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Abstract. Discovering the set of closed frequent patterns is one of the
fundamental problems in Data Mining. Recent Constraint Programming
(CP) approaches for declarative itemset mining have proven their useful-
ness and flexibility. But the wide use of reified constraints in current CP
approaches leads to difficulties in coping with high dimensional datasets.
In this paper, we proposes the ClosedPattern global constraint to
capture the closed frequent pattern mining problem without requiring
reified constraints or extra variables. We present an algorithm to en-
force domain consistency on ClosedPattern in polynomial time. The
computational properties of this algorithm are analyzed and its practical
effectiveness is experimentally evaluated.

1 Introduction

Frequent Pattern Mining is a well-known and perhaps the most popular research
field of data mining. Originally introduced by Agrawal et al. [1], it plays a key
role in many data mining applications. These applications include the discovery
of frequent itemsets and association rules [1], correlations [2] and many other
data mining tasks.

In practice, the number of frequent patterns produced is often huge and can
easily exceed the size of the input dataset. Most frequent patterns are redundant
and can be derived from other found patterns. Hence, closed frequent patterns
have been introduced. They provide a concise and condensed representation that
avoids redundancy. Discovering the set of closed frequent patterns is one of the
fundamental problems in Data Mining. Several specialized approaches have been
proposed to discover closed frequent patterns (e.g., A-Close algorithm [12],
CHARM [17], CLOSET [13], LCM [14]).

Over the last decade, the use of the Constraint Programming paradigm (CP)
to model and to solve Data Mining problems has received considerable atten-
tion [3,5,9]. The declarative aspect represents the key success of the proposed
CP approaches. Doing so, one can add/remove any user-constraint without the
need of developing specialized solving methods.

Related to the Closed Frequent Pattern Mining problem (CFPM), Guns et.
al., propose to express the different constraints that we can have in Pattern Min-
ing as a CP model [5]. The model is expressed on Boolean variables representing



items and transactions, with a set of reified sum constraints. The reified model
has become a de facto standard for many DM tasks. Indeed, the reified model
had been adopted for the k-pattern sets [5]. The drawback is the wide use of
reified constraints in the CP model, which makes the scalability of the approach
questionable.

In the line of the work of Kemmar et al. [8], we propose in this paper the
ClosedPattern global constraint. ClosedPattern does not require reified
constraints and extra variables to encode and propagate the CFPM problem.
ClosedPattern captures the particular semantics of the CFPM problem and
domain consistency can be achieved on it using a polynomial algorithm. Experi-
ments on several known large datasets show that our approach outperforms the
reified model used in CP4IM [3] and is more scalable, which is a major issue for
CP approaches. This result can be explained by the fact that ClosedPattern
insures domain consistency.

The paper is organized as follows. Section 2 recalls preliminaries. Section 3
provides the context and the motivations for the ClosedPattern global con-
straint. Section 4 presents the global constraint ClosedPattern. Section 5 il-
lustrates the power of the prunning algorithm compared with the reified model.
Section 6 reports experiments. Finally, we conclude and draw some perspectives.

2 Background

In this section, we introduce some useful notions used in closed frequent pattern
mining and constraint programming.

2.1 Closed frequent pattern mining

Let I = {1, ..., n} be a set of n item indices1 and T = {1, ...,m} a set of m
transaction indices. A pattern P (i.e., itemset) is a subset of I. The language of
patterns corresponds to LI = 2I . A transaction database is a set D ⊆ I × T .
The set of items corresponding to a transaction identified by t is denoted by
D[t] = {i | (i, t) ∈ D}. A transaction t is an occurrence of some pattern P iff the
set D[t] contains P (i.e., P ⊆ D[t]).

The cover of P , denoted by TD(P ), is the set of transactions containing P ,
that is, TD(P ) = {t ∈ T |P ⊆ D[t]}. Given S ⊆ T a subset of transactions, ID(S)
is the set of common items of S, that is, ID(S) =

⋂
t∈S D[t]. The (absolute)

frequency of a pattern P is the size of its cover (i.e., freqD(P ) = |TD(P )|).
Let θ ∈ N+ be some given constant called a minimum support. A pattern P is
frequent if freqD(P ) ≥ θ.

Example 1. Consider the transaction database in Table 1. We have TD(C) =
{t1, t3} , freqD(C) = 2 and ID({t1, t3}) = CH.

1 For the sake of readability, our examples refer to items by their names instead of
their indices.



Table 1: A transaction database D (a) and its binary matrix (b).
(a)

Trans. Items
t1 B C G H
t2 A D
t3 A C D H
t4 A E F
t5 B E F G

(b)

Trans. A B C D E F G H

t1 0 1 1 0 0 0 1 1
t2 1 0 0 1 0 0 0 0
t3 1 0 1 1 0 0 0 1
t4 1 0 0 0 1 1 0 0
t5 0 1 0 0 1 1 1 0

The closure of a pattern P in D, denoted by Clos(P ), is the set of common items
of its cover TD(P ), that is, Clos(P ) = ID(TD(P )). A pattern is closed if and
only if Clos(P ) = P .

Definition 1 (Closed Frequent Pattern Mining (CFPM)). Given a trans-
action database D and a minimum support threshold θ, the closed frequent pattern
mining problem is the problem of finding all patterns P such that (freqD(P ) ≥ θ)
and (Clos(P ) = P ).

Example 2. For θ = 2, the set of closed frequent patterns in Table 1 is ∅〈5〉,2
A〈3〉, AD〈2〉, BG〈2〉, CH〈2〉 and EF 〈2〉.

Closed frequent patterns provide a minimal representation of frequent patterns,
i.e. we can derive all frequent patterns with their exact frequency value from
the closed ones [12]. We now define the important notion of full extension that
comes from pattern mining algorithms and that we will use later in this paper.

