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Abstract
Constraint acquisition systems assist the non-expert
user in modeling her problem as a constraint net-
work. Most existing constraint acquisition systems
interact with the user by asking her to classify an
example as positive or negative. Such queries do
not use the structure of the problem and can thus
lead the user to answer a large number of queries.
In this paper, we propose PREDICT&ASK, an algo-
rithm based on the prediction of missing constraints
in the partial network learned so far. Such missing
constraints are directly asked to the user through
recommendation queries, a new, more informative
kind of queries. PREDICT&ASK can be plugged in
any constraint acquisition system. We experimen-
tally compare the QUACQ system to an extended
version boosted by the use of our recommendation
queries. The results show that the extended version
improves the basic QUACQ.

1 Introduction
Constraint programming (CP) allows effective solving of
combinatorial problems in many areas, such as planning and
scheduling. However, modeling a combinatorial problem us-
ing constraints is a fastidious task that requires significant ex-
pertise in CP [Freuder, 1999].

To make constraint programming accessible to novices,
several constraint acquisition systems have been introduced
in the last decade [Bessiere et al., 2005; 2007; Beldiceanu
and Simonis, 2012; Lallouet et al., 2010; Shchekotykhin and
Friedrich, 2009]. These systems either need an expert to val-
idate the learned model or need an exponential number of
queries to converge on the target constraint network [Bessiere
et al., 2015]. Recently, a system polynomial in terms of
queries, called QUACQ, has been proposed [Bessiere et al.,
2013]. QUACQ iteratively generates partial queries (that is,
partial assignments of the variables) and asks the user to clas-
sify them. When the answer of the user is yes, QUACQ re-
duces the search space by removing constraints that reject the
positive example. In the case of a negative answer, QUACQ

focuses on a constraint in a number of queries logarithmic in
the size of the example. This key component allows QUACQ
to converge on the target network in a polynomial number of
queries. Despite this good theoretical bound, QUACQ may
require a lot of queries to learn the target constraint network,
especially when the problem is highly structured and involves
a large number of constraints. For instance, the user has to
classify more than 8000 queries to get the Sudoku model.

The next challenge to constraint acquisition is to reduce
the dialog length between the user and the learner, that is, to
reduce the number of asked queries to get the target model.
This paper presents a generic approach to constraint acquisi-
tion which is centered on the following question: Given the
constraint graph learned so far, can we infer which new con-
straints are more likely to belong to the target constraint net-
work? We formalize this question as a link prediction prob-
lem in the partial constraint graph learned so far. We also
introduce a new concept of query, called recommendation
query. Borrowing techniques from the link prediction field,
a recommendation query asks the user whether or not a pre-
dicted constraint belongs to the target constraint network. To
deal with recommendation queries, we propose a constraint
recommender algorithm called PREDICT&ASK, which we
plugged into the QUACQ constraint acquisition system lead-
ing to the P-QUACQ algorithm. We experimentally evaluated
the benefit of our approach on several benchmark problems.
The results show that P-QUACQ significantly improves the
basic QUACQ algorithm in terms of number of queries.

The rest of the paper is organized as follows. Section 2
gives the necessary material to understand the technical pre-
sentation. Section 3 describes the constraint recommender
algorithm. We illustrate the idea behind our constraint rec-
ommender algorithm through an example in Section 4. In
Section 5, several predictor techniques are presented. Section
6 presents the experimental results we obtained when com-
paring P-QUACQ to the basic QUACQ. Section 7 presents
the related work. Section 8 concludes the paper.

2 Background
The common knowledge shared between the user and
the learner is the vocabulary. This vocabulary is repre-



sented by a (finite) set of variables X and domains D =
{D(x1), . . . , D(xn)} over Z. A constraint c is defined by
a pair (var(c), rel(c)), where rel(c) is the relation specify-
ing which sequences of |var(c)| values are allowed for the
variables var(c). var(c) is called the scope of c and |var(c)|
the arity of rel(c). Without loss of generality, we restrict our-
selves to binary constraints. Combinatorial problems are rep-
resented with constraint networks. A constraint network is
a set C of constraints on the vocabulary (X,D). An exam-
ple e is a (partial/complete) assignment on a set of variables
var(e) ⊆ X . e is rejected by a constraint c (i.e., e 6|= c) iff
var(c) ⊆ var(e) and the projection e[var(c)] of e on var(c)
is not in c. A complete assignment e of X is a solution of C
iff for all c ∈ C, c does not reject e. We denote by sol(C) the
set of solutions of C.

