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Abstract
We need to reason about rankings of objects in
a wide variety of domains including information
retrieval, sports tournaments, bibliometrics, and
statistics. We propose a global constraint therefore
for modeling rankings. One important application
for rankings is in reasoning about the correlation
or uncorrelation between sequences. For example,
we might wish to have consecutive delivery sched-
ules correlated to make it easier for clients and em-
ployees, or uncorrelated to avoid predictability and
complacence. We therefore also consider global
correlation constraints between rankings. For both
ranking and correlation constraints, we propose
efficient filtering algorithms and decompositions,
and report experimental results demonstrating the
promise of our proposed approach.

1 Introduction
In many problems we want to reason about the ranking of
items. For example, in information retrieval, we often want to
aggregate several search results. The results being aggregated
together may contain ties, and so are rank orders (e.g. [Fagin
et al., 2004; Brancotte et al., 2015]). As a second example,
we may wish to construct an overall ranking of tennis player
based on pairwise comparisons between players. One prin-
cipled method for constructing a ranking is the Kemeny dis-
tance [Kemeny, 1959; Levenglick, 1975] as this is the unique
scheme that is neutral, consistent, and Condorcet. Unfortu-
nately, determining this ranking is NP-hard, and remains so
when we permit ties in the input or output [Hemaspaandra et
al., 2005]. As a third example, as we discuss shortly, tasks
in a scheduling problem may run in parallel, resulting in a
ranking rather than a permutation of tasks.

In a ranking, unlike a permutation, we can have ties. Thus,
12225 is a ranking whilst 12345 is a permutation. To rea-
son about permutations, we have some beautiful, efficient
and effective global constraints. Regin [1994] proposed an
O(n2d2) domain consistency propagator for permutations
where n is the number of variables and d is their domain size.
This work won the 2013 AAAI Classic Paper award. For

bound consistency, there is an even faster O(n log n) propa-
gator [Ortiz et al., 2003]. Every constraint toolkit now pro-
vides propagators for permutation constraints. Surprisingly,
ranking constraints are not yet supported in any toolkit. We
tackle this weakness by proposing a global ranking constraint.

One very important application for rankings is in reasoning
about the correlation between two sequences. For instance,
in a vehicle routing problem, we might wish to have a large
correlation between routes on consecutive days. In this way,
drivers can “learn the routes”, and customers can see a pre-
dictable face at a predictable time. A standard method in
statistics to achieve such correlation is to minimize the dis-
tance between the ranking of stops in a route. On the other
hand, there are also applications where we want routes to be
uncorrelated. For example, in delivering cash to ATMs, we
may wish routes to be highly uncorrelated. We therefore also
propose some global correlation constraints.

2 Background
Constraint Satisfaction
A Constraint Satisfaction Problem (CSP) is a triple P =
〈X,D,C〉 where X is a set of variables, D is a function from
variables to sets of values andD(Xi) is the domain ofXi. An
assignment σ(S) to S ⊆ X is a function S → ∪Xi∈SD(Xi)
such that σ(Xi) ∈ D(Xi). C is a set of constraints. A con-
straint c is a pair 〈Sc, Rc〉 where Sc ⊆ X and Rc is a predi-
cate over

∏
Xi∈Sc

D(Xi). If Rc is made true by σ(Sc), c is
satisfied by σ. We seek a σ(X) that satisfies all constraints.

Let min(X) (max(X)) be the minimum (max.) value in
D(X). A value v ∈ D(Xi) is domain consistent (DC) in
a constraint c if there is a σ(Sc) that satisfies c such that
σ(Xi) = v and σ(Xj) ∈ D(Xj)∀Xj ∈ Sc \ {Xi} and range
consistent (RC) if σ(Xj) ∈ [min(Xj),max(Xj)]∀Xj ∈
Sc \{Xi}. A constraint is DC (RC) if ∀Xi ∈ Sc, v ∈ D(Xi),
v is DC (RC). It is bound consistent (BC) if min(Xi) and
max(Xi) are RC for all Xi ∈ Sc. It is domain (range) disen-
tailed if all values are domain (range) inconsistent.

A RANKING on a set of variables ensures an assignment is
a ranking under some ordering of the variables.

