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Abstract
QUACQ is a constraint acquisition system that as-
sists a non-expert user to model her problem as a
constraint network by classifying (partial) exam-
ples as positive or negative. For each negative ex-
ample, QUACQ focuses onto a constraint of the tar-
get network. The drawback is that the user may
need to answer a great number of such examples to
learn all the constraints. In this paper, we provide a
new approach that is able to learn a maximum num-
ber of constraints violated by a given negative ex-
ample. Finally we give an experimental evaluation
that shows that our approach improves on QUACQ.

1 Introduction
Constraint programming is a powerful paradigm for model-
ing and solving combinatorial problems. However, it has
long been recognized that expressing a combinatorial prob-
lem as a constraint network requires significant expertise in
constraint programming [Freuder, 1999]. To alleviate this is-
sue, several techniques have been proposed to acquire a con-
straint network. For example, the matchmaker agent [Freuder
and Wallace, 2002] interactively asks the user to provide one
of the constraints of the target problem each time the sys-
tem proposes an incorrect (negative) solution. In [Beldiceanu
and Simonis, 2012], Beldiceanu and Simonis have proposed
MODELSEEKER, a system devoted to problems with regu-
lar structures, like matrix models. Based on examples of so-
lutions and non-solutions provided by the user, CONACQ.1
[Bessiere et al., 2005; 2015] learns a set of constraints that
correctly classifies all the examples given so far. As an
active learning version, CONACQ.2 [Bessiere et al., 2007;
2015] proposes examples to the user to classify (i.e., mem-
bership queries). In [Shchekotykhin and Friedrich, 2009], the
approach used in CONACQ.2 has been extended to allow the
user to provide arguments as constraints to converge more
rapidly.

QUACQ is a recent active learning system that is able to
ask the user to classify partial queries [Bessiere et al., 2013].
QUACQ iteratively computes membership queries. If the user
says yes, QUACQ reduces the search space by removing all
constraints violated by the positive example. If the user says
no, QUACQ focuses onto one, and only one, constraint of the

target network in a number of queries logarithmic in the size
of the example. This key component of QUACQ allows it to
always converge on the target set of constraints in a polyno-
mial number of queries. However, even that good theoretical
bound can be hard to put in practice. For instance, QUACQ
requires the user to classify more than 8000 examples to get
the complete Sudoku model.

An example can be classified as negative because of more
than one violated target constraint. In this paper, we extend
the approach used in QUACQ to make constraint acquisition
more efficient in practice by learning, not only one constraint
on a negative example, but a maximum number of constraints
violated by this negative example. Inspired by the work on
enumerating infeasibility in SAT (Minimal Unsatisfiability
Subsets [Liffiton and Sakallah, 2008]), we propose an algo-
rithm that computes all minimal scopes of target constraints
violated by a given negative example.

2 Background
The constraint acquisition process can be seen as an interplay
between the user and the learner. For that, user and learner
need to share a same vocabulary to communicate. We sup-
pose this vocabulary is a set of n variablesX = {x1, . . . , xn}
and a domain D = {D(x1), . . . , D(xn)}, where D(xi) ⊂ Z
is the finite set of values for xi. A constraint cS is defined
as a pair where S is a subset of variables of X , called the
constraint scope, and c is a relation over D of arity |S|. A
constraint network is a set C of constraints on the vocabulary
(X,D). An assignment eY on a set of variables Y ⊆ X is
rejected by a constraint cS if S ⊆ Y and the projection eS of
eY on the variables in S is not in c. An assignment on X is a
solution of C if and only if it is not rejected by any constraint
in C. The set of solutions of C is denoted by sol(C).