In addition to the vocabulary, the learner owns a language
Γ of relations from which it can build constraints on speci-
fied sets of variables. A constraint basis is a set B of con-
straints built from the constraint language Γ on the vocab-
ulary (X,D). Formally speaking, B = {c | (var(c) ⊆
X) ∧ (rel(c) ∈ Γ)}.

In terms of machine learning, a concept is a Boolean func-
tion over DX = Πxi∈XD(xi), that is, a map that assigns
to each example e ∈ DX a value in {0, 1}. We call target
concept the concept fT that returns 1 for e if and only if e
is a solution of the problem the user has in mind. In a con-
straint programming context, the target concept is represented
by a target network denoted by CT . A query Ask(e), with
var(e) ⊆ X , is a classification question asked to the user,
where e is an assignment in Dvar(e) = Πxi∈var(e)D(xi). A
set of constraints C accepts an assignment e if and only if
there does not exist any constraint c ∈ C rejecting e. The
answer to Ask(e) is yes if and only if CT accepts e.

In this paper we introduce a new kind of query, recommen-
dation queriesAskRec(c), which ask the user whether or not
the constraint c belongs to the target constraint network CT .
It is answered yes if and only if c belongs to CT .

3 PREDICT&ASK Algorithm
In this section, we present our constraint recommender PRE-
DICT&ASK algorithm. The idea behind this algorithm is to
predict missing constraints in the partial network learned so
far, and then to recommend the predicted constraints to the
user through recommendation queries.

3.1 Description of PREDICT&ASK

The algorithm PREDICT&ASK takes as argument the set of
constraints C learned so far, a relation r, and the predictor
score that corresponds to the strategy used to assign a cost
to a candidate constraint for recommendation. The algorithm
uses the local data structure ∆ which contains all constraints
that are candidate for recommendation.

PREDICT&ASK starts by initializing L to the empty set
(line 1). The set L will contain the output of PREDICT&ASK,
that is all constraints learned by prediction plus recommen-
dation query. In line 4, we build the constraint graph G =
(Y,E) restricted to the relation r. The counter #No counts
the number of consecutive times recommendation queries

Algorithm 1: PREDICT&ASK

Input: C: a set of constraints,
r: a relation,
score ∈ {AA,LHN}: a prediction strategy
Output: L: a set of predicted constraints

1 L← ∅;
2 Y ←

⋃
var(c) s.t. (c ∈ C ∧ rel(c) = r)

3 E ← {(x, y) | c ∈ C ∧ rel(c) = r ∧ var(c) = (x, y)}
4 G← (Y,E)
5 #No← 0
6 ∆← {((x, y), r) ∈ B | (x, y) ∈ Y 2 \ E}
7 while ∆ 6= ∅ ∧ #No < α do
8 pick ((x, y), r) in ∆ that maximizes score((x, y), G)
9 if AskRec((x, y), r) = yes then

10 L← L ∪ {((x, y), r)}
11 E ← E ∪ (x, y)
12 #No← 0
13 else
14 B ← B \ {((x, y), r′) | r ⊆ r′}
15 #No+ +

16 return L;

have been classified negative by the user. It is initialized to
zero at line 5. We put in ∆ all constraints that are candidate
for recommendation.

In the main loop of PREDICT&ASK (line 7), for each iter-
ation, we pick a constraint from ∆ such that its score is max-
imum (line 8). A constraint with a high score means that it is
likely that this constraint belongs to the target constraint net-
work. Hence, PREDICT&ASK asks a recommendation query
on ((x, y), r) (line 9). If the user says ‘yes’, ((x, y), r) is a
constraint of the target network. Hence, we put ((x, y), r) in
L (line 10). We also add the edge (x, y) to E to be taken into
account in the next iteration when computing the score. In
line 12, we reinitialize #No to zero. If the user says ‘no’,
we remove from B the constraint ((x, y), r) (line 14) and we
increment #No (line 15). The loop ends when ∆ is empty
or when #No reaches the given threshold α, and we return
L (line 16).