Definition 1 A sequence R is a ranking (often called a stan-
dard ranking) iff either R = (1), or R = (x1, . . . , xm+1)



with xm+1 = xm or xm+1 = m + 1 and (x1, . . . , xm) is
a ranking. RANKING(X1, . . . , Xn) iff the sorted sequence
(Xπ(1), . . . , Xπ(n)) is a ranking.

For example, RANKING([4, 1, 2, 2]) is satisfied but
RANKING([3, 1, 4, 3]) is not.

Scheduling
In scheduling, we need to determine starting times for a set
of tasks of a given duration, respecting their release and due
dates, bounds on the utilization of resources, so that an ob-
jective like the makespan is minimized. In the “batching ma-
chine” model [Potts and Kovalyov, 2000], the resources (such
as, for instance, an oven) have a capacity, but the processing
time of the tasks scheduled in parallel equal the processing
time of the longest task. In this model, the partial order on
the equivalence classes “processed in parallel” is a ranking.
In some scheduling problems the length of a task is time de-
pendent [Gupta and Gupta, 1988], for instance because of a
“learning curve” [Dutton and Thomas, 1984], or because of
wear and tear, see [Biskup, 2008] for a survey. Some mod-
els relate the duration of a task to the number of times a
similar task has been processed in the past [Biskup, 1999;
Gordon et al., 2008]. In our experiments, we used the model
of Mosheiov [2005], where the processing time of task i is
ripi where pi is a constant and ri the rank of task i.

Correlation Constraints
Let X = {X1, . . . , Xn} and Y = {Y1, . . . , Yn} be two rank-
ings. They are positively correlated if the distance between X
and Y is low, negatively correlated if this distance is high and
uncorrelated if this distance is average. Several distance mea-
sures can be used to define a correlation coefficient. In this
paper, we consider only Manhattan distance, a well known
correlation metric. We measure correlation using the Spear-
man’s Footrule, a simple measure of correlation between se-
quences based on Manhattan distance. We denote m =

⌊
n2

4

⌋
the median Manhattan distance between two rankings. If we
consider the gap to the median |

∑n
i=1 |Xi − Yi| −m|, we

can enforce uncorrelation by stating an upper bound, or cor-
relation (either positive or negative) by stating a lower bound.
This gives the following two global correlation constraints
where ⊕ ∈ {≤,≥}:
Definition 2

RANKINGCORRELATION⊕(X,Y, C) ⇐⇒∣∣∣∣∣
n∑
i=1

|Xi − Yi| −m

∣∣∣∣∣⊕ C&RANKING(X)&RANKING(Y)

3 The Ranking Constraint
We introduce two decompositions for the RANKING con-
straint. The first uses the SORTEDNESS(X,Y) con-
straint [Older et al., 1995], which ensures that Y is a sorted
version of the sequence X and which is itself efficiently de-
composable [Schaus, 2010]:

SORTEDNESS(X,Y), Y1 = 1

Yi = Yi−1 ∨ Yi = i ∀i ∈ [2, n]

The second decomposition uses the GCC(X, V,Y) con-
straint [Oplobedu et al., 1989], which ensures that each value
v ∈ V appears Yv times1 in the sequence X:

GCC(X, {1, . . . , n},Y), Y1 = Z1

Zi = Zi−1 + Yi ∀i ∈ [2, n]

Zi ≥ i ∀i ∈ [1, n]

Yi = 0 ⇐⇒ Zi−1 ≥ i ∀i ∈ [2, n]

Proposition 1 Neither encoding achieves BC
Proof: Consider X1, X2 ∈ [1, 5], X3 = 4 and

X4, X5, X6 ∈ [2, 3]. This instance does not admit a rank-
ing. However neither decomposition identifies this. �

We next show that domain consistency can be enforced in
polynomial time. However, our propagator requires many
(O(n2)) calls to a min cost flow algorithm, so we also propose
an efficient algorithm for reasoning with interval domains.

3.1 Domain Consistency
High level description. We reformulate the problem as a
lexicographic maximum flow [Kozen, 2009], modeled using
exponentially large costs. If the lex-max flow is not a rank-
ing, we force a lexicographically smaller choice at the point
where the ranking property is violated. Since there are only
two choices at each point of the sorted sequence, the smaller
choice is true in all solutions and will not be revisited, al-
though previous choices may have to be revised. Hence, we
make O(n2) revisions and get a polynomial runtime. We
present this in Algorithm 1.