Definition 2 (Full extension). The non-empty itemset Q is called a full ex-
tension of P iff TD(P ) = TD(P ∪Q).

Definition 2 is at the key of the item merging property [15] stated as follows: If
some pattern Q is a full extension of some pattern P , and none of the proper
supersets of Q is a full extension of P , then P ∪ Q forms a closed pattern. In
other words, a closed pattern can be defined as a pattern that does not possess
a full extension.
Search Space Issues. In pattern mining, the search space contains 2I candi-
dates. Given a large number of items I, a naive search that consists of enumer-
ating and testing the frequency of pattern candidates in a dataset is infeasible.
The main property exploited by most algorithms to reduce the search space is
that frequency is monotone decreasing with respect to extension of a set.

Property 1 (Anti-monotonicity of the frequency). Given a transaction database
D over I, and two patterns X, Y ⊆ I. Then, X ⊆ Y ⇒ freqD(Y ) ≤ freqD(X).

Hence, any subset (resp. superset) of a frequent (resp. infrequent) pattern is
also a frequent (resp. infrequent) pattern.
2 Value between 〈.〉 indicates the frequency of a pattern.



2.2 CFPM under constraints

Constraint-based pattern mining aims at extracting all patterns P of LI satis-
fying a query q(P ) (conjunction of constraints), which usually defines what we
call a theory [10]: Th(q) = {P ∈ LI | q(P ) is true}. A common example is the
frequency measure leading to the frequent pattern constraint. It is also possible
to have other kind of (user-)constraints. For instance, constraints on the size of
the returned patterns, minSize(P, `min) constraint holds if and only if the num-
ber of items of P is greater than or equal to `min. Constraints on the presence
of an item in a pattern item(P, i) state that an item i must be in a pattern P .

2.3 CSP and global constraints

A constraint network is defined by a set of variables X = {x1, . . . , xn}, each
variable xi ∈ X having an associated finite domain dom(xi) of possible values,
and a set of constraints C on X. A constraint c ∈ C is a relation that specifies the
allowed combinations of values for its variables X(c). An assignment σ is a map-
ping from variables in X to values in their domains. The Constraint Satisfaction
Problem (CSP) consists in finding an assignment satisfying all constraints.
Domain Consistency (DC). Constraint solvers typically use backtracking
search to explore the search space of partial assignments. At each assignment,
filtering algorithms prune the search space by enforcing local consistency prop-
erties like domain consistency. A constraint c on X(c) is domain consistent, if
and only if, for every xi ∈ X(c) and every di ∈ dom(xi), there is an assignment
σ satisfying c such that xi = di.
Global constraints are constraints capturing a relation between a non-fixed
number of variables. These constraints provide the solver with a better view of
the structure of the problem. Examples of global constraints are AllDifferent,
Regular and Among (see [7]). Except the case when for a given global constraint
a Berge-acyclic decomposition exists, global constraints cannot be efficiently
propagated by generic local consistency algorithms, which are exponential in
the number of the variables of the constraint. Dedicated filtering algorithms are
constructed to achieve polynomial time complexity in the size of the input, i.e.,
the domains and extra parameters. The aim of this paper is to propose a filtering
algorithm for the frequent closed pattern constraint.

3 Context and Motivations

This section provides a critical review of ad-hoc specialized methods and CP
approaches for CFPM, and motivates the proposition of a global constraint.
Specialized methods for CFPM. CLOSE [12] was the first algorithm proposed
to extract closed frequent patterns (CFPs). It uses an apriori-like bottom-up
method. Later, Zaki and Hsiao [17] proposed a depth-first algorithm based on a
vertical database format e.g. CHARM. In [13], Pei et al. extended the FP-growth
method to a method called CLOSET for mining CFPs. Lastly, Uno et al. [14] have



proposed LCM, one of the fastest frequent itemset mining algorithm. It uses a hy-
brid representation based on vertical and horizontal representations. The mile-
stone of LCM is a technique called prefix preserving closure extension (PPCE),
which allows to generate a new frequent closed pattern from a previously ob-
tained closed pattern. Let us explain the PPCE principle. Consider the closed
pattern P . Let P (i) = P ∩ {1, ..., i} be the subset of P consisting of items no
greater than i. The core index of P , denoted by core(P ), is the minimum index
i such that TD(P (i)) = TD(P ). A pattern Q is PPCE of P if Q = Clos(P ∪ {i})
and P (i − 1) = Q(i − 1) for an item i 6∈ P and i > core(P ). The completeness
of PPCE is guaranteed by the following property: If Q is a nonempty closed
itemset, then there is only one closed itemset P such that Q is a PPCE of P .
The mining process using LCM is a depth first search where at each node we
have a closed pattern P . LCM uses the PPCE technique as a branching strategy
to jump from a closed pattern to other closed patterns by adding new items.
With its specialized depth first search, LCM succeeds to enumerate very quickly
the closed patterns. However, if the user considers other (user-)constraints on
patterns, the search procedure should be revised. In fact, all these specialized
proposals (e.g., Closet, Charm, LCM, etc.), though efficient, are ad-hoc methods
suffering from the lack of genericity, since adding new constraints requires new
implementations.

Reified constraint model for itemset mining.De Raedt et al. have proposed
in [3] a CP model for itemset mining. They show how some constraints (e.g.,
frequency, maximality, closedness) can be modeled as CSP [11,6]. This modeling
uses two sets of Boolean variables P and T : (1) Decision variables: item variables
P1, P2, ..., Pn, where Pi = 1 if and only if item i is in the searched pattern; (2)
Auxiliary variables: transaction variables T1, T2, ..., Tm, where Tt = 1 if and only
if the searched pattern is in D[t].