In addition to the vocabulary, the learner owns a language
Γ of bounded arity relations from which it can build con-
straints on specified sets of variables. Adapting terms from
machine learning, the constraint bias, denoted by B, is a
set of constraints built from the constraint language Γ on
the vocabulary (X,D), from which the learner builds the
constraint network. A concept is a Boolean function over
DX = Πxi∈XD(xi), that is, a map that assigns to each ex-
ample e ∈ DX a value in {0, 1}. We call target concept the
concept fT that returns 1 for e if and only if e is a solution
of the problem the user has in mind. In a constraint program-



ming context, the target concept is represented by a target
network denoted by CT .

A membership query ASK(e) is a classification question
asked to the user, where e is a complete assignment in DX .
The answer to ASK(e) is “yes” if and only if e ∈ sol(CT ).
A partial query ASK(eY ), with Y ⊆ X , is a classification
question asked to the user, where eY is a partial assignment in
DY = Πxi∈YD(xi). A set of constraints C accepts a partial
assignment eY if and only if there does not exist any con-
straint c ∈ C rejecting eY . The answer to ASK(eY ) is “yes”
if and only if CT accepts eY . A classified assignment eY is
called a positive or negative example depending on whether
ASK(eY ) is “yes” or “no”. For any assignment eY on Y ,
κB(eY ) denotes the set of all constraints in B rejecting eY .

We now define convergence, which is the constraint acqui-
sition problem we are interested in. We are given a set E of
(partial) examples labelled by the user as positive or negative.
We say that a constraint network C agrees with E if C ac-
cepts all the examples labelled as positive in E and does not
accept those labelled as negative. The learning process has
converged on the learned network CL ⊆ B if CL agrees with
E and for every other network C ′ ⊆ B agreeing with E, we
have sol(C ′) = sol(CL). If there does not exist any CL ⊆ B
such that CL agrees with E, we say that we have collapsed.
This happens when CT 6⊆ B.

Finally, we introduce the notion of minimal scope, which is
similar to the notion of MUS (Minimal Unsatisfiable Subset)
in SAT [Liffiton and Sakallah, 2008].

Definition 1 (Minimal Scope). Given a negative example e,
a minimal scope is a subset of variables U ⊆ X such that
ASK(eU ) = no and for all xi ∈ U,ASK(eU\{xi}) = yes.

3 Multiple Constraint Acquisition
In this section, we propose MULTIACQ for Multiple Acquisi-
tion. MULTIACQ takes as input a bias B on a vocabulary
(X,D) and returns a constraint network CL equivalent to
the target network CT by asking (partial) queries. The main
difference between QUACQ and MULTIACQ is the fact that
QUACQ learns and focuses on one constraint each time we
have a negative example, whereas MULTIACQ tries to learn
more than one explanation (constraint) of why the user clas-
sifies a given example as negative.

3.1 Description of MULTIACQ

MULTIACQ (see Algorithm 1) starts by initializing the CL
network to the empty set (line 1). If CL is unsatisfiable (line
3), the acquisition process will reach a collapse state. At line
4, we compute a complete assignment e satisfying the current
learned network CL and violating at least one constraint in
B. If such an example does not exist (line 5), then all the
constraints in B are implied by CL, and we have converged.
Otherwise, we call the function findAllScopes on the ex-
ample e (line 8). If e is negative, findAllScopes returns the
set MSes of minimal scopes of e. As each minimal scope in
MSes represents the scope of a violated constraint that must
be learned, the function findC is called for each such min-
imal scope (line 10). It returns a constraint from CT with
the given minimal scope as scope, that rejects e. We do not

Algorithme 1 : MULTIACQ

1 CL ← ∅
2 while true do
3 if sol(CL) = ∅ then return “collapse”
4 choose e in DX accepted by CL and rejected by B
5 if e = nil then return “convergence on CL”
6 else
7 MSes← ∅
8 findAllScopes (e, X, MSes)
9 foreach Y ∈ MSes do

10 cY ← findC(e, Y )
11 if cY = nil then return “collapse”
12 else CL ← CL ∪ {cY }

give the code of function findC because it is implemented
as in [Bessiere et al., 2013]. If no constraint is returned (line
11), this is a second condition for collapsing as we could not
find in the bias B a constraint rejecting the negative example.
Otherwise, the constraint returned by findC is added to the
learned network CL (line 12).