Figure 1: Network flow for a ranking with 4 vari-
ables. Arcs are labelled with ([demand, capacity], cost), or
(demand, cost) if demand = capacity.
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Construction. The construction is similar to that of
nested GCC [Zanarini and Pesant, 2007] over the intervals
[1, 1], [1, 2], . . . , [1, n]. There exists a unique source s and
sink t, a vertex xi for each variable Xi and arcs (s, xi) with
demand 1 and cost 0. There exists a vertex vj for each value
j and an arc (xi, j) iff j ∈ D(Xi). For each j ∈ [1, n], there
exists a vertex ivj for the interval [1, j] and an arc (vj , ivj)

with cost nn−i+1 = 2(n−i+1) logn. For each j ∈ [2, n] there
is an arc (ivj−1, ivj) with demand j − 1. Finally, there is
an arc (ivn, t) with demand n. Unless otherwise mentioned,
all arcs have maximal capacity, no demand and no cost. We
denote this network by N(X1, . . . , Xn).

1The version where Y is a set of integer variables is called “ex-
tended” GCC in [Quimper, 2006].



Algorithm 1: DCSupport(X1, . . . , Xn)
G = N(X1, . . . , Xn) ;
while true do

F = MinCostFlow(G,n) ; // n units of flow
if There exists no flow then FAIL ;
σ = {Xi = j | F (xi, vj) > 0} ;
if σ is a ranking then return σ ;
o← sort(σ) ; // by assigned value
r ← first position in o that violates the ranking property ;
p← max {j | ∃i, k s.t. o(k) = {Xi = j}, k < r};
set demand of arc (ivp, ivp+1) in G to r;

Theorem 1 Algorithm 1 returns a support of a RANKING
constraint iff the constraint is satisfiable, in polynomial time.

Proof: ⇒ Immediate.
⇐ Consider a minimum cost feasible flow of G. In the

usual way, we construct an assignment σ to the variables of
the constraint. Let Z1, . . . , Zn be the sorted assignment, i.e.,
there exists a permutation π such that Zi = σ(Xπ(i)) and
Zi ≤ Zi+1 for all i ∈ [1, n − 1]. This sequence has the
property Z1 = 1, Zr ∈ [Zr−1, r] for 2 ≤ r ≤ n, otherwise
the demand on (ivr−1, ivr) would be violated. This is weaker
than the ranking property Z1 = 1, Zr ∈ {Zr−1, r}. Suppose
Z1, . . . , Zn is not a ranking. Then there exists a minimum
r such that Z1, . . . , Zr−1 = p is a ranking and Zr ∈ (p, r).
By construction, we place priority on higher values, hence no
flow extends Z1, . . . , Zr−1 with Zr = r, nor is there a flow
in which any of Zi, i ≤ r gets a larger value. Hence, any
ranking is lexicographically smaller than Z1, . . . , Zr and if
it matches Z1, . . . , Zr−1 then Zr = p. This is enforced by
requiring at least r values to be smaller than p, by setting the
demand of the edge (ivp, ivp+1) to r.

Since the lexicographic upper bound of the flow is reduced
at each iteration, the algorithm will eventually find a flow that
is a ranking or report that none exists. In that case, the con-
straint is unsatisfiable, by the correctness of the bound. The
demand of one of the n edges (ivi, ivi+1) is increased at each
iteration and the total flow is n, so there are O(n2) iterations.
The weights are represented with n log n bits, so computing
the flow is polynomial, as is the entire algorithm. �

Note that given the above algorithm we can achieve domain
consistency by probing (see also section 3.2).

3.2 Bounds Consistency
Support. Algorithm 2 computes the lexicographically
maximum BC support σ, if one exists, and fails otherwise.
It maintains a partition of the variables into assigned (A) or
unassigned (U ). Suppose it extracts the variables in U in the
order Xi1 , . . . , Xin . It always tries to assign to variable Xik
the value k (line 2), while line 1 ensures that Xik has mini-
mum upper bound among those that contain k or fails if no
such variable exists. Construction of a ranking can continue
either with the value k or |A| + 1 (= k + 1 in the first iter-
ation of the loop at line 3). If some variables do not contain
|A|+ 1, it assigns them k (line 5). These are forced variables.
This may create further forced variables. If the domain of a
forced variable does not contain k either, it fails (line 5).

