC. For GIC3 and GIC4, still in the best-
case and assuming the case of maintaining GIC (i.e., after the assignment of a
variable by the user), no call to the oracle is necessary (residues and the current
table are sufficient by themselves to prove that all values are GIC). This rough
analysis of time complexity suggests that GIC3 and GIC4 might be the best
options.

Observe that when GIC is maintained during search, one can always enforce
the weaker (and cheaper) consistency GAC before GIC. This is the approach
we systematically follow when maintaining GIC during search (with any of the
introduced GIC algorithms).

12

5. An Algorithm for Restoring GIC

In this section, we address the issue of restoring GIC after the user decides to
discard arbitrarily a decision that has been taken during a configuration process
based on GIC. So, the context is a CN N that is given initially, a sequence of p
decisions ∆ = 〈δ1, δ2, . . . , δp〉 taken on N (in that order) by the user, and GIC
maintained on N .

More formally, a configuration trace T on a CN N from a sequence of deci-
sions 〈δ1, . . . , δp〉 is represented by a sequence of CNs 〈N1, . . . , Np〉 such that Ni
is the CN obtained from Ni−1 (starting with N0 = N) after taking the decision
δi and running some propagation algorithm. For each decision δi, it is easy to
identify the set deleted(δi) of values deleted due to the combined effect of δi
and constraint propagation: we have deleted(δi) = values(Ni−1)\values(Ni).
These sets are useful for backtracking, for example with the so-called trailing
mechanism (see e.g., [21]).

Without loss of generality, we assume that N is (or has been made) ini-
tially GIC. A configuration trace T = 〈N1, . . . , Np〉 on N from 〈δ1, . . . , δp〉 is
GIC-staged iff Ni = GIC(Ni−1|δi), ∀i ∈ 1. . p. In other words, a GIC-staged
configuration trace is a trace such that GIC is maintained at each step. An
illustration is given by Figure 1, where each edge represents the action of taking
a decision δi and enforcing GIC: we have N1 = GIC(N0|δ1), N2 = GIC(N1|δ2),
. . ., Np = GIC(Np−1|δp).

N = N0 N1

δ1 . . . Np−1N2 Np

δpδ2
GIC GIC GIC

Figure 1: A GIC-staged configuration trace T

In our work, we are interested in GIC-staged configuration traces, and our
objective is to be able to rebuild GIC-staged configuration traces after discarding
arbitrarily any taken decision(s). Note that it has the flavor of dynamic back-
tracking [22], but in the context of the very strong consistency GIC. An illustra-
tion of a GIC-staged configuration trace, T = 〈N1, . . . , Ni−1, Ni, Ni+1, . . . , Np〉,
is given by Figure 2(a): we have, N1 = GIC(N0|δ1), . . ., Ni−1 = GIC(Ni−2|δi−1

),
Ni = GIC(Ni−1|δi), Ni+1 = GIC(Ni|δi+1), . . ., Np = GIC(Np−1|δp). If ever the
decision δi is discarded by the user, then we want to compute a new GIC-staged
configuration trace, T ′ = 〈N1, . . . , Ni−1, N

′
i , . . . , N

′
p−1〉, as in Figure 2(b), where

N1 = GIC(N0|δ1), . . ., Ni−1 = GIC(Ni−2|δi−1
), N ′i = GIC(Ni−1|δi+1

), . . .,
N ′p−1 = GIC(N ′p−2|δp). Hence, we need to compute p − i new CNs: N ′i , . . .,
N ′p−1, but as observed earlier, it suffices to identify the (new) sets of deleted
values at levels i, . . ., p − 1. Later, in Algorithm 9, this will be the role of the
data structure Knw.

Reclassifying a deleted value of trace T means finding the level at which
this value must be deleted in the new trace T ′, or proving that it is no longer
deleted. It is worthwhile to analyze which values must be reclassified when a

13

Ni−1

δi−1
GIC

Ni+1

δi+1
GIC

Np

δp
GIC

.Ni

δi
GIC

(a) A GIC-staged configuration trace T

Ni−1

δi−1
GIC

N ′
i

δi+1
GIC

N ′
p−1

δp
GIC

.

(b) The GIC-staged configuration trace T ′ obtained from T , after discard-
ing arbitrarily the decision δi

Figure 2: Restoring GIC-staged configuration traces

decision is discarded and a new GIC-staged configuration trace is aimed to be
computed. First, at each level, i.e. after each decision δ, we can distinguish
between the values that are directly removed by δ and those that are removed
by propagating these initial direct deletions through the CN. For example, if
x is a variable such that dom(x) = {a, b, c} and δ corresponds to the variable
assignment x = a, then the values directly removed by δ are {b, c}. All other
values removed while enforcing GIC after taking δ are said to be indirectly
removed by δ. The different sets of values that are removed either directly or
indirectly in a GIC-staged configuration trace are depicted in Figure 3.

direct indirect

δ2

. . .