3.2 Description of the function findAllScopes
The recursive function findAllScopes (see Function 1)
takes as input a complete example e and a subset of variables
Y (X for the first call). Function findAllScopes returns
true if and only if there exists a minimal scope of e in Y . But
the real aim of function findAllScopes is to fill the set MSes
with all the minimal scopes of e. Function findAllScopes
starts by checking if the subset Y is already reported as a
minimal scope (line 1). If this occurs, we return true. As we
assume that the bias is expressive enough to learn CT , when
κB(eY ) = ∅ (i.e., there is no violated constraint inB to learn
on Y ), it implies that ASK(eY ) = yes and we return false
(line 2). As a third check (line 3), we verify if we have not
reported a subset of Y as a minimal scope. If that is the case,
we are sure that ASK(eY ) = no and we get into the main
part of the algorithm. If not, at line 4, we ask the user to clas-
sify the (partial) example eY . If it is positive, we remove from
B all the constraints rejecting eY and we return false (lines
5-6). If ASK(eY ) = no, this means that there exist mini-
mal scopes in Y and in what follows, we try to report them.
For that, we call findAllScopes on each subset of Y built

Function 1 : findAllScopes (e, Y, MSes) : Boolean
1 if Y ∈ MSes then return true
2 if κB(eY ) = ∅ then return false
3 if @M ∈ MSes |M ⊂ Y then
4 if ASK(eY ) = yes then
5 B ← B \ κB(eY )
6 return false
7 flag ← false
8 foreach xi ∈ Y do
9 flag ← findAllScopes(e, Y \{xi}, MSes)∨ flag

10 if ¬flag then MSes← MSes ∪ {Y }
11 return true



by removing one variable from Y (lines 8-9). If any sub-call
to findAllScopes returns true, the Boolean flag will be
set to true, which means that Y itself is not a minimal scope
(line 10) and we return true at line 11. Otherwise, when all
the sub-calls of findAllScopes on Y subsets return false,
this means that Y is a minimal scope (line 10) so we add it to
the set MSes.

3.3 Analysis
We analyze the correctness (i.e., soundness and complete-
ness) of findAllScopes. We also give a complexity study
of MULTIACQ in terms of the number of queries it can ask of
the user.

Lemma 1. IfASK(eY ) = yes then for any Y ′ ⊆ Y we have
ASK(eY ′) = yes.

Proof. Assume that ASK(eY ) = yes. Hence, there exists
no constraint from CT violated by eY . For any Y ′ subset of
Y , the projection eY ′ also does not violate any CT constraint
(i.e., ASK(eY ′) = yes).

Lemma 2. If ASK(eY ) = no then for any Y ′ ⊇ Y we have
ASK(eY ′) = no.

Proof. Assume that ASK(eY ) = no. Hence, there exists
at least one constraint from CT violated by eY . For any Y ′
superset of Y , eY ′ also violates at least the constraint violated
by eY (i.e., ASK(eY ′) = no).

Theorem 1. Given a bias B and a target network CT repre-
sentable by B, function findAllScopes is correct.

Proof. Soundness. Assume that we have a complete as-
signment eX . We show that any subset Y added to MSes
by findAllScopes is a minimal scope. If Y is added to
MSes (line 10), this means that flag = false, and either
there exists M ⊂ Y in MSes or ASK(eY ) = no (lines 3
and 4 to avoid line 6). As flag = false, all sub-calls of
findAllScopes (line 9) on subsets of Y of size |Y | − 1
returned false. Hence, there does not exist any M ⊂ Y
in MSes. Thus, ASK(eY ) = no. In addition, the fact that
findAllScopes returns false when called on any Z ⊆ Y
implies that ASK(eZ) = yes or κB(eZ) = ∅. As the
target network is representable by the bias B, κB(eZ) =
∅ ⇒ ASK(eZ) = yes. As a result, all the sub-calls of
findAllScopes on the subsets of Y return false because
∀xi ∈ Y , we have ASK(eY \{xi}) = yes. Then, knowing
that ASK(eY ) = no implies that Y is a minimal scope (Def-
inition 1).