Algorithm 2: RCSupport(X1, . . . , Xn)
U ← {1, . . . , n}; A← ∅; σ ← [];
while U 6= ∅ do

k ← |A|+ 1 ;
1 pop argmini|k∈D(Xi)

(max(Xj)) from U or FAIL;
2 σ[i]← k; A← A ∪ {i};F ← ∅;
3 while ∃Xj ∈ U s.t. max(Xj) < |A|+ 1 do

F ← F ∪ {j | j ∈ U ∧max(Xj) < |A|+ 1};
U ← U \ F ; A← A ∪ F ;

if |F | > 0 then
4 if ∃j ∈ F s.t. k /∈ D(Xj) then FAIL;
5 else σ[F ]← k;

Example 1 Consider the domains
D(X1) = 1 2
D(X2) = 1 2
D(X3) = 1 2 3
D(X4) = 2 3
D(X5) = 1 2 3 4
D(X6) = 3 4 5 6
D(X7) = 2 3 4 5 6 7
D(X8) = 4 5 6 7
D(X9) = 4 5 6 7

Algorithm 2 orders the variables as given and finds the sup-
port marked in bold. X4, X5, X8 and X9 are forced.

Theorem 2 Algorithm 2 returns a valid BC support if one
exists and fails otherwise, in time O(n log n)

Proof: Algorithm 2 constructs an assignment as well as a
total variable ordering which agrees with the partial ordering
where variables are ordered by their rank. The total order is
given by the order in which variables are popped from A (for
variables in M , we choose arbitrarily). We show that the al-
gorithm constructs the lexicographically maximal among the
non-decreasing solutions in this ordering if and only if the
constraint has a bounds support.

(⇒) This is straightforward.
(⇐) Suppose the RANKING constraint has a bounds sup-

port but algorithm 2 fails. At the point where it fails, it
has constructed a total ordering oa of a subset X′ ⊂ X =
[X1, . . . , Xn]. Now let σ1 be a bounds support of the con-
straint. We extend the partial order induced by the ranking
of σ1 to a total order os arbitrarily and consider σmax, the
lexicographically maximal among the solutions that are non-
decreasing in the order os. For these total orders, we write
o(i) to denote the variable in the ith position.

Since the algorithm failed without producing a solution,
either oa disagrees with os or σ disagrees with σmax in X′.
We show that there exists an ordering and corresponding lex-
max non-decreasing solution that do not disagree with oa and
σ, a contradiction. We use induction on the position q of the
first disagreement between either oa and os or σ and σmax.

Base case. For q = 1, the only possible value is 1, so the
only possible disagreement is in the ordering. Let oa(1) = i,
os(1) = j. Since Xi is chosen such that max(Xi) is mini-
mum, it follows σ(i) ≥ max(Xj). Thus we can swap Xi and
Xj in the ordering and in σ and get a new ordering o′s and



assignment σ′max that agree with oa and σ at position 1.
Inductive step. Assume now that oa and σ agree with os

and σmax until the q − 1th position.
(1) Suppose first that oa(q) = os(q) = i but σ(i) 6=

σmax(i). Observe that the ranking os(1) . . . os(q − 1) can
be only be extended by p = σmax(os(q− 1)) (i.e., continue a
sequence of p ranks, σmax(i) = p) or by q > p. Algorithm 2
chooses σ(i) = q, so it follows that σmax(i) = p. Let r ≥ q
be the greatest index such that σmax(os(r)) = p and hence
by the above reasoning σmax(os(r+1)) = r+1. For all vari-
ables Xj , j ∈ [omax(q+ 1), omax(r)], it must be min(Xj) ≤
p < q and max(Xj) ≥ q, otherwise they would have been
chosen before Xi by algorithm 2, which is impossible since
oa and os agree until position q. Hence we can construct
σ′max(j) = σmax(j) if j /∈ [q, r] and q otherwise. In other
words we transform the ranking (1, . . . , p, . . . , p︸ ︷︷ ︸

1...r

, r + 1, . . .)

to (1, . . . , p, . . . , p︸ ︷︷ ︸
1...q−1

, q, . . . , q︸ ︷︷ ︸
q...r

, r + 1, . . .). The new assignment

σ′max is a ranking, non-decreasing over os and lexicographi-
cally greater than σmax, a contradiction.