δ1

δi−1

δi

δi+1

δi+2

. . .

δp

Figure 3: The deleted values that need to be reclassified, when the decision δi is retracted,
are those in grey-colored regions.

In the following, for the sake of simplicity, we assume that all decisions cor-

14

respond to variable assignments. Interestingly, once the decision δi is discarded,
computing the new GIC-staged configuration trace T ′ only requires to reclassify
the deleted values that belong to the grey-colored regions of Figure 3. The proof
is as follows:

1. nothing changes for levels strictly less than i; in other words, for any
integer j such that 0 < j < i, deleted(δj) remains the same.

2. any value (x, a) directly removed by a decision δj with j > i will necessarily
be again removed directly by δj in the new trace ; in other words, (x, a)
remains in deleted(δj).

3 Indeed, the relaxation (retracted decision) does
not allow us to remove (x, a) before taking δj in the new trace.

All values that must be reclassified are put in a data structure called Unk

and transferred progressively, while running the algorithm we propose, to a data
structure called Knw that we introduce later.

To restore GIC, Function restoreAfterDeleting(), presented in Algorithm
9, must be called. When this function is called for, it is for a GIC-staged
configuration trace T = 〈N1, . . . , Np〉 on a CN N from a sequence of decisions
∆ = 〈δ1, . . . , δp〉. For simplicity and because we assume that at each decision
level, i.e. for each decision δ, we know deleted(δ), only Np is specified as a
parameter (as well as the decision δi to be discarded). General statements useful
for describing our algorithm are:

• take(δ) : the decision δ is added at the end of the current sequence of
decisions (push operation) and deleted(δ) initially contains the values of
dom(var(δ)) that are not compatible with δ (direct deletions).

• backtrack() : the last taken decision δ is removed from the current se-
quence of decisions (pop operation) and values in deleted(δ) are restored
in domains.

The data structures used by our function are the following:

• ∆replay is the sequence 〈δi+1, δi+2, . . . , δp〉 of decisions to be replayed, once
δi is discarded.

• Knw is an array of size p− i+1, indexed from i to p, of sets of values. This
is a central data structure in our algorithm, allowing us to rebuild the
GIC-staged configuration trace T ′. Once the computation of this array is
finished, all values are reclassified. If (x, a) ∈ Knw[h] with i ≤ h < p, this
means that (x, a) must be deleted at level h, but if (x, a) ∈ Knw[p], this
means that (x, a) will no more be deleted in the new trace (because we
only kept p− 1 decisions).

• Unk is a map that associates an integer interval hmin. . hmax, called classi-
fication interval, with each key of the form (x, a). The meaning of an entry

3Strictly speaking, the value (x, a) is deleted by δj , but not at the same level (since δi has
been discarded).

15

((x, a), hmin. . hmax) of Unk is that the value (x, a) must be reclassified at
a level ranging from hmin to hmax. During the execution of the algorithm,
the classification interval of every entry is refined until the precise deletion
level is known, i.e. until hmin = hmax, in which case the entry is deleted
and transferred to the structure Knw, described above. Notice that when
the classification interval associated with a value ends up at p. . p, this
actually means that the value is no more deleted by GIC. As any map,
Unk supports the following operations:

– Unk.clear() empties the map,

– Unk.containsKey((x, a)) indicate whether or not there is an entry for
key (x, a),

– Unk.get((x, a)) returns the integer interval associated with key (x, a),

– Unk.put((x, a), hmin. . hmax) stores the pair ((x, a), hmin. . hmax) pos-
sibly replacing any previous entry with key (x, a),

– Unk.size() returns the number of entries in the map,

– Unk.delete((x, a)) deletes the entry with key (x, a).

Before presenting function restoreAfterDeleting() in detail, we describe the
two primitive functions increaseMin and decreaseMax that will be used to up-
date the classification interval of a key (x, a) in Unk and move such a key to
Knw when needed. Function increaseMin((x, a), h) (Algorithm 7) first retrieves
the interval for key (x, a) in Unk (line 1). If the new lower bound h reduces
the interval to a singleton, the key (x, a) is transferred from Unk to Knw with
the right deletion level (lines 2–4). Otherwise, if the lower bound changed, the
interval is updated (lines 5–6). Function decreaseMax((x, a), h) (Algorithm 8)
behaves the same way: it retrieves the interval for (x, a), checks whether the
new upper bound h reduces the interval to a singleton, and depending on the
answer transfers (x, a) to Knw or updates the upper bound.