The relationship between P and T , set of channeling constraints, is modeled
by reified constraints stating that, for each transaction t, (Tt = 1) iff P is a
subset of D[t]: ∀t ∈ T : (Tt = 1) ↔

∑
i∈I Pi(1 − D[t, i]) = 0 (arity n + 1). The

min frequency constraint is modeled us: ∀i ∈ I : (Pi = 1)→
∑
t∈T TtD[t, i] ≥ θ

(arity m + 1). The closedness constraint is expressed with: ∀i ∈ I : (Pi = 1) ↔∑
t∈T Tt(1 − D[t, i]) = 0 (arity m + 1). Such encoding has a major drawback

since it requires (m+ n+ n) reified constraints of arity (n+ 1) and (m+ 1) to
encode the whole database. This constitutes a strong limitation especially when
it comes to handle very large databases.

We propose in the next section the ClosedPattern global constraint to
encode both the minimum frequency constraint and the closedness constraint.
This global constraint requires neither reified constraints nor auxiliary variables.

4 ClosedPattern Constraint

This section presents the ClosedPattern global constraint for the CFPM prob-
lem.



4.1 Definition and filtering

Let P be the unknown pattern we are looking for. The unknown pattern P is
encoded with Boolean item variables P1, ..., Pn. In the rest of the paper we will
denote by σ the partial assignment obtained from the variables P1, ..., Pn that
have a singleton domain. We will also use the following subsets of items:

– present items: σ+ = {j ∈ 1..n | Pj = 1},
– absent items: σ− = {j ∈ 1..n | Pj = 0},
– other items: σ∗ = {1..n} \ (σ+ ∪ σ−).

σ∗ is the set of free items (non instantiated variables). If σ∗ = ∅ then σ is a
complete assignment.

The global constraint ClosedPattern ensures both the minimum frequency
property and the closedness property.

Definition 3 (ClosedPattern global constraint). Let P1, . . . , Pn be bi-
nary item variables. Let D be a transaction database and θ a minimum support.
Given a complete assignment σ on P1, . . . , Pn, ClosedPatternD,θ(σ) holds if
and only if freqD(σ+) ≥ θ and σ+ is closed.

Example 3. Consider the transaction database of Table 1a with θ = 2. Let P =
〈P1, . . . , P8〉 with dom(Pi) = {0, 1} for i ∈ 1..8. Consider the closed pattern AD
encoded by P = 〈10010000〉, where σ+ = {A,D} and σ− = {B,C,E, F,G,H}.
ClosedPatternD,2(P ) holds because freqD({A,D}) ≥ 2 and {A,D} is closed.

Let σ be a partial assignment of variables P and i a free item. We use
the vertical representation of the dataset, denoted VD where for each item, the
transactions containing it are stored: ∀i ∈ I,VD(i) = TD({i}). We denote by
Vσ+

D (i) the cover of item i within the current cover of a pattern σ+:

Vσ
+

D (i) = TD(σ+ ∪ {i}) = TD(σ+) ∩ TD({i}).

We need to define extensible assignments.

Definition 4 (Extensible assignment). Given a constraint ClosedPatternD,θ
on P1, . . . , Pn, a partial assignment is said to be extensible if and only if it can be
extended to a complete assignment of P1, . . . , Pn that satisfies ClosedPatternD,θ.

We show when a partial assignment is extensible with respect to Closed-
Pattern constraint.

Proposition 1. Let σ be a partial assignment of variables in P1, . . . , Pn. σ is
an extensible partial assignment if and only if freqD(σ+) ≥ θ and 6 ∃j ∈ σ− such
that {j} is a full extension of σ.

Proof. According to the anti-monotonicity property of the frequency (cf. Prop-
erty 1), if the partial assignment σ is infrequent (i.e., freqD(σ+) < θ), it cannot,
under any circumstances, be extended to a closed pattern.



Given now a frequent partial assignment σ (i.e., freqD(σ+) ≥ θ), let us
take j ∈ σ− such that {j} is a full extension of σ. It follows that TD(σ+) =

TD(σ+∪{j}) = Vσ+

D (j). Therefore, Clos(σ+) = Clos(σ+∪{j}). Since σ+ without
j (j being in σ−) cannot be extended to a closed pattern, the result follows. If
there is no item j ∈ σ− such that {j} is a full extension of σ, then the current
assignment σ can be definitely extended to a closed itemset by adopting a full
extension to form a closed pattern. ut

We now give the ClosedPattern filtering rules by showing when a value
of a given variable is inconsistent.

Proposition 2 (ClosedPattern filtering rules). Let σ be an extensible
partial assignment of variables in P1, . . . , Pn, and Pj (j ∈ σ∗) be a free variable.
The following two cases characterize the inconsistency of the values 0 and 1 of
Pj:

– 0 6∈ dom(Pj) iff: {j} is a full extension of σ. (rule 1)

– 1 6∈ dom(Pj) iff:

{
|Vσ+

D (j)| < θ ∨ (rule 2)
∃k ∈ σ−,Vσ+

D (j) ⊆ Vσ+

D (k). (rule 3)

Proof. Let σ be an extensible partial assignment and Pj be a free variable.

0 6∈ dom(Pj) : (⇒) Let 0 be an inconsistent value. In this case, Pj can only
take value 1. It means that Clos(σ+) = Clos(σ+ ∪ {j}). Thus, TD(σ+) =
TD(σ+ ∪ {j}). By definition 2, {j} is a full extension of σ.
(⇐) Let {j} be a full extension of σ, which means that Clos(σ+) = Clos(σ+∪
{j}) (def. 2). The value 0 is inconsistent where j cannot be in σ− (prop.1).