3.2 Using Recommendation in QUACQ

PREDICT&ASK is a generic constraint recommender algo-
rithm that can be plugged into any constraint acquisition sys-
tem. In this section, we present P-QUACQ (Algorithm 2)
where we incorporate PREDICT&ASK into the QUACQ sys-
tem.

P-QUACQ initializes the constraint network CL to the
empty set (line 1). When CL is unsatisfiable (line 3), the
space of possible networks collapses because there does not
exist any subset of the given basis B that is able to correctly
classify the examples already asked to the user. In line 4, P-
QUACQ computes a complete assignment e satisfyingCL and
violating at least one constraint from B. If such an example
does not exist (line 5), then all constraints inB are implied by
CL, and the algorithm has converged. Otherwise, we propose
the example e to the user, who will answer by yes or no (line



Algorithm 2: P-QUACQ = QUACQ + PREDICT&ASK

Input: score ∈ {AA,LHN}: a predictor strategy
Output: CL: a set of learned constraints

1 CL ← ∅ ;
2 while true do
3 if sol(CL) = ∅ then return “collapse”;
4 choose e in DX accepted by CL and rejected by B
5 if e = nil then return “convergence on CL”;
6 if Ask(e) = yes then
7 B ← B \ κB(e);
8 else
9 c← FindC(e,FindScope(e, ∅, X, false));

10 if c = nil then return “collapse”;
11 else
12 CL ← CL ∪ {c};
13 CL ←

CL ∪ PREDICT&ASK(CL, rel(c), score);

6). If the answer is yes, we can remove from B the set κB(e)
of all constraints in B that reject e (line 7). If the answer is
no, we are sure that e violates at least one constraint of the
target network CT . We then call the function FindScope to
discover the scope of one of these violated constraints. Here,
FindScope acts in a dichotomous manner and asks a num-
ber of queries logarithmic in the size of the example. FindC
selects which constraint with the given scope is violated by e
(line 9). If no constraint is returned (line 10), this is a con-
dition for collapsing as we could not find in B a constraint
rejecting one of the negative examples. Otherwise, we know
that the constraint c returned by FindC belongs to the tar-
get network CT , we then add it to the learned network CL
(line 12). Note that FindScope and FindC functions are
used exactly as they appear in [Bessiere et al., 2013]. After-
wards, we call PREDICT&ASK to mine the learned constraint
network CL in order to predict and recommend missing con-
straints that may belong to the target network. P-QUACQ up-
dates CL by adding all learned constraints (line 13).

3.3 Complexity Analysis
Let us now give the theoretical upper bound of the new con-
straint acquisition system P-QUACQ.

Theorem 1. Given a constraint basisB built from a language
Γ of bounded arity, and a target network CT , P-QUACQ uses
O(CT .(log|X| + Γ) + |B|) queries to prove convergence or
to collapse.

Proof. By construction, P-QUACQ inherits the correctness of
QUACQ, and thus, it always finishes by proving convergence
or collapsing. As for its complexity, P-QUACQ asks partial
queries (line 6 of P-QUACQ) and recommendation queries
(line 9 of PREDICT&ASK). By construction, the number of
partial queries in P-QUACQ is bounded above by the number
of partial queries of pure QUACQ, that is, O(CT .(log|X| +
Γ) + |B|) [Bessiere et al., 2013]. Concerning recommenda-
tion queries, we know that they are asked on constraints that

Figure 1: PREDICT&ASK on the illustrative example.

are in B and not in CL (Algorithm 1, lines 6 and 8). Fur-
thermore, a recommendation query cannot be asked twice on
the same constraint as, whatever the answer, the constraint is
put in CL (yes answer, Algorithm 1, line 10 and Algorithm
2, line 13) or removed from B (no answer, Algorithm 1, line
14). As a result the number of recommendation queries asked
by PREDICT&ASK is in O(|B|) and the number of queries
asked by P-QUACQ is in O(CT .(log|X|+ Γ) + |B|).