Algorithm 7: increaseMin((x, a) : value, h : integer)

1 hmin. . hmax ← Unk.get((x, a))
2 if h = hmax then
3 Unk.delete((x, a))
4 Knw[h]← Knw[h] ∪ {(x, a)}
5 else if h > hmin then
6 Unk.put((x, a), h. . hmax)

Function restoreAfterDeleting() works as follows. Lines 1-4 initialize the
structures: the decisions to be replayed are put in ∆replay, and structures Unk

and Knw are emptied because deleted values to be reclassified are not known yet,
and so, no classification has been performed yet. Line 5-14 handle all values
that have been deleted from level i in the current trace T . All levels, from p

16

Algorithm 8: decreaseMax((x, a) : value, h : integer)

1 hmin. . hmax ← Unk.get((x, a))
2 if h = hmin then
3 Unk.delete((x, a))
4 Knw[h]← Knw[h] ∪ {(x, a)}
5 else if h < hmax then
6 Unk.put((x, a), hmin. . h)

down to i, are iterated over, by systematically backtracking (lines 11 and 14).
The new status of any deleted value (x, a) at a level j > i is either known (line
8), because of a direct deletion, or unknown (line 10). For the former case, the
test at line 7 is sufficient because we only consider variable assignments. For
the latter case, the interval j− 1. . p bounds the different possibilities (the value
cannot be deleted at a level less than j − 1 and possibly can remain valid at
the end of the new trace). For level i (lines 12-13), as shown in Figure 3, all
deleted values must be reclassified. Line 15 attempts to refine the classification
intervals of values by applying a polynomial process, such as simulating GIC
by an efficient local consistency technique. We show later how to use GAC for
refining the intervals. Lines 16-25 finalize classification. For each unclassified
value (x, a), we have an interval of the form hmin. . hmax. Given (x, a), we
select a value (level) s that will be used to decrease the size of the interval of
(x, a); for our experimentation, we shall select hmax − 1. In line 19, we call
searchSolutionFor in the network where we force all decisions from δi+1 to δs+1

(that correspond to new levels i to s) plus x = a. The purpose of this call to
searchSolutionFor is to check if there exists a solution for (x, a) at level s. If
this is not the case, we can decrease the upper bound of the interval to s (since,
we know that GIC is enough to prune this value at level s). Otherwise, we can
increase the lower bound of all unclassified values that are present in the found
solution I (see Lines 23-25). This includes of course (x, a). Lines 26-29 build
the new GIC-staged configuration trace T ′ from data in Knw.

Reclassifying values may be expensive because for proving GIC of a value we
have to run a complete search procedure (see line 19), and possibly several times.
One idea is to use a cheap process, such as applying GAC, as an approximation of
GIC in a preliminary stage. For example, suppose that ((x, a), 10. . 14) is present
in Unk and that MAC removes (x, a) at level 10. We can then deduce that (x, a)
is GIC-inconsistent at level 10, and consequently directly classify (x, a) in T ′.
If MAC removes (x, a) only at level 12, then we can replace ((x, a), 10. . 14) by
((x, a), 10. . 12) in Unk. To summarize, running MAC on decisions of ∆replay

allows us to refine the classification intervals at a very moderate price. This
what is done by the function refineIntervals(Unk, Knw,∆replay) in Algorithm 10.

In lines 1-3, GAC is maintained after each decision taken in sequence from
∆replay. Then, in lines 4-7, we process each level in sequence from bottom to
top. If (x, a) has been deleted (at level j−1) by GAC after decision δj , we know

17

Algorithm 9: restoreAfterDeleting(Np: CN, δi : decision)

Input: Np is the last CN of the current GIC-staged configuration trace
T = 〈N1, . . . , Ni, . . . , Np〉 from 〈δ1, . . . , δi, . . . , δp〉.

Input: δi is the decision to discard.
Result: A new GIC-staged trace T ′ from 〈δ1, . . . , δi−1, δi+1, . . . , δp〉
// Initialization of structures

1 ∆replay ← 〈δi+1, δi+2, . . . , δp〉
2 Unk.clear()
3 foreach j from i to p do
4 Knw[j]← ∅
// Deleted values of the current trace T to (re)classify

5 foreach j from p downto i+ 1 do
6 foreach (x, a) ∈ deleted(δj) do
7 if x = var(δj) then
8 Knw[j − 1]← Knw[j − 1] ∪ {(x, a)} // directly removed

9 else
10 Unk.put((x, a), j − 1. . p) // value to reclassify

11 backtrack()

12 foreach (x, a) ∈ deleted(δi) do
13 Unk.put((x, a), i. . p)

14 backtrack()
// Refining classification intervals

15 refineIntervals(Unk, Knw,∆replay)
// Finalizing classification

16 while Unk.size 6= 0 do
17 foreach ((x, a), hmin. . hmax) ∈ Unk do
18 pick a value s in [hmin. . hmax − 1]
19 I ← searchSolutionFor(N |{δj∈∆replay|j≤s+1}∪{x=a})