Completeness. Given a complete example eX , if
ASK(eX) = yes, there is no minimal scope of e to find.
Suppose that ASK(eX) = no with a minimal scope M
to find. The three conditions at lines 1, 2 and 4 are not
satisfied (X /∈ MSes because M ⊆ X , κB(eX) 6= ∅,
and ASK(eX) = no). Hence, function findAllScopes
is called on all the subsets X ′i ⊂ X such that X ′i =
X \ {xi}, xi ∈ X . As M ⊆ X is a minimal scope of e,
ASK(eM ) = no and ∀Y ⊆ X\M , ASK(eM∪Y ) = no
(Lemma 2). Hence, any call of findAllScopes on a superset
ofM will behave exactly as onX . By induction, there will be

a call of findAllScopes on M . As M is a minimal scope,
for any subset M ′ ⊂ M we have ASK(eM ′) = yes (Defi-
nition 1). Thus, M is added to MSes by findAllScopes at
line 10.

Theorem 2. Given a bias B built from a language Γ of
bounded arity constraints, and a target network CT , MUL-
TIACQ uses O(|CT | · (|X| + |Γ|) + |B|) queries to prove
convergence on the target network or to collapse.

Proof. We first show that the number of queries asked by
findAllScopes is bounded above by |CT | · |X|+ |B|.

Let us start with the number of queries asked by
findAllScopes and classified as negative by the user. By
definition, a query on eY where Y is a subset of X is classi-
fied as negative if and only if there exists a minimal scope M
of e, M ⊆ Y . Hence, given a minimal scope M ⊂ X , each
time findAllScopes asks a query on a superset Y of M , it
is classified as negative and findAllScopes reduces the size
of Y by one. Thus, the number of negative queries asked by
findAllScopes to go from X to M is bounded above by
|X| − |M |. The worst case is when |M | = 1 where we will
have |X| − 1 negative queries. Once M is found, the use of
Lemma 2 at lines 1 and 3 of findAllScopes ensures that we
will never ask again a query on a superset of M . With the
fact that the total number of minimal scopes is bounded by
|CT |, we have that the total number of negative queries asked
by findAllScopes is bounded above by |CT | · |X|.

We now show that the number of queries asked by
findAllScopes and classified as positive by the user is
bounded above by |B|. Let us take two subsets Y and Y ′
where κB(eY ′) ⊆ κB(eY ). If an ASK on Y is classified
as positive, we remove κB(eY ) from B (line 5) and therefore
eY ′ will be discarded without any query because κB(eY ′) be-
came empty (line 2). The worst case is when we remove, at
each time, only one constraint from B (i.e., |κB(eY )| = 1).
In this case, findAllScopes asks |B| positive queries.

As a result, the total number of queries asked by
findAllScopes is bounded above by |CT | · |X|+ |B|.

Function findC uses |Γ| queries to return a constraint from
CT [Bessiere et al., 2013] and thus |CT | · |Γ| queries to re-
turn all the constraints. Therefore, the total number of queries
asked by MULTIACQ to converge to the target network is
bounded above by |CT | · |X|+ |B|+ |CT | · |Γ|.

From this complexity analysis we can see that MULTIACQ
converges on a constraint of the target network in a number
of queries linear in the size of the example whereas QUACQ
converges on a constraint in a logarithmic number of queries.
We will show that this decay in theoretical complexity does
not prevent a good experimental behavior.