4 An Illustrative Example
In this section, we illustrate our constraint recommender al-
gorithm PREDICT&ASK through an example. Figure 1(a)
shows the constraint network of the problem that the user
has in mind. This problem involves 10 variables and 21 bi-
nary constraints. Two relations are used, noted r1 and r2
in Figure 1. Figure 1(b) shows the constraint network par-
tially learned by QUACQ. Suppose that the last constraint
learned using QUACQ was ((x1, x2), r1). At that point, we
want to recommend potential constraints on which the rela-
tion r1 may hold. PREDICT&ASK builds a partial network
limited to the relation r1 (Figure 1(c)), and then computes the
set ∆ of all candidate constraints that may belong to the target
network. ∆ = {((x1, x3), r1), ((x1, x4), r1), ((x2, x3), r1),
((x2, x4), r1), ((x2, x5), r1), ((x3, x5), r1)}. Then, PRE-
DICT&ASK assigns to each candidate constraint in ∆
a score. We sort the elements of ∆ in decreas-
ing order of their score. Suppose that we have the
following order 〈((x1, x4), r1), ((x2, x4), r1), ((x2, x5), r1),
((x2, x3), r1), ((x3, x5), r1), ((x1, x3), r1)〉. Suppose that
α = 1, which means that we have to exit PREDICT&ASK
after one negative answer. We pick the first constraint
((x1, x4), r1) in ∆, and we ask the user the recommendation
query AskRec((x1, x4), r1), which will be answered yes, as
the constraint ((x1, x4), r1) belongs to the target network.
The other questions are as follows:

• AskRec((x2, x4), r1) = yes (#No = 0)
• AskRec((x2, x5), r1) = yes (#No = 0)



• AskRec((x2, x3), r1) = no (#No = 1⇒ exit)

At the end, thanks to PREDICT&ASK three (out of four) con-
straints are added to the current constraint network (see Fig-
ure 1(d)).

5 Prediction Strategies
The way PREDICT&ASK computes the score has not been
detailed in Section 3. In this section, we present the two
techniques that we have used to predict missing constraints.
Bessiere et al. (2014) have shown that when a constraint net-
work has some structure, variables of the same given type are
often involved in constraints with the same relation. Hence,
we expect that when variable types are not known in advance,
predicting type similarity or type proximity of variables could
be done by prediction link techniques.

Link prediction in dynamic graphs is an important research
field in data mining. Link prediction can be used for rec-
ommendation systems [Li and Chen, 2009], security domain
[Krebs, 2002], social networks [Liben-Nowell and Kleinberg,
2003], and many other fields. Several techniques have been
proposed in the literature for link prediction. All these tech-
niques compute and assign a score to pairs of nodes (x, y),
based on the input graph and then produce a ranked list in
a decreasing order of scores. They can be viewed as com-
puting a measure of proximity or similarity between nodes
x and y, with respect to the network topology. Most of
these techniques are based either on node neighborhood or
on path ensemble [Lu and Zhou, 2010]. In our experiments
we selected one link prediction technique representative of
node-neighborhood-based techniques (Adamic/Adar –AA),
and one representative of path-ensemble-based techniques
(Leicht-Holme-Newman Index –LHN). Both of these tech-
niques have a time complexity in O(n3). We will see in our
experiments that this never takes more than a few millisec-
onds.

5.1 Adamic-Adar Index (AA)
Adamic and Adar (2003) proposed a measure in the context
of deciding when two personal home pages are strongly ”re-
lated”. They compute features of the pages and define the
similarity index between two pages to be:∑

z:Z

1

log(frequency(z))

where Z is the set of features shared by x and y. This
refines the simple counting of common features by weighting
rarer features more heavily. This suggests the measure

score(x, y) =
∑

z∈N(x)∩N(y)

1

log|N(z)|

where N(x) denotes the neighborhood of x, that is, the set of
variables with whom it shares a constraint.

5.2 Leicht-Holme-Newman Index (LHN)
Leicht-Holme-Newman (2006) proposed to compute vertex
similarity, or proximity, based on the concept that two nodes

are similar when their neighbors are similar. This index can
be expressed into a matrix form as:

S = 2mλ1D
−1(I − φA

λ1
)−1D−1

where m is the number of links in the network, λ1 is the
largest Eigenvalue of the adjacency matrixA, D is a diagonal
degree matrix, I is the identity matrix, and φ (0 < φ < 1) is
a free parameter that assigns higher weights to shorter paths
if it is closer to 0 and to longer paths if it is closer to 1 [Lu
and Zhou, 2010]. In all our experiments we have set φ to 0.5
to assign the same weight to both shorter and longer paths.