20 if I = nil then
21 decreaseMax((x, a), s)
22 else
23 foreach (y, b) ∈ I do
24 if Unk.containsKey((y, b)) then
25 increaseMin((y, b), s+ 1)

// Building the new trace T ′

26 foreach δj ∈ ∆replay (with j from i+ 1 to p) do
27 take(δj)
28 foreach (x, a) ∈ Knw[j − 1] do
29 remove (x, a)

18

that GIC will prune (x, a) at level j − 1 at the very last. Hence, we update the
interval of (x, a) accordingly. After having processed all values of a level, we
have to call the backtrack function to restore domains in the state they were
before applying GAC (line 8).

Algorithm 10: refineIntervals(Unk, Knw, ∆replay)

Input: Unk, Knw: data structures.
Input: ∆replay: sequence of decisions.
Result: Updated classification intervals in Unk and possibly new keys in

Knw.

1 foreach δj ∈ ∆replay (with j from i+ 1 to p) do
2 take(δj)
3 enforceGAC()

4 foreach j from p downto i+ 1 do
5 foreach (x, a) ∈ deleted(δj) do
6 if Unk.containsKey((x, a)) then
7 decreaseMax((x, a), j − 1)

8 backtrack()

We have the guarantee that restoreAfterDeleting performs as if GIC had
been maintained on N from 〈δ1, . . . , δi−1, δi+1, . . . , δp〉. The proof is based on
the invariant property that Unk is sound, that is, the level of deletion of any
(x, a) present in Unk is contained in the interval stored in Unk.

Lemma 1. If Unk is sound before a call to refineIntervals, then it remains sound
after the execution of refineIntervals as described in Algorithm 10.

Proof. The interval of (x, a) in Unk is modified in line 7 only if GAC has removed
(x, a) after decision δj has been applied. By enforcing GIC instead of GAC, it
is obvious that (x, a) cannot be removed later. Thus, the last level at which
(x, a) can be removed is j − 1 because δj is the (j − 1)th decision. 2

Theorem 7. Let 〈N1, . . . , Np〉 be a GIC-staged configuration trace on a CN N
from a sequence of decisions 〈δ1, . . . , δp〉. Calling restoreAfterDeleting(Np, δi)
builds the GIC-staged configuration trace on N from 〈δ1, . . . , δi−1, δi+1, . . . , δp〉.

Proof. Lines 11 and 14 ensure that, after line 14, all values removed in levels i
to p have been restored and put either in Knw or in Unk. They will thus all be
processed to find their right level of deletion.

We first prove that before line 26, all values are put in Knw at their right
level of deletion. After lines 1-14 are executed, all values in Knw have been put
in it at line 8. They have been put at their right level because they cannot
be higher (relaxation) and they are necessarily removed (line 7 tells us they
belong to the instantiated variable). After lines 1-14, Unk is sound because it

19

stores the largest possible interval for every non reclassified value. After line 14,
intervals are refined in lines 15, 21, and 25. By Lemma 1, Unk remains sound
after line 15. In line 21, the hmax of (x, a) is decreased correctly because there
were no solutions containing (x, a) at level s. In line 25, it is also obviously
correct to increase the hmin of (y, b) to s+ 1 as we found a solution at level s.
By construction of functions increaseMin and decreaseMax, we know that after
line 25, Knw contains only correct levels of deletion.

We then prove that the loop in lines 16-25 terminates. When we enter
the loop in line 16, Unk only contains values with a non singleton interval.
By construction of increaseMin and decreaseMax, any value with an interval
shrunk to singleton is moved to Knw. Thus, line 17 can only select values with
non singleton intervals, and the way s is selected in line 18 ensures that any
iteration of the loop of line 17 strictly decreases the size of at least one interval
in Unk. As all intervals have finite size and as Unk contains a finite number of
values, the loop of line 16 terminates.

The fact that after line 25 all values are put in Knw at their right level of
deletion and the fact that the algorithm will eventually reach line 26 guarantees
that lines 26-29 build a GIC-staged configuration trace. 2

The algorithm restoreAfterDeleting is obviously exponential in time as it
solves an NP-hard problem (see Theorem 4). Nevertheless, we can analyze the
number of times it calls the NP-hard oracle searchSolutionFor.

Theorem 8 (Complexity). Let 〈N1, . . . , Np〉 be a GIC-staged configuration
trace on a CN N from a sequence of decisions 〈δ1, . . . , δp〉. The number of times
restoreAfterDeleting(Np, δi) calls searchSolutionFor is in O(nd · log2(p− i)).