(2) Suppose oa disagrees with os at position q so that
oa(q) = i and os(q) = j but σ(i) = σmax(j). As in the
base case (q = 1), we can swap i and j in σmax and os to get
σ′max and o′s that agree with σ and oa.

(3) Finally, assume oa(q) = i, os(q) = j 6= i and σ(i) 6=
σmax(j). By the argument in case (1), σmax cannot be a
lexicographically maximal solution over os.

Complexity. In each iteration we assign at least one vari-
able, hence the loop runs O(n) times. All operations are in
O(1), except line 1, which is in O(log n) using a binary heap,
for a total O(n log n). �

Probing propagator
Based on algorithm 2, we can enforce range consistency on
a RANKING constraint by “probing”, i.e., asserting for each
v ∈ D(Xi) Xi = v and looking for a bound support. If none
exists, that value is pruned. The cost of this is O(n3 log n),
as it runs algorithm 2 once for each value in each domain.
Hence, we explore computationally cheaper alternatives.

Pruning Conditions.
We first identify the conditions under which algorithm 2 can
fail and for when a value is range inconsistent.

Definition 3 ((super-)Hall intervals) Let Vv(a, b) = {X |
D(X) ⊆ [a, b]} and S(a, b) = |Vv(a, b)|. We say that [a, b]
is a Hall interval if S(a, b) = b − a + 1 and a super-Hall
interval if S(a, b) > b − a + 1. We write ∆(a, b) = [b +
1, a+ S(a, b)− 1], ∆(a, b) = [b+ 1, a+ S(a, b)].

Lemma 1 If a ranking constraint contains a super-Hall in-
terval [a, b], then ∀Xi ∈ X, Xi /∈ ∆(a, b). Moreover, if [a, b]
is a Hall interval, then ∀Xi ∈ X \ Vv(a, b), Xi ∈ [a, b] →
∀Xj ∈ X.Xj /∈ ∆(a, b).

Proof: Suppose there exists a ranking that violates this con-
dition, i.e., ∃Xi ∈ ∆(a, b). Since min(∆(a, b)) = b + 1,
every variable in Vv(a, b) is ranked strictly higher than Xi,
and the lowest possible rank among them is a. So the value
assigned to Xi must be at least a+ S(a, b).

For the second claim, if the left hand side is satisfied,
S(a, b) increases, making it equivalent to the first claim. �

The first condition is also correct for Hall intervals, but
∆(a, b) = [b+ 1, a+ S(a, b)− 1] = [b+ 1, a+ b− a] = ∅,
so we achieve no pruning.

Example 2 Consider again the instance RANKING
([X1, . . . , X9]) from Example 1. The interval [1, 2] is a
Hall interval with Vv(1, 2) = {X1, X2}. The interval [1, 3]
is a super-Hall interval with Vv(1, 3) = {X1, X2, X3, X4}
and entails that [4, 4] is inconsistent for all variables.

Definition 4 (Saturated/Failed value) A value v such that
v = |Vu(1, v)|, where Vu(1, v) = {Xi | min(Xi) ≤ v}, is
called a saturated value. It is a failed value if v > |Vu(1, v)|.
Lemma 2 If a RANKING constraint contains a failed value
it is unsatisfiable. If it contains a saturated value v, then in
every solution σ, σ(Xi) ≤ v,∀Xi ∈ Vu(1, v).

Proof: The first claim follows from the fact that in a rank-
ing the kth value is at most k, but when there exists a failed
value v, if Xj is at position |Vu(1, v)| + 1 ≤ v, [1, v] /∈
D(Xj). The second claim follows because if we made any of
these assignments, v would become a failed value. �

Theorem 3 A RANKING constraint is bounds disentailed if
and only if either (a) the constraint contains a failed value;
or (b) The constraint contains a variable X and a set S of
super-Hall intervals such that dom(X) ⊆ ∪[a,b]∈S∆(a, b).