6 Experimental Evaluation
We made experiments to evaluate the impact of using PRE-
DICT&ASK in constraint acquisition. We first present the
benchmark problems we used for our experiments. Then,
we report the results of acquiring these problems with the
basic version of QUACQ, with a brute-force algorithm us-
ing only recommendation queries (denoted by ONLYREC),
and with our P-QUACQ using the Adamic/Adar (AA) and
Leicht-Holme-Newman (LNH) indexes to recommend con-
straints to the user. ONLYREC makes a brute-force use of
recommendation queries: it asks recommendation queries on
constraints from B and removes redundant constraints from
B each time a new constraint is learned, until convergence is
reached. Our tests were conducted on an Intel Core i5-3320M
CPU @ 2.60GHz × 4 with 4 Gb of RAM.

6.1 Benchmark Problems
Radio Link Frequency Assignment Problem. The RLFAP
is to provide communication channels from limited spectral
resources [Cabon et al., 1999]. Here we build a simplified
version of RLFAP that consists in distributing all the frequen-
cies available on the base stations of the network. The con-
straint model has 36 variables with domains of size 36, and
210 binary constraints. We fed QUACQ and P-QUACQ with
a basis of 1800 binary constraints taken from a language of 6
arithmetic and distance constraints.
Vessel Loading. Supply vessels transport containers from
site to site. The deck area is rectangular. Containers are
cuboid, and are laid out in a single layer. All containers are
positioned parallel to the sides of the deck. The contents of
the containers determine their class. Certain classes of con-
tainers are constrained to be separated by minimum distances
either along the deck or across the deck. The constraint model
has 25 variables with domains of size 25, and 210 binary con-
straints. We fed QUACQ and P-QUACQ with a basis of 2610
binary constraints taken from a language of 6 arithmetic and
distance constraints.
Murder. Someone was murdered last night, and you are sum-
moned to investigate the murder. The objects found on the
spot that do not belong to the victim include: a pistol, an
umbrella, a cigarette, a diary, and a threatening letter. There
are also witnesses who testify that someone had argued with
the victim, someone left the house, someone rang the victim,
and some walked past the house several times about the time
the murder occurred. The suspects are: Miss Linda Ablaze,



Table 1: P-QUACQ on RLFAP.
α #query #Ask #AskRec #no #yes

QUACQ – 1653 1653 – – –
ONLYREC – 1575 – 1575 – –

P-QUACQ+Random

+∞ 964 560 404 322 82
4 1017 676 341 268 73
3 1129 817 312 250 62
2 1281 1013 268 220 48
1 1553 1370 183 161 22

P-QUACQ+AA

+∞ 964 560 404 322 82
4 970 643 327 250 77
3 1010 719 291 220 71
2 1028 784 244 178 66
1 1229 1055 174 128 46

P-QUACQ+LHN

+∞ 964 560 404 322 82
4 886 564 322 240 82
3 859 580 279 197 82
2 851 624 227 148 79
1 1052 878 174 114 60

Mr. Tom Burner, Ms. Lana Curious, Mrs. Suzie Dulles, and
Mr. Jack Evilson. Each suspect has a different motive for the
murder, including: being harassed, abandoned, sacked, pro-
motion and hate. Under a set of additional clues given in the
description, the problem is who was the Murderer? And what
was the motive, the evidence-object, and the activity associ-
ated with each suspect. The target network of Murder has 20
variables with domains of size 5, and 53 binary constraints.
We fed QUACQ and P-QUACQ with a basisB of 1140 binary
constraints based on the language Γ = {=, 6=,≥, <,≤, >}.
Zebra problem. The Lewis Carroll’s Zebra problem is for-
mulated using 25 variables, with 5 cliques of 6= constraints
and 14 additional constraints given in the description of the
problem. We fed QUACQ and P-QUACQ with a basis B of
4450 unary and binary constraints taken from a language with
24 basic arithmetic and distance constraints.