1 6∈ dom(Pj) : (⇒) Let 1 be an inconsistent value. This can be the case if the
frequency of the current pattern σ+ is set up below the threshold θ by adding
the item j (i.e., |Vσ+

D (j)| < θ). Or, σ+ ∪ {j} cannot be extended to a closed
itemset: this is the case when there exists an item k ∈ σ− such that at each
time the item j belongs to a transaction in the database, k belongs as well
(Vσ+

D (j) ⊆ Vσ+

D (k)). Conversly, the lack of k (i.e., k ∈ σ−) implies the lack
of j as well. This means that: (Pk = 0⇒ Pj = 0).
(⇐) This is a direct consequence of Proposition 1. ut

The first rule takes its origin from item merging [15]. The second rule is
a basic rule derived from the property of anti-monotonicity of the frequency
(Property 1). To the best of our knowledge, the third rule is a new rule taking
its originality from the reasoning made on absent items.

Example 4. Following Example 3, consider a partial assignment σ such that the
variable P1 is set to 0 (item A). That is, σ− = {A} and σ+ = ∅. Value 1 from
dom(P4) (item D) is inconsistent because the lack of A implies the lack of D in
D (i.e., Vσ+

D (D) ⊆ Vσ+

D (A)). Let now P1 = 0, P4 = 0, that is, σ− = {A,D} and
σ+ = ∅. If the variable P3 is set to 1 (item C), value 1 from Pi, i = {2, 5, 6, 7}
(items B,E, F,G) is inconsistent because |Vσ+

D (Pi)| < 2, and value 0 from P8

(item H) is also inconsistent because {H} is a full extension of σ.



Algorithm 1: Filter-ClosedPattern(VD, θ, σ, P )

1 Input: VD : vertical database; θ : minimum support
2 InOut: P = {P1 . . . Pn}: Boolean item variables; σ : current assignment.

3 begin
4 if ( |TD(σ+)| < θ) then return false;

5 if ∃ i ∈ σ− : |Vσ
+

D (i)| = |TD(σ+)| then return false;
6 foreach i ∈ σ∗ do
7 if (|Vσ

+

D (i)| = |TD(σ+)|) then
8 dom(Pi)← dom(Pi)− {0};
9 σ+ ← σ+ ∪ {i}; σ∗ ← σ∗ \ {i};

10 else if (|Vσ
+

D (i)| < θ) then
11 dom(Pi)← dom(Pi)− {1};
12 σ− ← σ− ∪ {i}; σ∗ ← σ∗ \ {i};
13 foreach i ∈ σ− do
14 foreach j ∈ σ∗ : Vσ

+

D (j) ⊆ Vσ
+

D (i) do
15 dom(Pj)← dom(Pj)− {1};
16 σ− ← σ− ∪ {j}; σ∗ ← σ∗ \ {j};
17 return true;

4.2 ClosedPattern Filtering Algorithm

In this section, we present the algorithm Filter-ClosedPattern (Algorithm
1) for enforcing domain consistency on the ClosedPattern constraint. Filter-
ClosedPattern incrementally maintains the internal data structures σ =<
σ+, σ−, σ∗ > and the corresponding cover TD(σ+). Using these two structures,
one can check if an item is present or not in the vertical dataset VD.

Algorithm 1 takes as input the vertical dataset VD, a minimum support
threshold θ, the current partial assignment σ on P where σ∗ 6= ∅, and the
variables P . As output, Algorithm 1 reduces the domains of Pi’s and therefore,
increases σ+ and/or σ−, and decreases σ∗.

The algorithm starts by checking if the current partial assignment is exten-
sible or not (Proposition 1). This is performed by checking 1) if the size of the
current cover is greater than the minimum support (line 4) and 2) if no item of
a variable already instantiated to zero is a full extension of σ+ (line 5).

Lines 6-12 are a straightforward application of rules 1 and 2 of Proposition
2. For each non-instantiated variable, 1) we check if value 0 is consistent: that
item is not a full extension (lines 6-9), and 2) we check if value 1 is consistent:
the new cover size by adding that item remains greater than θ (lines 10-12).

Finally, lines 13-16 implement rule 3 of Proposition 2. We prune value 1 from
each free item variable i ∈ σ∗ such that its cover is a superset of the cover of an
absent item j ∈ σ− (Vσ+

D (i) ⊆ Vσ+

D (j)).

Theorem 1. Given a transaction database D of n items and m transactions,
and a threshold minsup θ. Algorithm Filter-ClosedPattern enforces domain



consistency on the ClosedPattern constraint, or proves that it is inconsitent
in time O(n2 ×m) with a space complexity of O(n×m).

Proof. DC: Filter-ClosedPattern implements exactly Proposition 1 and the
three rules given in Proposition 2. Thus Filter-ClosedPattern ensures do-
main consistency (see the description of Algorithm 1).
Time: Let n = |I| and m = |T |. First, we need to compute TD(σ+) which
requires at most O(n × m). This is done only once. The cover Vσ+

D (i) can be
computed by intersecting TD(σ+) (already computed) and TD({i}) (given by
the vertical representation) within at most O(m). Checking rules 1 and 2 on all
free variables can be done in O(n×m) ( lines 6-12). However, checking rule 3 is
cubic at lines 13-16 (i.e., O(n× (n×m))), where checking if a cover Vσ+

D (i) is a
subset of another cover can be done in O(m). Finally, the worst case complexity
is O(n× (n×m)).
Space: The space complexity of Filter-ClosedPattern lies in the storage of
VD, σ and the cover T data structures. The vertical representation VD requires
at most n×m space. In the worst case, we have to store n items within σ and
m transactions within T . That is, the worst case space complexity is O(n×m+
n+m) = O(n×m). ut

During the solving process in depth first search, the whole space complexity
is O(n × (m + n)) because (1) the depth is at most n; (2) σ and T require
O(n × (m + n)); (3) the vertical representation is the same data used all along
the solving process O(n×m); (4) O(n× (m+n))+O(n×m) = O(n× (m+n)).