4 Strategies
Given a negative example, function findAllScopes asks
partial queries to compute the set of minimal scopes of
constraints that explain why the user said no. Function
findAllScopes needs to explore, in the worst case, a search
space containing 2|X| candidate scopes. Hence, generating a
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Figure 1: #queries and #minimal scopes (#MS) returned by
findAllScopes on an RLFAP negative example.

query in findAllScopes can be time-consuming. We ana-
lyze the behavior of findAllScopes on a sample problem.
Based on this analysis, we propose strategies of exploration
of the search space to get the best tradeoff between time-
consumption and number of queries.

4.1 Analyzing the behavior of findAllScopes
We take the Radio Link Frequency Assignment Problem de-
scribed in Section 5 as sample problem.

In Figure 1, we report the time needed to compute queries
and minimal scopes using findAllScopes on a negative ex-
ample. The first observation we make is that the time needed
to compute queries and minimal scopes follows an exponen-
tial scale. Generating a query and computing a minimal scope
becomes more and more time-consuming as minimal scopes
are found. The increasing cost of generating minimal scopes
is due to the fact that findAllScopes returns quickly most of
the minimal scopes just by exploring the first branch (90% of
the minimal scopes are found in the first branch for our sam-
ple problem). The few remaining minimal scopes are found
by exploring the whole remaining branches.

The second observation is that the two curves are almost
parallel. Thus, the number of minimal scopes increases quasi-
linearly with the number of queries. Hence, the increasing
cost of finding minimal scopes is not due to an increasing
number of queries required to find a minimal scope. It is
due to the increasing cost of generating queries. The in-
creasing cost of generating queries is because during search,
findAllScopes will apply more and more Lemmas 1 and 2,
avoiding to ask question on many branches.

4.2 Heuristics
It is not satisfactory, in an interactive process, to let the hu-
man user wait too long between two queries. We then use
the observations made in the previous subsection to propose
a combination of heuristics to maintain a good trade-off be-
tween number of queries and waiting time.

Our first heuristic is merely to use a cutoff on the waiting
time between two queries. As a result, we guarantee that the
user will not wait too long between two queries. However, if
the cutoff is too short, we will not be able to explore the last
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Figure 2: findAllScopes with/without heuristics on RLFAP.

branches of the search for minimal scopes, those branches
including the last variables.

We combine the cutoff technique with a second heuris-
tic based on reordering the variables. Given a call to
findAllScopes on a complete (negative) example e, af-
ter triggering the cutoff for the first time, we call again
findAllScopes on the same complete example e, but on a
reverse order of the variables. If a second cutoff is triggered,
we come back to MULTIACQ, generate a new example and
make a shuffle on the variable order. To ensure termination
of MULTIACQ, we force findAllScopes to return at least a
minimal scope before cutting off.

We implemented this combination of heuristics in
findAllScopes and tested it on our sample problem. The
cutoff on the time between two queries has been set to 5 sec-
onds. This is an acceptable waiting time for a human user.

Figure 2(a) shows a comparison on #queries and #mini-
mal scopes (#MS) computed over time by findAllScopes
with and without heuristics. Without heuristics (grey lines),
findAllScopes returns its set of minimal scopes on only
one negative example generated by MULTIACQ. But the time
needed per minimal scope grows during search, as already
observed in Figure 1. With heuristics (multicolored lines),
findAllScopes will cut off the search, reverse the variables,
restart, cut off again, and take a new negative example gener-
ated by MULTIACQ. This is marked in the figure as 1st neg-
ative example, 2nd negative example, and so on. We observe
that for a same amount of time, the number of minimal scopes
found with heuristics increases and thus, the total time needed
to return the whole set of minimal scopes decreases (from 36
minutes without heuristics to 139 seconds with heuristics).



Figure 2(b) shows #minimal scopes over #queries with and
without heuristics. With heuristics, we observe a clear de-
crease of the ratio #minimal scopes/#queries. The total num-
ber of queries increases from 500 to more than 800.

This example shows that the use of heuristics allows us to
reduce the time needed to compute the total number of min-
imal scopes by a factor of 44 with an increase by a factor of
almost 2 on the number of queries asked.