6.2 Results
We compare QUACQ, ONLYREC, and P-QUACQ. For P-
QUACQ we report results when predicting links with AA
or LHN, without cutoff (i.e, α = +∞) and also with four
values for the cutoff α (from 1 to 4). We also report re-
sults when predicting links with a Random strategy, which
serves as baseline selector as it randomly picks a candidate
constraint from ∆, and recommends it to the user. For all
our experiments we report the number of (standard) queries
asked by the basic QUACQ, the number of (recommendation)
queries asked by ONLYREC, and the number of queries asked
by P-QUACQ. For P-QUACQ we report the number #Ask of
standard queries, the number #AskRec of recommendation
queries, the numbers #no and #yes of negative and positive
recommendation queries (i.e., #AskRec = #no + #yes),
and the total number #query of queries (i.e., #query =
#Ask+#AskRec). The time overhead of computing scores
and generating recommendation queries is not reported be-
cause it takes a few milliseconds.

Table 1 reports the results of acquiring the RLFAP prob-
lem. We first observe that the number of queries asked by
P-QUACQ is always significantly lower than with QUACQ or
ONLYREC, whatever the way we predict links in P-QUACQ.
We also observe that AA and LHN outperform Random for

(a)	

(b)	 (c)	
RLFAP	bicliques		

Zebra	cliques		Murder	

Figure 2: Constraint graphs of our problems.

all values of α, which means that their predictions are corre-
lated to the probability of having a constraint at the selected
link. When predicting links with AA, we observe that cutoffs
hurt the acquisition: the smaller the cuttoff, the greater the
number of queries required for convergence. On the contrary,
P-QUACQ+LHN is better with cutoff: it reaches its lower
number of queries to learn the RLFAP network when α = 2
(851 queries instead of 1653 for basic QUACQ and 1575 for
ONLYREC). The good performance of LHN on RLFAP can
be explained by the structure of that problem. The RLFAP
structure contains bicliques and cliques. The constraints that
belong to the same clique can be easily predicted by both
the neighborhood-based method, AA, or the path-ensemble-
based method, LHN. However, constraints in bicliques cannot
be predicted by AA because variables of the same constraint
do not share any neighbor (see Figure 2a).

Table 2 reports the results on the Vessel Loading problem.
The structure of this problem is quite similar to the structure
of RLFAP. Thus, the results follow the same trend as on the
RLFAP (P-QUACQ +LHN with α = 2 is the best). However,
we see that as opposed to the RLFAP, P-QUACQ+AA benefits
from the cutoffs.

Table 3 reports the results on the Murder problem. The
structure of that problem is essentially composed of cliques,
as we can see in Figure 2b. In this case, we observe that
P-QUACQ +AA with a cutoff equal to 1 is the best. It re-
quires 367 queries to get the model instead of 585 queries
for QUACQ and 1050 for ONLYREC. The good perfor-
mance of the AA predictor can be explained by the fact
that neighborhood-based predictors are effective in detecting
cliques.

Table 4 reports the results on the Zebra problem. Again,
P-QUACQ with AA or LHN predictors outperforms QUACQ,
ONLYREC, and P-QUACQ +Random. When comparing AA
to LHN, we observe that, interestingly, P-QUACQ +AA and
P-QUACQ +LHN give exactly the same results for all values
of the cutoff α. This can be explained by the fact that only the
relation 6= shows a structure in the network, and that structure
is such that all cliques are isolated, as illustrated in Figure 2c.



Table 2: P-QUACQ on Vessel Loading.
α #query #Ask #AskRec #no #yes

QUACQ – 2252 2252 – – –
ONLYREC – 2595 – 2595 – –

P-QUACQ+Random

+∞ 1505 864 641 501 140
4 1655 1159 496 378 118
3 1686 1212 474 361 113
2 1758 1368 390 289 101
1 1934 1658 276 196 80

P-QUACQ+AA

+∞ 1505 864 641 501 140
4 1385 889 496 357 139
3 1240 852 388 266 122
2 1195 882 313 194 119
1 1270 1033 237 128 109

P-QUACQ+LHN

+∞ 1505 864 641 501 140
4 1381 892 489 350 139
3 1213 831 382 259 123
2 1137 827 310 187 123
1 1217 988 229 116 113