Proposition 3 (Backtrack-free). Extracting the total number of closed fre-
quent patterns, noted C, is backtrack-free with a complexity in O(C × n2 ×m)
using Filter-ClosedPattern to propagate the ClosedPattern constraint.

Proof. Filter-ClosedPattern ensures DC at each node of the search tree.
Hence, the closed frequent patterns are guaranteed to be produced in a backtrack-
free manner. The explored search tree is a binary full tree where each node is
either a leaf (a solution) or possesses exactly two child nodes. The number of
nodes is thus in O(2×C). Knowing that ensuring DC is in O(n2×m), extracting
the total number of closed frequent patterns is in O(C × n2 ×m). ut

4.3 Data structures

To represent the transactional dataset and the cover of items, we adopted the
vertical representation format [16]. Our implementation is in or-tools solver 3.
Static structures: for each item i ∈ I, TD(i) = {t ∈ T | i ∈ t} is stored as a
bitset of size m. If t ∈ TD(i), then the associated bit is set to 1 (0 otherwise).
Dynamic structure: a vector Memo of bitsets is used to store the cover of
each partial solution. Memo is a vector of size n + 1, since at the beginning of
the search, the partial assignment is empty. Let σ be a partial assignment. Each
time a (new) variable Pi is instantiated, the cover of the new partial assignment
3 https://developers.google.com/optimization/

https://developers.google.com/optimization/
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Fig. 1: (a) ClosedPattern and (b) Reified Constraint Model (RCM)

σ ∪ {i} is stored inMemo. If Pi = 0, the cover remains the same: TD(σ+ ∪ {i}) =
TD(σ+). If Pi = 1, the cover of the new partial solution σ ∪ {i} is computed by
a bitwise-AND between TD(σ+) and TD({i}), and stored in Memo.
Backtracking. First, all Pi, as well as their domains dom(Pi), are fully main-
tained by the or-tools backtracking. Then, a single value (the current index of
the vector Memo) is asked to be managed by the or-tools backtracking. Each
time a partial solution is extended (from σ to σ ∪ {i}), the current index of
Memo is memorised. When a backtrack occurs (from σ ∪ {i} to σ), this value is
restored by or-tools giving access to the cover of the (restored) partial solution.
Rule 3. The inclusion between two covers Vσ+

D (i) ⊆ Vσ+

D (j) is rewritten as
Vσ+

D (i) ∩ Vσ+

D (j) = Vσ+

D (i), and the intersection is performed by a bitwise-AND.

5 Running example

In this section, we illustrate the propagation of our ClosedPattern constraint
and the difference that exists comparing to the use of a simple Reified Constraint
Model (denoted by RCM, and detailed in Section 3). For that, let us take the
transactional dataset given in Table 1: Five transactions t1 to t5 and eight items
from A to H.

Figure 1 shows the tree search explored using ClosedPattern (part(a))
and the tree search explored using a reified model (part(b)) to extract closed



frequent patterns at minimum support θ = 2. Here, both approaches use the
same branching heuristics, namely Lex on variables and Max_val on values.
First of all, it is worth noticing that the search space that can be explored using
ClosedPattern is defined only on decision variables (item variables), whereas
the reified model adds a further dimension with auxiliary variables (transaction
variables).

At the root node (node 1), no pruning is done since all items are frequent
and no item is a full extension of the empty pattern (see Table 1). Thereafter,
ClosedPattern and RCM are acting in the same manner on the branch A =
1. With A = 1, B,C,E, F,G,H become infrequent. That is, the 1 values are
pruned (rule 2). With RCM on node 2, the pruning on the five decision variables
(the item variables) induce a pruning on four auxiliary variables (transaction
variables). On the branch A = 1, two solutions are found: 〈AD〉 and 〈A〉.

Branching on A = 0 (node 5), the value 1 of D is pruned with rule 3 of
ClosedPattern. From Table 1, we have D ⇒ A, and a branching on A = 0
reduces D to 0. Here, we can say that the DC is maintained on node 5 using
ClosedPattern, which is not the case using RCM. The same observation can
be made on nodes 7, 9 and 11.

Let us take the node 6, here the branching on A = 0 and thereafter on B = 1
will make C,D,E, F,H infrequent (rule 2). Moreover, (rule 1) can be applied
since G is a full extension of B (i.e., we cannot have a frequent closed pattern
including B without G). That is, the value 0 is pruned from the domain of G,
which allows us to reach the solution 〈BG〉. The same observation can be made
on node 8.

To sum up, Filter-ClosedPattern maintains DC at each node and thus,
enumerates the solutions backtrack-free (no fails). The same cannot be said with
RCM because the rule 3 is never covered in this example and there are 3 fails.

6 Experiments

We made several experiments to compare and evaluate our global constraint
with the state of the art methods (CP and specialized methods).
Benchmark datasets. We selected several real and synthetic datasets [17,4]
from FIMI repository4 with large size. These datasets have varied characteristics
representing different application domains. Table 2 reports for each dataset,
the number of transactions |T |, the number of items |I|, the average size of
transactions |̂T |, its density ρ (i.e., |̂T |/|I|) and its size (i.e., |T |× |I|). We note
that the datasets are presented according to their size. They represent various
numbers of transactions, numbers of items, densities. We have datasets that are
very dense like Chess and Connect (resp. 49% and 33%), and others that are
very sparse like Retail and BMS-Web-View1 (resp. 0.06% and 0.5%). Note that
we have datasets of sizes going from ≈ 105 to more than 109.