5 Experimentations
We made experiments to evaluate the performance of MULTI-
ACQ and its findAllScopes function compared to QUACQ.
We also evaluate the version using cut-offs, that we call
MACQ-CO (i.e., MULTIAcq with Cuts-Offs). Our tests were
conducted on an 1,6 GHz Intel Core i5 with 4.0GB of RAM
(1600 MHz DDR3). We first present the benchmark problems
we used for our experiments.

5.1 Benchmark Problems
Murder. Someone was murdered last night. There are 5
suspects, each having an item, an activity and a motive for
the crime. Under a set of additional clues, the problem is
who was the murderer? The target network has the 20 vari-
ables we described (i.e., the 5 suspects and their items, ac-
tivities and motives) with domains of size 5, and 53 binary
constraints. We use a bias of 380 constraints based on the
language Γ = {=, 6=}.

Latin Square. A Latin square is an n x n array filled with
n different Latin letters, each occurring exactly once in each
row and exactly once in each column. Here we take n = 5
and the target network is built with 100 binary 6= constraints
on rows and columns. We use a bias of 600 contraints built
with the language Γ = {6=, =}.

Golomb Rulers. (prob006 in [Gent and Walsh, 1999]) The
problem is to find a ruler where the distance between any two
marks is different from that between any other two marks.
The target network is encoded with n variables correspond-
ing to the n marks, and constraints of varying arity. For our
experiments, we selected the 12-marks ruler instance with a
bias of 4356 constraints.

Sudoku. We used the Sudoku logic puzzle with 9×9 grid.
The grid must be filled with numbers from 1 to 9 in such a
way that all the rows, all the columns and the 9 non overlap-
ping 3×3 squares contain the numbers 1 to 9. The target net-
work has 81 variables with domains of size 9, and 810 binary
6= constraints on rows, columns and squares. We use a bias of
6480 binary constraints built with the language Γ = {6=, =}.

RLFA Problem. [Cabon et al., 1999] The Radio Link
Frequency Assignment Problem is to provide communica-
tion channels from limited spectral resources. Here we build
a simplified version of RLFAP that consists in distributing
all the frequencies available on the base stations of the net-
work. We have five stations of five terminals (transmit-
ters/receivers). The target network has 25 variables with do-
mains of size 25, and 125 binary constraints We use a bias of
1800 binary constraints taken from a language of 6 arithmetic
and distance constraints.

Langford’s Numbers Problem. (prob024 in [Gent and
Walsh, 1999]) The Langford’s numbers problem is to arrange

Table 1: QUACQ vs. MULTIACQ
XP Algorithm |CL| T̄ σT #q q̄ #q+c #q−c #q+p

M
ur

de
r

QUACQ 52 0.01 0.03 518 10.35 1 52 90

MULTIACQ 52 0.00 0.06 404 4.93 2 3 248

L
at

in QUACQ 90 0.02 0.03 1078 12.1 4 90 140

MULTIACQ 100 0.00 0.05 379 3.53 8 1 200

G
ol

om
b

12

QUACQ 323 0.53 1.93 4258 6.45 1 323 61

MULTIACQ 418 1.20 1.19 1946 5.14 0 43 567

Su
do

ku QUACQ 622 0.08 1.43 10110 36.24 0 622 1107

MULTIACQ 810 0.24 0.36 3821 3.50 10 1 2430

k sets of numbers 1 to n such that each appearance of the
number m is m numbers on from the last. As an instance
of this problem, we select n = 5 and k = 5. Thus, we
have 5 different numbers, each one occurring 5 times , which
leads to 25 variables. The target network contains 300 con-
straints with binary constraints of distance and clique of 6=
constraints. We use a bias of 3600 binary constraints taken
from arithmetic and distance constraints.

Zebra problem. The Lewis Carroll Zebra problem is for-
mulated using 25 variables, with 5 cliques of 6= constraints
and 14 additional constraints. We use a bias of 4450 unary
and binary constraints taken from a language with 24 basic
arithmetic and distance constraints.