Proof. Each time searchSolutionFor is called in line 19, the interval of (x, a)
is shrunk either to [hmin, s] or to [s + 1, hmax], depending on whether line 21
or line 25 is executed. Hence, if s is selected in a dichotomic way (that is,
s = bhmin+hmax

2 c), each call to searchSolutionFor leads to an interval of size at

most dhmax−hmin+1
2 e. Unk contains at most nd values and intervals cannot be

larger than p− i+ 1. As a result, the number of times restoreAfterDeleting can
call searchSolutionFor is in O(nd · log2(p− i)). 2

6. Experiments

In order to show the practical interest of our approach, we have performed
several experiments mainly using a computer with processors Intel(R) Core(TM)
i7-2820QM CPU 2.30GHz; however, for GIC restoration, we used a cluster of
Xeon 3.0GHz processors with 13GB of RAM. Our main purpose was to deter-
mine whether maintaining/restoring GIC is a viable option for configuration-like
problem instances (and for interactive puzzle creation), as well as to compare
the relative efficiency of the four GIC algorithms described in Section 4.

In Table 1, we show relevant features of car configuration instances, gen-
erated with the help of our industrial partner Renault. For each of the six

20

instances currently available,4 we indicate

• the number of variables (n),

• the size of the greatest domain (d),

• the number of constraints (e),

• the greatest constraint arity (r),

• the size of the greatest table (t),

• the total number of values (D =
∑
x∈vars(N) |dom(x)|),

• and the total number of tuples (T =
∑
c∈cons(N) |rel(c)|).

n d e r t D T

souffleuse 32 12 35 3 55 145 350
megane 99 42 113 10 48,721 396 194,838
master 158 324 195 12 26,911 732 183,701

small 139 16 147 8 222 340 3,044
medium 148 20 174 10 2,718 424 9,532
big 268 324 332 12 26,881 1,273 225,989

Table 1: Features of six Renault configuration instances.

6.1. Establishing/Maintaining GIC

The left part of Table 2 presents the CPU time required to establish GIC
on the six Renault configuration instances. Clearly GIC1 is outperformed by
the three other algorithms, which have here rather similar efficiency. The right
part of Table 2 aims at simulating the behavior of a configuration software user
who makes the variable choices and value selections. It presents the CPU time
required to maintain GIC along a complete branch built by performing random
variable assignments down to a leaf. (Random variable assignment simulates
the user, who chooses the variables and the values according to her preference.)
Specifically, variables and values are randomly selected in turn, and after each
assignment, GIC is systematically enforced to maintain this property. Of course,
no conflict (dead-end) can occur along the branch due to the strength of GIC,
which is why we use the term of greedy executions. CPU times are given on
average for 100 executions (different random orderings). When establishing
GIC, any call to searchSolutionFor is performed with the help of the algorithm
MAC (table constraints being filtered with the technique called Simple Tabular

4See www.irit.fr/~Helene.Fargier/BR4CP/benches.html and www.xcsp.org

21

Establishing GIC with Maintaining GIC with
GIC1 GIC2 GIC3 GIC4 GIC1 GIC2 GIC3 GIC4

souffleuse 0.02 0.01 0.01 0.01 0.13 0.07 0.02 0.02
megane 2.94 0.71 0.72 0.71 4.26 1.18 0.05 0.04
master 2.45 1.35 1.33 1.33 9.81 3.57 0.07 0.06

small 0.14 0.02 0.03 0.03 0.32 0.05 0.01 0.01
medium 0.26 0.04 0.05 0.04 0.35 0.04 0.01 0.01
big 4.19 1.16 1.10 1.10 12.6 2.60 0.05 0.05

Table 2: CPU time (in seconds) to establish GIC on Renault configuration instances, and to
maintain it (average over 100 random greedy executions).

souffleuse megane master small medium big

nFC2 252,605 313,910 time-out 3,728 7,824 time-out
MAC 0 7 5 0 3 3

Table 3: Number of conflicts encountered when running nFC2 and MAC (sum over 100 random
executions).

Reduction [19, 20, 23]). For all instances, GIC3 and GIC4 are maintained very
fast, whereas on the biggest instances, GIC2 requires a few seconds and GIC1
around ten seconds.

One great advantage of GIC is that it guarantees that a conflict can never
occur during a configuration session. However, one may wonder whether the
risk of failure(s) is really important in user-driven searches that use a weaker
consistency such as GAC or a partial form of it (Forward Checking). Table 3
shows the number of conflicts (sum over 100 executions using random orderings)
encountered when following a MAC or a nFC2 [24] strategy. The number of
conflict situations can be very large with nFC2 (for two instances, we even report
the impossibility of finding a solution within 10 minutes with some random
orderings). For MAC, the number of failures is rather small but the risk is not
null (for example, the risk is equal to 7% for megane).