4 http://fimi.ua.ac.be/data/

http://fimi.ua.ac.be/data/


Table 2: Dataset Characteristics.
Dataset |T | |I| |̂T | ρ type of data size

Chess 3 196 75 37 49% game steps 239 700
Splice1 3 190 287 60 21% genetic sequences 915 530
Mushroom 8 124 119 23 19% species of mushrooms 966 756
Connect 67 557 129 43 33% game steps 8 714 853
BMS-Web-View1 59 602 497 2.5 0.5% web click stream 29 622 194
T10I4D100K 100 000 1 000 10 1% synthetic dataset 100 000 000
T40I10D100K 100 000 1 000 40 4% synthetic dataset 100 000 000
Pumsb 49 046 7 117 74 1% census data 349 060 382
Retail 88 162 16 470 10 0.06% retail market basket data 1 452 028 140

Experimental protocol. The implementation of our approach was carried out
in the or-tools solver. All experiments were conducted on an Intel Xeon E5-
2680 @ 2.5 GHz with 128 Gb of RAM with a timeout of 3600s. For each dataset,
we decreased the (relative) θ threshold until it is impossible to extract all closed
patterns within the allocated time/memory. We have implemented two vari-
ants of ClosedPattern constraint: (i) ClosedPattern-dc ensuring DC with
rules 1,2 and 3 (cubic prunning). (ii) ClosedPattern-wc ensuring a weaker
consistency with only rules 1 and 2 (quadratic prunning). Comparisons are made
with: (i) CP4IM, the state-of-the-art on CP approaches, that uses an RCM model.
(ii) LCM, the state-of-the-art on specialized methods.

For ClosedPattern and CP4IM, we use the same branching heuristics,
namely Lex on variables and Max_val on values. We experimented using the
available distributions of LCM-v5.3,5 and CP4IM,6 with Gecode as the underly-
ing solver of CP4IM. Table 3 gives a comparison between ClosedPattern (wc
and dc versions), CP4IM and LCM. We report the number of closed patterns #C
of each instance, the number of propagations, the number of nodes, the CPU
times in seconds and the number of failures.
ClosedPattern (dc vs wc). Despite the pruning complexity, dc clearly
dominates wc in terms of CPU times (except for BMS1 dataset where both
are more or less equivalent). For instance, on the pumsb dataset with θ = 70%,
dc is about 4 times faster than wc. As a second observation, the use of rule
3 can reduce drastically the number of explored nodes and thus, number of
propagations. For instance, we note a reduction of 38% on explored nodes on
connect and 98% on splice1 compared to wc.
ClosedPattern vs CP4IM. If we compare ClosedPattern with CP4IM, the
main observation is that dc outperforms significantly CP4IM at all levels. In
terms of CPU times and without counting the Out-of-memory instances, we can
observe 23 instances (out of 30) with a speed-up factor between 2 and 15. Factors
of 27 to 45 are noted for six instances and for one instance, we have a factor
of 182. The weaker version (wc) is also better than CP4IM except two instances
in connect and two instances in chess. In terms of number of propagations,
we observe a gain factor within a range from 13 to 300. This is because of

5 http://research.nii.ac.jp/~uno/codes.htm
6 https://dtai.cs.kuleuven.be/CP4IM/

http://research.nii.ac.jp/~uno/codes.htm
https://dtai.cs.kuleuven.be/CP4IM/


Table 3: ClosedPattern vs CP4IM vs LCM. (OOM: Out Of Memory; TO: TimeOut;
(1): ClosedPattern-wc; (2): ClosedPattern-dc; (3): CP4IM)

D θ #C #Propagations #Nodes Time (s) Failures
(%) (≈) (1) (2) (3) (1) (2) (3) (1) (2) (3) LCM (1) (2) (3)

ch
es

s

50 105 4 037 618 920 377 9 201 740 4 037 211 738 901 738 907 7.26 3.21 10.97 0.32 1 649 155 0 3
40 106 15 931 714 3 411 690 30 541 475 15 929 751 2 733 667 2 733 735 26.37 12.27 40.85 1.44 6 598 042 0 34
30 106 71 744 915 13 298 679 105 040 377 71 734 057 10 679 631 10 681 739 109.36 45.92 136.31 6.07 30 527 213 0 1 054
20 107 305 446 222 56 550 872 385 399 747 305 374 413 45 837 171 45 901 933 480.52 187.89 467.52 27.55 1.29× 108 0 32 381
10 108 1.51× 109 304 335 522 1.66× 109 1.51× 109 247 960 091 249 411 325 2 287.98 969.40 1 950.51 141.55 6.34× 108 0 725 617

sp
li
ce

1 20 102 54 055 25 078 913 779 53 991 487 487 0.10 0.59 22.59 0.04 26 752 0 0
10 103 303 405 57 623 1 810 466 303 359 3 211 3 211 0.18 0.14 25.54 0.07 150 074 0 0
5 104 5 013 077 1 706 269 36 211 067 5 013 031 63 935 63 935 3.39 3.23 138.54 1.46 2 474 548 0 0
1 107 754 074 683 193 156 761 2.43× 109 754 067 617 13 454 755 13 467 247 502.77 400.10 1 652.41 53.59 3.70× 108 0 6 246