Graceful Graphs. (prob053 in [Gent and Walsh, 1999])
A graph of m edges is graceful if all its nodes are assigned
to a unique label from {0, . . . , m} and when each edge xy
is assigned to (label(x) − label(y)). The edge labels are all
different. As an instance, we take 9 nodes and 15 edges. The
target network contains 156 constraints (binary and ternary
constraints). The bias that we use contains 4600 constraints
of basic arithmetic (binary and ternary) constraints.

5.2 Results
Table 1 displays the performance of MULTIACQ and
QUACQ. We report the size |CL| of the learned network,
the average time T̄ needed to generate a query in seconds,
the standard deviation σT of T̄ , the total number of queries
#q, the average size q̄ of all queries, the number of complete
positive (resp. negative) queries #q+

c (resp. #q−c ) and the
number of partial positive queries #q+

p .
If we compare MULTIACQ to QUACQ, the main observa-

tion is that the use of findAllScopes to find all minimal
scopes of a negative example reduces significantly the num-
ber of queries required for convergence.

Let us take the Murder problem. MULTIACQ exhibits a
gain of 22% on the number of queries. The second obser-
vation that we can make is the fact that MULTIACQ reduces
significantly the average size of the queries (52%), which is
probably easier to answer by the user. Another point to stress
is that MULTIACQ needs only 3 complete negative examples
instead of 52 for QUACQ. This is not surprising as MULTI-
ACQ is dedicated to return the entire set of minimal scopes of
a negative example, where QUACQ focuses on one minimal
scope each time we feed it with a negative example.

The same observations on the performance of MULTI-



ACQ comparing to QUACQ are true on the other problem in-
stances:
• Number of queries reduction (i.e., gain of 65% on Latin

Square, 55% on Golomb Rulers and 73% on Sudoku).
• The average size of the queries (i.e., 71% on Latin-

Square, 20% on Golomb Rulers and 90% on Sudoku).
• Obviously, we need less complete negative example

(i.e., only one instead of 90 on Latin Square, 43 instead
of 323 on Golomb Rulers and only one instead of 622
on Sudoku).

We also observe that the number of constraints learned by
MULTIACQ is always greater than or equal to the number of
constraints learned using QUACQ (|CL| column). This can
be explained by the fact that MULTIACQ can learn redundant
constraints, which is not the case using QUACQ. Take three
constraints c1, c2 and c3 such that c1 ∧ c2 → c3. If we gener-
ate a negative example e1 that violates the three constraints,
MULTIACQ will return three minimal scopes corresponding
to the three constraints. By contrast, QUACQ will return only
one minimal scope, let us say the one of c2. If in a second it-
eration QUACQ learns c1, c3 is automatically satisfied in any
next iteration and will never be learned by QUACQ.

A last observation we can make on Table 1 is related to the
average time needed to generate a query. If we take the in-
stances of Golomb Rulers and Sudoku, we observe that MUL-
TIACQ respectively needs twice more time (1.20s instead of
0.53s) and three times more time (0.24s instead of 0.08s)
than QUACQ. On these two instances, generating a query is
starting to become time-consuming.

Table 1 does not report the results of MACQ-CO because
it performs exactly the same as the basic version of MUL-
TIACQ. The reason is that the average time (and standard
deviation) needed to generate a query is significantly below
the value of the cutoff (5s in our case).

Table 2 gives the results on four additional benchmark
problems where MULTIACQ takes long in average to com-
pute a query (more than 2 seconds for all four problems). Re-
sults are reported for QUACQ, MULTIACQ and MACQ-CO.
The results displayed for MACQ-CO are the average over 10
runs because of the shuffle on the variables, which makes it
non deterministic.