The encouraging results obtained on Renault configuration instances led
us to test other problems, in particular to get a better picture of the relative
efficiency of the various GIC algorithms. For example, on classical Crossword
instances (see Table 4), GIC1 is once again clearly outperformed while the three
other algorithms are quite close, where there is still a small benefit of using GIC4.

It is worthwhile to note that GIC is a nice property that can be useful when
puzzles, where hints are specified, have to be created. Typically, one looks
for puzzles where only one solution exists. One way of building such puzzles
is to add hints in sequence, while maintaining GIC, until all domains become
singleton. For example, this is a possible approach for constructing Sudoku
and Magic Square grids, with the advantage that the user can choose freely the

22

Establishing GIC with Maintaining GIC with
GIC1 GIC2 GIC3 GIC4 GIC1 GIC2 GIC3 GIC4

ogd-vg5-5 2.25 0.67 0.67 0.67 2.34 0.79 0.73 0.70
ogd-vg5-6 6.40 2.18 2.19 2.19 7.42 2.82 2.58 2.48
ogd-vg5-7 25.8 9.91 9.87 9.84 33.4 15.2 14.3 13.8

Table 4: CPU time (in seconds) to establish GIC on some Crosswords instances, and to
maintain it on average over 100 random greedy executions.

Establishing GIC with Maintaining GIC with
GIC1 GIC2 GIC3 GIC4 GIC1 GIC2 GIC3 GIC4

sud-9x9 1.58 0.32 0.32 0.31 15.3 2.71 2.10 1.74
sud-16x16 6.04 0.51 0.50 0.50 246 25.5 26.5 18.9
magic-4x4 0.96 0.26 0.28 0.28 1.63 0.69 0.71 0.71
magic-5x5 14.7 3.01 3.10 2.99 55.1 15.9 15.6 13.7

Table 5: CPU time (in seconds) to establish GIC on Puzzle instances, and to maintain it on
average over 100 random greedy executions until a unique solution is found.

position of the hints.5 On the left part of Table 5, we report the time to enforce
GIC on empty Sudoku grids of size 9x9 and 16x16, and on empty Magic squares
of size 4x4 and 5x5. On the right part we report the average time required to
maintain GIC until all variables become fixed (i.e., with only singleton domains),
meaning that after several hints have been randomly selected and propagated,
we have the guarantee of having a one-solution puzzle. GIC4 is a clear winner,
with for example, a 30% speedup over GIC2 and GIC3 on sudoku-16x16, and
more than one order of magnitude over GIC1. Overall, the results we obtain
show that maintaining GIC is a practicable solution (at least for some problems)
as the average time between each decision of the user is small with GIC4.

6.2. Restoring GIC

In a second set of experiments, we have focused on the issue of restoring
GIC, as developed in Section 5. We have tested Algorithm 9 against all Renault
car configuration instances introduced earlier. For each instance, the protocol
we have used is the following. First, we have built a complete GIC-staged
configuration trace T (branch), by randomly assigning each variable in turn (and
subsequently maintaining GIC). Then, we have discarded arbitrarily a decision
used for T , and applied our algorithm that restores GIC. Actually, we have
successively collected information about GIC restoration for decisions discarded

5However, we are not claiming that maintaining GIC is the unique answer to this problem.

23

 0.01

 0.1

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70

Retraction Decision Level

values
? values before refinement
? values after refinement

(a) Instance Megane

 0.01

 0.1

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70

Retraction Decision Level

values
? values before refinement
? values after refinement

(b) Instance Master

Figure 4: Restoring GIC at different decision levels. Average values over 100 executions.

24

at levels i ranging respectively from 0 (first decision taken) to 80.6 After decision
80, all these instances only contain singleton domains, and so, are completely
solved). In other words, we have independently tested GIC restoration on T ,
when a decision was discarded at level i = 0, at level i = 1, and so on until
level 80. The results we present are given on average over 100 random complete
GIC-staged configuration traces per level. Such traces are computed initially
by randomly selecting decisions.

We have been interested in:

• the total number of values (i.e., the number of values over all variable
domains), denoted by # values

• the number of unclassified values when discarding a decision, at the point
before refining classification intervals through MAC; this is denoted by
“#? values before refinement”

• the number of unclassified values when discarding a decision, at the point
just after having refined classification intervals through MAC; this is de-
noted by “#? values after refinement”

 0.01

 0.1

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70

Retraction Decision Level

small
medium

big
souffleuse

megane
master

Figure 5: Restoring GIC at different decision levels. Number of calls to the procedure (oracle)
searchSolutionFor. Average over 100 executions.

6This is only 32 for souffleuse, as this corresponds to the number of variables of this
instance.