m
u
sh

ro
om

30 102 6 323 1 530 430 016 6 179 853 1 039 0.46 0.64 0.77 0.00 2 663 0 93
20 103 34 375 4 414 1 031 778 34 113 2 405 3 083 0.92 0.56 2.36 0.01 15 854 0 339
10 104 148 429 17 456 2 771 719 147 623 9 793 13 281 0.38 0.15 5.32 0.04 68 915 0 1 744
5 104 496 643 46 165 5 574 143 494 559 25 707 36 495 0.84 0.41 10.98 0.09 234 426 0 5 394
1 105 2 347 734 178 834 13 813 312 2 339 109 103 343 168 999 3.42 1.74 24.06 0.22 1 117 883 0 32 828
0.5 105 3 896 158 264 660 18 230 838 3 883 697 156 613 265 781 5.00 3.62 29.84 0.34 18 635 42 0 54 584
0.1 105 7 148 533 516 041 31 222 435 7 130 827 328 233 529 289 9.96 5.40 41.38 0.47 3 401 297 0 100 528
0.05 105 8 001 925 613 712 36 520 438 7 983 119 407 763 622 145 9.94 6.37 43.69 0.51 3 787 678 0 107 191

co
n
n
ec

t

90 103 12 377 10 272 1 865 236 9 725 6 973 6 973 2.45 0.92 7.10 0.22 1 376 0 0
80 104 60 312 48 156 9 455 886 44 771 30 223 30 223 9.35 1.65 16.57 0.31 7 274 0 0
70 104 158 817 120 184 24 969 205 115 335 71 761 71 761 24.26 4.09 33.72 0.40 21 787 0 0
60 105 297 175 240 634 51 648 114 202 637 136 699 136 699 45.23 7.30 45.73 0.39 32 969 0 0
50 105 570 870 469 442 98 602 318 378 603 260 223 260 223 85.99 14.53 110.19 0.52 59 190 0 0
40 105 1 139 466 886 722 177 653 293 762 579 478 781 478 781 159.04 27.32 153.39 0.83 141 899 0 0
30 105 2 173 593 1 752 199 313 288 691 1 400 609 920 823 920 823 263.64 49.97 304.52 1.37 239 893 0 0
20 106 8 440 998 5 637 016 633 429 969 6 092 697 2 966 399 2 966 399 678.95 157.40 712.68 4.37 1 563 149 0 0
10 107 55 152 559 31 370 763 1.76× 109 41 641 659 16 075 555 16 075 555 3 110.90 760.71 2 597.89 17.70 12 783 052 0 0

B
M

S
1

0.20 103 311 638 105 403 OOM 250 959 1 677 OOM 111.04 145.72 OOM 0.04 124 671 0 OOM
0.16 103 493 069 116 902 OOM 432 419 2 617 OOM 161.60 218.88 OOM 0.06 214 939 0 OOM
0.12 103 921 446 134 436 OOM 860 811 4 971 OOM 239.08 202.46 OOM 0.05 427 940 0 OOM
0.08 104 3 638 431 200 049 OOM 3 577 735 20 787 OOM 2 441.84 1 899.70 OOM 0.11 1 778 490 0 OOM

T
10

*

10 1 1 000 1 000 OOM 1 1 OOM 0.46 0.24 OOM 0.03 0 0 OOM
1 102 155 166 76 955 OOM 154 559 805 OOM 3.75 1.14 OOM 0.14 76 894 0 OOM
0.5 103 509 852 174 015 OOM 509 441 2 185 OOM 10.29 3.11 OOM 0.42 253 647 0 OOM
0.1 103 11 228 933 520 218 OOM 11 228 667 53 625 OOM 258.44 11.30 OOM 0.94 5 587 527 0 OOM
0.05 104 21 004 412 1 257 876 OOM 21 003 915 93 987 OOM 477.22 27.96 OOM 1.30 10 454 964 0 OOM
0.01 105 130 686 806 17 313 642 OOM 130 673 093 566 795 OOM 1 471.32 905.17 OOM 3.49 65 053 149 0 OOM

T
40

*

10 102 8 712 4 900 OOM 7 801 177 OOM 0.89 1.13 OOM 0.43 3 818 0 OOM
5 102 97 982 47 983 OOM 97 289 643 OOM 2.34 1.78 OOM 1.31 48 328 0 OOM
1 105 19 932 041 937 766 OOM 19 931 799 130 477 OOM 599.49 25.78 OOM 21.32 9 900 663 0 OOM
0.5 106 TO 6 394 931 OOM TO 2 551 883 OOM TO 953.58 OOM 13.31 TO 0 OOM

p
u
m

sb

95 102 7 981 7 438 OOM 877 223 OOM 2.85 1.45 OOM 0.20 328 0 OOM
90 103 17 429 11 074 OOM 10 323 2 933 OOM 44.92 13.37 OOM 0.29 3 695 0 OOM
85 104 61 459 29 149 OOM 54 331 17 027 OOM 155.79 58.84 OOM 0.27 18 652 0 OOM
80 104 176 955 89 805 OOM 169 743 66 615 OOM 640.59 133.97 OOM 0.33 51 564 0 OOM
75 105 472 624 249 382 OOM 465 267 202 165 OOM 1 010.43 271 OOM 0.48 131 551 0 OOM
70 105 969 374 567 929 OOM 961 763 482 517 OOM 2 150.80 509.79 OOM 0.69 239 623 0 OOM

re
ta

il

10 10 16 501 16 490 OOM 37 19 OOM 1 2.55 OOM 0.06 9 0 OOM
1 102 31 089 19 852 OOM 14 695 329 OOM 11.03 4.02 OOM 0.10 7 188 0 OOM
0.5 103 205 688 56 868 OOM 189 475 1 233 OOM 61.41 12.73 OOM 0.32 94 156 0 OOM
0.1 104 23 520 823 4 506 219 OOM 23 506 749 15 901 OOM 495.52 796.82 OOM 0.80 11 745 679 0 OOM
0.05 104 114 357 067 18 342 468 OOM 114 345 005 40 229 OOM 2 352.14 2 645.06 OOM 1.07 57 152 804 0 OOM