Table 3: P-QUACQ on Murder.
α #query #Ask #AskRec #no #yes

QUACQ – 585 585 – – –
ONLYREC – 1050 – 1050 – –

P-QUACQ+Random

+∞ 433 267 166 138 28
4 453 315 138 115 23
3 496 380 116 100 16
2 497 406 91 78 13
1 523 467 56 49 7

P-QUACQ+AA

+∞ 433 267 166 138 28
4 414 282 132 105 27
3 404 292 112 86 26
2 386 301 85 60 25
1 367 313 54 30 24

P-QUACQ+LHN

+∞ 433 267 166 138 28
4 448 309 139 115 24
3 428 310 118 94 24
2 439 349 90 70 20
1 459 401 58 43 15

Such a structure is perfectly well detected both by AA and
LHN. This explains that they behave the same and that the
shorter the cutoff, the better.

This experimental analysis clearly shows that the use of
prediction strategies with recommendation queries can signif-
icantly reduce the number of queries asked to the user. The
brute-force use of recommendation queries (ONLYREC) is al-
ways close to the worst case (i.e., close to |B| queries). The
AA prediction strategy seems to be particularly well-suited to
problem containing cliques of constraints, whereas the LHN
can be highly efficient to predict biclique structures.

7 Related Work
Several papers have already proposed to use the structure
of the constraint graph to decrease the number of examples
needed to learn the target constraint network. Beldiceanu
and Simonis (2012) have proposed MODELSEEKER, a pas-
sive constraint acquisition system devoted to problems having
a regular structure. MODELSEEKER learns global constraints
from the global constraints catalog ([Beldiceanu et al., 2007])
whose scopes are the rows, the columns, or any other struc-
tural property MODELSEEKER can capture. The counterpart
is that it misses any constraint that does not belong to one

Table 4: P-QUACQ on Zebra.
α #query #Ask #AskRec #no #yes

QUACQ – 694 694 – – –
ONLYREC – 4142 – 4142 – –

P-QUACQ+Random

+∞ 675 423 252 221 31
4 679 496 183 163 20
3 660 505 155 132 23
2 711 593 118 106 12
1 693 625 68 60 8

P-QUACQ+AA

+∞ 675 423 252 221 31
4 602 431 171 141 30
3 576 434 142 112 30
2 524 417 107 77 30
1 498 428 70 40 30

P-QUACQ+LHN

+∞ 675 423 252 221 31
4 602 431 171 141 30
3 576 434 142 112 30
2 524 417 107 77 30
1 498 428 70 40 30

of the structural patterns it is able to capture. Bessiere et
al. (2014) introduced a new concept of query, called gen-
eralization query. By using some background knowledge,
namely types of variables, a generalization query asks the
user whether or not a learned constraint can be generalized
to other scopes of variables of the same types as those of the
learned constraint. The drawback of such queries is that they
require types of variables to be provided by the user. To over-
come this weakness, Daoudi et al. (2015) have proposed to
learn types of variables during the constraint acquisition pro-
cess, and then to use the learned types to generate general-
ization queries. The advantage of such an approach is that
there is no need for the user to provide the types. Of course
learning the types requires extra queries that were not needed
when types are given for free at the beginning of the learn-
ing process. In addition, generalization queries do not work
on all problems. They work only for the problems for which
variables can be grouped into types.

By contrast, in our work, recommendation queries are
generic and do not require any background knowledge to be
generated. By using techniques borrowed from link predic-
tion in dynamic graphs, we infer constraints that are more
likely to belong to the target constraint network, and that are
validated by asking recommendation queries to the user.

8 Conclusion

We have proposed a new kind of queries, called recommenda-
tion queries. To deal with these queries, we have proposed a
generic constraint recommender algorithm, PREDICT&ASK,
which uses techniques borrowed from link prediction to pre-
dict constraints that are likely to belong to the target net-
work. Finally, we have plugged PREDICT&ASK into QUACQ
to have a boosted version called P-QUACQ. Our experi-
ments on several benchmark problems show that our new
technique outperforms the basic QUACQ. An interesting di-
rection would be to use a reinforcement learning to decide on
the use of neighborhood-based predictions or path-ensemble-
based predictions.
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