25

We have observed the same trend when testing the 6 configuration instances:
i) it is only when the retracted decision belongs to the first ones taken by
the user that a substantial computing effort is required, and ii) classification
refinement by MAC is very useful. Figures 4(a) and 4(b) show results for the
car models Megane (a mid-size instance) and master (a large size instance).
The x-axis indicates the level at which the decision (from the complete GIC-
staged configuration trace) was discarded before restoring GIC. For example,
when the retraction decision level is 8, we can see for Master that the number of
unclassified values after MAC refinement is around 10 (on average). The impact
of classification refinement by MAC is clearly visible, as it corresponds to the
gap between the two bottom curves. (Note the logarithmic scale for the y-axis.)
The two curves only merge when the average number of unclassified values is
around 1.

It is also interesting to see how many calls to the procedure (oracle) search-
SolutionFor are necessary to classify the remaining unclassified values after re-
fining intervals through MAC. In Section 5, we mentioned the possibility of a
dichotomic approach (see Theorem 8). However, for configuration instances,
picking s = hmax−1 at line 18 of Algorithm 9 is a relevant choice because most
of the time it allows us to prove directly that the value is GIC-consistent. This is
what we have observed: the proportion of successful calls (i.e., of calls returning
a solution) is very high. Besides, when a solution is found, multidirectionality
can be used to refine classification intervals of other values (lines 23-25 in Algo-
rithm 9). Figure 5 shows the average number of calls to searchSolutionFor for
each instance and each retraction decision level. For the largest instances, in
the worst-case (level 0), the number of calls is around 100. At level 8, less than
10 calls are required. Table 6 shows the average number of unclassified values
after GAC refinement (# ? values) and the average number of calls to searchSo-
lutionFor (# calls), computed over all retraction decision levels. The number of
calls to the oracle is never more than 75% of the number of unclassified values.

souffleuse megane master small medium big

? values 3.23 3.68 5.95 2.05 2.27 9.67
calls 2.22 2.92 4.92 0.40 0.49 4.44

Table 6: Average number of unclassified values after GAC refinement (# ? values) and average
number of calls to searchSolutionFor (# calls) for Renault car configuration instances.

Table 7 gives the CPU time required to restore GIC. The worst-case maxi-
mum time is 1.5 seconds for megane, but note this is only 0.2 second on average.
This confirms that our approach can perfectly be used in an interactive config-
uration context.

Finally, Table 8 shows how the algorithm we propose for restoring GIC
after discarding a decision δi (referred to as optimized GIC restoration) behaves
with respect to a simple algorithm (referred to as naive GIC restoration) that
just erases all decisions from δi to the last before replaying all of them except

26

min avg max

souffleuse 0 0.002 0.006
megane 0 0.247 1.440
master 0.001 0.225 0.722

small 0 0.006 0.013
medium 0 0.006 0.011
big 0.001 0.212 0.855

Table 7: Minimum, maximum and average CPU times in second(s) to restore GIC, after
discarding any decision (in range 0..80). Values are computed over 100 random traces.

the discarded decision δi, while maintaining GIC with GIC4. The results are
given on average for 100 random GIC-staged configuration traces, with GIC
restoration triggered after 80 decisions have been taken (32 for souffleuse) and
the first of these decisions has been discarded. Note that discarding the first
decision is the most adverse case (i.e., requiring the most computing effort),
which is the reason for studying this particular case. We observe that during
this process, the number of calls to the oracle searchSolutionFor is very limited
when our optimized algorithm is used. Our algorithm is between 2 and 5 times
faster than the naive one. On these instances, our algorithm never requires more
than 1 second.

Naive GIC Restoration Optimized GIC Restoration
min avg max # calls min avg max # calls

souffleuse 1 5.1 20 157.1 0 0.1 5 6.9
megane 35 507 1,387 223.4 13 145 632 61.2
master 27 1,033 2,860 582.2 8 202 924 89.2

small 1 8.9 93 53.7 0 2.9 18 7.2
medium 2 12.6 39 42.1 1 6.3 24 14.3
big 39 877 2,251 514.8 6 247 988 115.1

Table 8: Minimum, maximum and average CPU times in millisecond(s) to restore GIC, after
discarding the first decision of a sequence composed of 80 decisions. The average number of
calls to the procedure (oracle) searchSolutionFor is also indicated. Values are computed over
100 random traces.

7. Conclusion

We have analyzed the problems that arise in applications that require the
interactive resolution of a constraint problem by a human user. The central
notion is global inverse consistency of the network because it ensures that the
person who interactively solves the problem is not given the choice to select

27

values that do not lead to solutions. We have shown that deciding, computing,
or restoring global inverse consistency, and other related problems are all NP-
hard. We have proposed several algorithms for enforcing/maintaining/restoring
global inverse consistency and we have shown that the best version is efficient
enough to be used in an interactive setting on several configuration and design
problems. This is a great advantage compared to existing techniques usually
used in configurators. As opposed to techniques maintaining arc consistency, our
algorithms give an exact picture of the values remaining feasible. As opposed to
compiling offline the problem as a multi-valued decision diagram, our algorithms
can deal with constraint networks that change over time (e.g., an extra non-
unary constraint posted by a customer who does not want to buy a car with
more than 100,000 miles except if it is a Volvo). One direct perspective of this
work is to try computing diverse solutions when enforcing GIC. This should
allow, on average, to reduce the number of search runs. Techniques such as
those developed in [25] might be useful.