the huge number of propagator calls for reified constraints comparing to one
propagator call using ClosedPattern. The number of explored nodes is also
reduced, sometimes by half (e.g., mushroom), using ClosedPattern-dc. This
is not a surprise as its number of explored nodes is optimal. Another observation
is the experimental validation of Proposition 3: ClosedPattern-dc extracts
the closed patterns in a backtrack-free manner. All solutions are enumerated
without any fail (see failures column in Table 3). CP4IM requires an important
number of backtracks on most datasets. On connect and three instances of splice1
we can observe that ClosedPattern-dc and CP4IM explore the same number
of nodes. The reified model on such dense datasets and using (Lex\Max_val)
heuristics is able to prune all inconsistent values. This result is confirmed by the



number of failures always equal to zero (backtrack-free). Even if the wc version
is faster, CP4IM remains better in terms of pruning (#nodes). Finally, the major
drawback using the reified model for frequent pattern extraction is the memory
consumption. We denote 25 Out-of-memory (out of 51 instances). The Out-of-
memory state is due to the huge number of reified constraints. For instance, if
we take the T40I10D100K dataset, the CP model produced by CP4IM contains
|T | + |I| = 101 000 variables, |T | = 100 000 reified constraints to express the
channeling constraints, 2×|I| = 2×1 000 reified constraints to express the closure
and frequency constraints. This means that the CP solver has to load in memory
a CP model of 102 000 reified constraints expressed on 101 000 variables, which
represents the size given in Table 2. From Table 2, we observe that Gecode is
not able to handle CP4IM models on datasets of size greater than ≈ 107 (greater
than connect dataset).
ClosedPattern vs LCM. In terms of CPU times, LCM remains the leader on
basic queries. However, ClosedPattern is quite competitive as a declarative
approach. For instance, if we take chess dataset, LCM is 15 times faster than
ClosedPattern-dc on average, where it is more than 120 times faster on
average comparing to CP4IM. ClosedPattern pruning acts only within the
current node of the search tree, without imposing any condition on the main
search algorithm such as variable or value orderings. This allows to consider new
constraints and let the main search algorithm adopt the best heuristics favouring
the whole solving. To illustrate our point, we propose to model a particular
problem (k-pattern sets) in a declarative manner where LCM could not meet this
need.
k-patterns instance. A promising road to discover useful patterns is to impose
constraints on a set of k related patterns (k-pattern sets) [5,9]. In this setting,
the interest of a pattern is evaluated w.r.t. a set of patterns. We propose to
model and solve a particular instance, coined dist_kpatterns_lb_ub. Here, we
aim at finding k closed patterns {P 1, . . . , P k} s.t:
(i) ∀i ∈ [1, k] : ClosedPattern(P i) (Closed Frequent Patterns),
(ii)∀i, j ∈ [1, k] : P i ∩ P j = ∅ (all distinct patterns constraints),
(iii) ∀i ∈ [1, k] : lb < |P i| < ub (min and max size constraints).

Figure 2 shows a comparison between two models, M1 using ClosedPattern
for the CFPM part of the problem, M2 using a CP4IM implementation. We selected
two dataset instances where CP4IM does not reach the Out-of-memory state and
where we have a reasonable number of closed patterns, chess with θ = 80% (5084
closed patterns) and connect with θ = 90% (3487 closed patterns), and we have
varied k with a timeout of 3600s. After a few preliminary tests, the bounds lb
and ub on the size of the patterns were set to 2 and 10 respectively. On chess,
model M1 is robust and scales well: it is linear on k and never exceeds 6 min
even with k = 12 (323.53s). M2 follows an exponential scale and goes beyond
the timeout with only k = 8 (7222.41s). The same observation can be made on
the connect instance, but in a more pronounced way on the exponential scale
followed by M2. With k = 4, M2 goes beyond the timeout with 5428.05s whereas
M1 confirms its linear behavior when varying k from 2 to 12.



For such problems, a baseline can be the use of specialized methods with
postprocessing. One can imagine (i) the use of LCM to extract the total number of
closed patterns and (ii) a generate-and-test search trying to find distinct patterns
of a given size. Such approach can be very expensive. Here, the postprocessing
will generate all the possible k combinations of closed patterns. For instance, we
recall that for chess with θ = 80% we have 5084 closed patterns. With k = 12
and using M1 , we need less than 6 min, where using the baseline we have to cope
with a massive number of combinations. Thus, this last experiment confirms that
if LCM is faster on basic queries (e.g., asking for closed frequent with given size),
it cannot cope with complex queries. It would need to think and to propose an
adhoc solution whereas CP enables a novice DM-user to express his query as
constraints.
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Fig. 2: dist_kpatterns_lb_ub instance using ClosedPattern and CP4IM.

7 Conclusion

In this paper we have introduced a new global constraint for Closed Frequent
Pattern Mining. The ClosedPattern constraint captures the particular se-
mantic of the CFPM problem, namely the minimum frequency and closedness
of patterns. To propagate efficiently this global constraint, we have first defined
three filtering rules that ensure domain consistency. Second, we have defined
a filtering algorithm that establishes domain consistency in a cubic time com-
plexity and quadratic space complexity. We have implemented this filtering al-
gorithm into the or-tools solver using a vertical representation of datasets and
smart data structures. We have conducted an experimental study on several real
and synthetic datasets, showing the efficiency and the scalability of the global
constraint compared to a reified constraints approach such as CP4IM. Finally,
to show the applicability and the flexibility of ClosedPattern compared to
specialized methods we performed experiments on an instance of k-pattern set
problem where ClosedPattern is integrated with a set of constraints.
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