Proof: ⇐. This follows from lemmas 1 and 2.
⇒ By theorem 2 it suffices to show this for algorithm 2.
Algorithm 2 fails only in lines 1 and 4. In the first case

(line 1), k is failed value. Indeed, k − 1 = n − |A| vari-
ables have been assigned and none of the remaining vari-
ables contain k, hence their lower bound is greater than k.
So |vars(k)| = k − 1 and k is a failed value.

For the second case (line 4), the algorithm fails because
a variable Xj is in F but does not contain the value k, so
maxXj < k. Assume w.l.o.g. that the variables are chosen
in the order X1, . . . , Xn. We claim that each time F 6= ∅, the
algorithm has identified a super-Hall set. We say that a vari-
able assigned in line 5 is forced. Let F = {Xj , . . . , Xk} and
Xi be the latest unforced variable with σ(Xi) = min(Xi).
(X1 in the extreme). Then we show that the interval [a, b]
where a = minXi and b = maxp∈M D(Xp) is a super-Hall
interval and Vv(a, b) = {Xi, . . . , Xk}.

We have that b < k because Xk ∈ F and, because Xi

was not forced, i < j and a = i. For all Xp, i ≤ p < j,
we have that maxXp ≤ b as well. If not, suppose p is the
greatest index such that maxXp > b. Since maxXp+1 ≤ b
and Xp is chosen before Xp+1, it must be because Xp gets
a value v which is not in the domain of Xp+1. It also means
that Xp+1 gets v + 1 = minXp+1 and is unforced, contrary
to the assumption that Xi is the latest such variable. Hence,
{Xi, . . . , Xk} ⊆ Vv(a, b). Moreover, we have |[a, b]| = b−
a + 1 < k − i + 1 = |{Xi, . . . , Xk}| ≤ |Vv(a, b)|, proving
that [a, b] is a super-Hall interval. Hence the values that the
algorithm skips when constructing a support are exactly those
that are in ∆(a, b) of some super-Hall interval [a, b].

Consider now the failed variable Xj . Suppose algorithm 2
has used a value in D(Xj) and let v be the largest one. When



it used v,Xj would be in F and it would be assigned v, which
did not happen. Hence, algorithm 2 has skipped over all of
D(Xj), so there exists a series of super-Hall intervals whose
∆(a, b) cover D(Xj), as required. �

Lemma 3 An assignment Xi = v is range inconsistent in
RANKING constraint C if and only if (a) There exists a super-
Hall interval [a, b] s.t. v ∈ ∆(a, b); or (b) The constraint con-
tains a saturated value v′ < v andXi ∈ Vu(1, v′); or (c) The
constraint contains a variable Xj and two sets of Hall inter-
vals S1, S2 such that ∀[a, b] ∈ S1, v ∈ [a, b]∧Xi /∈ Vv(a, b),
and dom(Xj) ⊆

(
∪[a,b]∈S1

∆(a, b)
)⋃ (

∪[a,b]∈S2
∆(a, b)

)
.

Proof:[Sketch]⇐. This is immediate by lemmas 1 and 2.
⇒. We examine the constraint C |Xi=v which is range

disentailed and derive the above conditions. �
The third condition means that there exists Xj whose val-

ues are either range inconsistent by super-Hall intervals in S2

or incompatible with Xi = v by Hall intervals in S1.

Filtering Algorithm
From Lemma 3 we can design an algorithm to enforce range
consistency (RC), but its cost is similar to that of the probing
propagator, so we propose an incomplete method instead.

Saturated values. We iterate over the variables sorted by
non-decreasing upper bounds. Since the upper bound is n,
sorting is in O(n) [Cormen et al., 2009, Chapter 8.2]. At step
j we explore Xij , and if min(Xij ) ≥ j then |Vu(1, j− 1)| ≤
j − 1, so j − 1 is failed (for strict inequality) or saturated, in
which case we prune the upper bounds of Vu(1, j − 1).