The observations made on Table 1 remain true on RLFA
and Langford instances. The difference is in the average time
needed to generate a query. Using MULTIACQ, the time
increases significantly. For instance, on Langford, QUACQ
takes 0.03± 0.13 seconds to generate a query whereas MUL-
TIACQ takes 4.24 ± 23.03 seconds. On Zebra and Grace-
ful Graphs instances, we observe the same behavior as on
the previous two instances for the time to generate a query.
However, as for the number of queries, QUACQ is better than
MULTIACQ. This can be explained by the high number of
partial positive queries asked by MULTIACQ (e.g., for Ze-
bra we have #q+

p = 592 with MULTIACQ against 255 with
QUACQ). By definition, MULTIACQ has a trend to ask small
queries and then, needs an important number of partial posi-
tive queries to reduce the bias and thus, to converge.

Comparing MULTIACQ and MACQ-CO in Table 2, we ob-
serve that MACQ-CO reduces drastically the time T̄ needed to

Table 2: QUACQ vs. MULTIACQ vs. MACQ-CO
XP Algorithm |CL| T̄ σT #q q̄ #q+c #q−c #q+p

R
L

FA

QUACQ 125 0.02 0.17 1738 11.93 6 125 255

MULTIACQ 125 2.32 17.38 621 2.63 3 1 250

MACQ-CO 124.7 0.13 0.72 1094.7 6.51 5.4 10.1 363.2

L
an

gf
or

d QUACQ 226 0.03 0.13 2925 12.03 11 226 496

MULTIACQ 300 4.24 23.03 696 2.96 17 1 296

MACQ-CO 287 0.11 0.28 1867.5 8.95 12.0 30.0 571.0

Z
eb

ra

QUACQ 63 0.03 0.10 771 11.61 1 62 255

MULTIACQ 62 2.08 13.57 823 4.50 1 3 592

MACQ-CO 62.2 0.14 0.63 748.0 5.14 1.0 3.8 469.8

G
G

ra
ph

s QUACQ 129 0.11 0.39 1539 10.57 7 129 330

MULTIACQ 154 5.76 80.85 1706 5.88 0 2 1296

MACQ-CO 155 0.04 0.29 1440.4 6.42 0.0 2.0 1146.5

generate a query as well as the standard deviation σT . How-
ever, MACQ-CO requires more queries than MULTIACQ to
converge, asking almost twice more queries than MULTIACQ
on RLFA and three times more on Langford. This is con-
sistent with our analysis in Section 4. Surprisingly, MACQ-
CO is better than MULTIACQ in number of queries on Zebra
and Graceful Graphs. A possible explanation is the very low
number of solutions of these problems that lead MULTIACQ
to visit too many partial positive examples that MACQ-CO
avoids thanks to the heuristics.

Let us now compare MACQ-CO to QUACQ. The main ob-
servation is that MACQ-CO wins in number of queries on all
four problems of Table 2. For instance, on RLFA we note
a gain of 37%. Concerning the time to generate queries, we
observe that MACQ-CO is quite competitive thanks to the use
of cutoffs and its different heuristics.

6 Conclusion
We have proposed a new approach to make constraint acqui-
sition more efficient in practice by learning a maximum num-
ber of constraints from a negative example. The QUACQ con-
straint acquisition system focuses on the scope of one target
constraint each time it processes a negative example. Our pro-
posed MULTIACQ, with the findAllScopes function, re-
ports all minimal scopes of violated constraints. We have also
proposed several heuristics, leading to the MACQ-CO ver-
sion, to obtain a good trade-off between time and number of
queries. We have experimentally evaluated the benefit of our
algorithm and heuristics on some benchmark problems. The
results show that MULTIACQ dramatically improves the basic
QUACQ in terms of number of queries. The queries generated
are often much shorter than those asked by QUACQ, so are
easier to handle for the user. Finally, as MULTIACQ can take
too long to generate queries on some problems, MACQ-CO
appears as a good compromise between QUACQ and MULTI-
ACQ in terms of time-consumption and number of queries.
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