Acknowledgments

This work has been funded by the ANR (“Agence Nationale de la Recherche”),
project BR4CP (ANR-11-BS02-008). The third author also benefits from the
financial support of both CNRS and OSEO (BPI France) within the ISI project
‘Pajero’.

References

[1] C. Bessiere, H. Fargier, C. Lecoutre, Global inverse consistency for inter-
active constraint satisfaction, in: Proceedings of CP’13, 2013, pp. 159–174.

[2] P. Janssen, P. Jégou, B. Nouguier, M. Vilarem, B. Castro, SYNTHIA: As-
sisted design of peptide synthesis plans, New Journal of Chemistry 14 (12)
(1990) 969–976.

[3] E. Gelle, R. Weigel, Interactive configuration using constraint satisfaction
techniques, in: Proceedings of PACT’96, 1996, pp. 37–44.

[4] J. Amilhastre, H. Fargier, P. Marquis, Consistency restoration and explana-
tions in dynamic CSPs - application to configuration, Artificial Intelligence
135 (1-2) (2002) 199–234.

[5] T. Hadzic, H. Andersen, Interactive reconfiguration in power supply
restoration, in: Proceedings of CP’05, 2005, pp. 767–771.

[6] T. Hadzic, E. Hansen, B. O’Sullivan, Layer compression in decision dia-
grams, in: Proceedings of ICTAI’08, 2008, pp. 19–26.

[7] R. Debruyne, C. Bessiere, Domain filtering consistencies, Journal of Arti-
ficial Intelligence Research 14 (2001) 205–230.

28

[8] E. Freuder, C. Elfe, Neighborhood inverse consistency preprocessing, in:
Proceedings of AAAI’96, 1996, pp. 202–208.

[9] D. Martinez, Résolution interactive de problemes de satisfaction de con-
traintes, Ph.D. thesis, Supaero, Toulouse (1998).

[10] D. Sabin, E. Freuder, Contradicting conventional wisdom in constraint sat-
isfaction, in: Proceedings of CP’94, 1994, pp. 10–20.

[11] E. Freuder, A sufficient condition for backtrack-bounded search, Journal of
the ACM 32 (4) (1985) 755–761.

[12] E. Freuder, Completable representations of constraint satisfaction prob-
lems, in: Proceedings of KR’91, 1991, pp. 186–195.

[13] R. Dechter, From local to global consistency, Artificial Intelligence 55 (1)
(1992) 87–108.

[14] U. Montanari, Network of constraints : Fundamental properties and appli-
cations to picture processing, Information Science 7 (1974) 95–132.

[15] J. Astesana, L. Cosserat, H. Fargier, Constraint-based vehicle configura-
tion: A case study, in: Proceedings of ICTAI’10, 2010, pp. 68–75.

[16] C. Papadimitriou, private comminucation (1999).

[17] G. Gottlob, On minimal constraint networks, Artificial Intelligence 191-192
(2012) 42–60.

[18] K. Bayer, M. Michalowski, B. Choueiry, C. Knoblock, Reformulating CSPs
for scalability with application to geospatial reasoning, in: Proceedings of
CP’07, 2007, pp. 164–179.

[19] J. Ullmann, Partition search for non-binary constraint satisfaction, Infor-
mation Science 177 (2007) 3639–3678.

[20] C. Lecoutre, STR2: Optimized simple tabular reduction for table con-
straints, Constraints 16 (4) (2011) 341–371.

[21] C. Schulte, Comparing trailing and copying for constraint programming,
in: Proceedings of ICLP’99, 1999, pp. 275–289.

[22] M. Ginsberg, Dynamic backtracking, Journal of Artificial Intelligence Re-
search 1 (1993) 25–46.

[23] C. Lecoutre, C. Likitvivatanavong, R. Yap, STR3: A path-optimal filtering
algorithm for table constraints, Artificial Intelligence 220 (2015) 1–27.

[24] C. Bessiere, P. Meseguer, E. Freuder, J. Larrosa, On Forward Checking for
non-binary constraint satisfaction, Artificial Intelligence 141 (2002) 205–
224.

29

[25] E. Hebrard, B. Hnich, B. O’Sullivan, T. Walsh, Finding diverse and similar
solutions in constraint programming, in: Proceedings of AAAI’05, 2005,
pp. 372–377.

30