Super-Hall intervals. The second type of pruning comes
from super-Hall intervals, i.e., if [a, b] is such that S(a, b) >
b − a + 1, then no variable can take a value in the interval
[b + 1, a + S(a, b) − 1]. This can be achieved by computing
all left-maximal Hall intervals as described in [Ortiz et al.,
2003] with the difference that we continue when a Hall in-
terval becomes a “super-Hall interval”. This algorithm runs
in O(n log n) and returns O(n) left-maximal Hall intervals.
It explores the variables ordered by non-decreasing upper
bound. For convenience, let Xi be the i-th such variable. We
maintain at each step i, and for the lower bound a of each left-
maximal interval, the value of S(a, b) where b is max(Xi).
Definition 5 An interval [a,b] is left-maximal if there does
not exist a value a′ such that S(a′, b) ≥ S(a, b) + a− a′.

Notice that if [a, b] is not left-maximal because of
[a′, b], a′ < a any subsequent Hall interval [a, c], c > b is
also not left-maximal because of [a′, c]. Lemma 4 shows that
the pruning due to non-left-maximal super-Hall intervals is
subsumed by left-maximal Hall intervals.
Lemma 4 If the super-Hall interval [a, b] is not left-maximal
but [a′, b] is then ∆(a, b) ⊆ ∆(a′, b).

Proof: By definition, we have S(a′, b) ≥ S(a, b) + a − a′
hence a′ + S(a′, b) ≥ a+ S(a, b). �

Therefore, we do not need to keep a as a possible lower
bound for a future Hall interval and we can use the algo-
rithm described by Ortiz et al. (2003). However, we con-
tinue to maintain a value S(a, b) even when it is strictly larger

than a − b + 1, instead of pruning. When we move to the
next variableXi+1, if max(Xi+1) = max(Xi) we increment
S(a,max(Xi)) and add [a,max(Xi)] to a list otherwise.

Backward pruning from (super-)Hall intervals. To en-
force the pruning corresponding to case (c) in Lemma 3, we
want to find a variable X whose domain is included into
the union of ∆(a, b) for some intervals [a, b]. As shown in
Lemma 1, if a variable Y whose domain is not contained in
the union of those intervals takes a value in their intersection,
then as ∆(a, b) increases, it will wipe out the domain of X .
The values in the intersection are thus inconsistent for Y .

We give a O(n2) algorithm to achieve this with respect to
every subset of left-maximal Hall intervals. However, one can
prune even with respect to non left-maximal Hall intervals,
this algorithm is therefore not complete.

We can make the two following simple observations:

Lemma 5 There are O(n) left-maximal (super-)Hall inter-
vals, each with a distinct upper bound.

Proof: Consider two left-maximal intervals [a, b] and [a′, b]
with a′ > a. Then by definition there exists no value a′′ such
that S(a′′, b) ≥ S(a′, b) + a′ − a′′. But a′′ = a is exactly
such a value, a contradiction. �

Lemma 6 If j > i then either ai ≥ aj or aj > bi.

Proof: Suppose that ai < aj and aj ≤ bi. By Lemma 5,
[ai, bi] is the unique left-maximal (super-)Hall interval with
upper bound bi, so [aj , bi] is not left-maximal. Therefore, at
least ai − aj variables have their domain in [ai, bi] and over-
lapping [ai, aj − 1]. Since these variables are also in [ai, bj ],
it is left maximal and [aj , bj ] is not, a contradiction. �

These observations allow to speed up the pruning. By
Lemma 5, we know that the (super-)Hall intervals [aj , bj ] for
j ∈ [1,m] are ordered by upper bounds. Therefore, the inter-
vals ∆(aj , bj) are ordered both by lower and upper bounds
(since they are left-maximal). We explore variables by non-
decreasing lower bound and find, at step i, the greatest l and
smallest u such that D(Xi) ∈

⋃u
j=l ∆(aj , bj), and continue

otherwise. When we find such a set, we can prune the inter-
section of the Hall intervals from the domain of any variable
whose domain is not included in their union.

Finding l such that min(Xi) ∈ ∆(aj , bj) can be done in
logarithmic time by binary search (similarly for u). Then, by
Lemma 6 there are two cases: Either au > bl and then the in-
tervals [al, bl] and [au, bu] are disjoint, which means that there
is no possible pruning, or au ≤ al. However, we know by
Lemma 5 that bu > bl. Therefore [al, bl] ⊆, . . . ,⊆ [au, bu].
Computing the intersection or the union can thus be done
in constant time: the union is [au, bu] and the intersection
[al, bl]. Thus, this takes O(n log n) time. However, we need
O(n2) time to actually achieve the pruning. At step i we
review every variable to check if its domain is contained in
[au, bu] and not disjoint to [lb, ub], and if so, keep a memory
of this pruning. After processing every variable, we actually
perform the stored pruning in O(n2).



4 Experimental Evaluation
Here we compare our propagator for the RANKING constraint
against the probing RC algorithm and the two decomposi-
tions. We used Choco 3 to implement the two propagators as
well as the decompositions and we ran all the experiments on
a cluster of AMD opteron 6176 2.3 GHz processors.

Choco 3 uses the algorithm of Mehlhorn and Thiel (2000)
to propagate the SORTEDNESS constraint and an unspecified
algorithm to propagate the GCC constraint.

Figure 2: Uncorrelation: Random uniform intervals

Figure 3: Uncorrelation: Solution embedded

Correlation and Uncorrelation. First, we considered the
problem of minimizing the correlation between two vectors
of variables X and Y using the RANKING CORRELATION
constraint described in Section 2. We generated random
ranges for all variables using two methods. First, we ran-
domly picked two integers in [1, n] for every variable and
used these as bounds. As this method may produce unsatisfi-
able instances, we also used a second method, where we first
generate a ranking r as follows: r[1] = 1, and for i > 1, we
set r[i] = r[i − 1] with probability 1

2 and r[i] = i otherwise.
Then for every variable Xi we set its bounds to a random
interval that includes r[i]. We used lexicographic variable or-
dering and branched on the minimum value in all cases, so
the same search tree is explored, modulo pruning.

For every value of n in [5, 20], we generated 1000 ran-
dom instances, and solved them with each method with a 30

minute time limit. Figure 2 shows the total runtime spent by
the different methods for random intervals on each set of in-
stances. The gain from the extra pruning is very clear (notice
the logarithmic scale). At the end of the scale, the methods
with weaker pruning cannot solve a significant proportion of
the instance (dashed lines show the number of instances for
which the time limit was reached). As a consequence, the
gap in runtime is underestimated for the larger instances. The
decomposition with SORTEDNESS seems to dominate (by or-
ders of magnitude) the decomposition with GCC in this case.

Figure 3 shows results on instances with a solution embed-
ded. The gain from stronger filtering is not as significant, but
our propagator is still at least one order of magnitude faster
than the decompositions. Interestingly, the relative perfor-
mance of the decompositions is inversed here.

Scheduling. We also considered an application of the
RANKING constraints to scheduling problems in the batch-
ing machine model with wear and tear. We generate
such scheduling problems following the model of Mosheiov
[Mosheiov, 2005]. For a number of tasks ranging from n = 5
to 10, we generate 50 such scheduling instances, choosing
duration constants pi and demand at random. Then we post
a CUMULATIVE constraint, as well as the channeling con-
straints between overlap and ranking and between ranking
and actual durations ripi. The runtimes, in seconds, to solve
each set of 50 instances are reported in Table 1, in the last
column we also report the number of instances of size 10 that
timed out after 3h. This problem is very hard for Choco, as
only small problems can be tackled, but using our propagator
improves scalability. In contrast to the uncorrelation problem,
here the cost of propagating RANKING is small compared to
the rest of the constraints, so the impact of the cost of the
probing propagator is small. However, it remains measurably
slower, suggesting that the extra pruning it may generate does
not offset its higher computational cost. Once again, the two
decompositions are worse than both propagators.

Table 1: Scheduling: Total runtime in seconds

size: 5 6 7 8 9 10 #U
propagator 97 359 1203 3795 29302 275237 14

probing 73 371 1428 4721 33975 276240 15
GCC 106 432 1389 4936 54495 323433 19

SORTEDNESS 104 458 1509 6118 65445 328331 17

5 Conclusions
We have proposed a global ranking constraint. We argued that
simple decompositions of this global constraint hurt pruning.
We proposed instead some efficient filtering algorithms. One
application for such propagators is ensuring two sequences
are correlated or uncorrelated. To demonstrate the promise of
these methods, we ran experiments on two problem domains
and observed significant speedups compared to the decompo-
sitions.
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