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Abstract

In combinatorics on words, a word w over an alphabet Σ is said to avoid a
pattern p over an alphabet ∆ if there is no factor f of w such that f = h(p) where
h : ∆∗ → Σ∗ is a non-erasing morphism. A pattern p is said to be k-avoidable if
there exists an infinite word over a k-letter alphabet that avoids p. A pattern is
said to be doubled if no variable occurs only once. Doubled patterns with at most
3 variables and patterns with at least 6 variables are 3-avoidable. We show that
doubled patterns with 4 and 5 variables are also 3-avoidable.

Keywords: Word; Pattern avoidance.

1 Introduction

A pattern p is a non-empty word over an alphabet ∆ = {A,B,C, . . . } of capital letters
called variables. An occurrence of p in a word w is a non-erasing morphism h : ∆∗ → Σ∗

such that h(p) is a factor of w. The avoidability index λ(p) of a pattern p is the size
of the smallest alphabet Σ such that there exists an infinite word w over Σ containing
no occurrence of p. Bean, Ehrenfeucht, and McNulty [2] and Zimin [13] characterized
unavoidable patterns, i.e., such that λ(p) = ∞. We say that a pattern p is t-avoidable
if λ(p) 6 t. For more informations on pattern avoidability, we refer to Chapter 3 of
Lothaire’s book [8].

It follows from their characterization that every unavoidable pattern contains a vari-
able that occurs once. Equivalently, every doubled pattern is avoidable. Our result is
that :

Theorem 1. Every doubled pattern is 3-avoidable.

Let v(p) be the number of distinct variables of the pattern p. For v(p) 6 3, Cas-
saigne [5] began and I [9] finished the determination of the avoidability index of every
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pattern with at most 3 variables. It implies in particular that every avoidable pattern
with at most 3 variables is 3-avoidable. Moreover, Bell and Goh [3] obtained that every
doubled pattern p such that v(p) > 6 is 3-avoidable.

Therefore, as noticed in the conclusion of [10], there remains to prove Theorem 1 for
every pattern p such that 4 6 v(p) 6 5. In this paper, we use both constructions of
infinite words and a non-constructive method to settle the cases 4 6 v(p) 6 5.

Recently, Blanchet-Sadri and Woodhouse [4] and Ochem and Pinlou [10] independently
obtained the following.

Theorem 2 ([4, 10]). Let p be a pattern.

(a) If p has length at least 3× 2v(p)−1 then λ(p) 6 2.

(b) If p has length at least 2v(p) then λ(p) 6 3.

As noticed in these papers, if p has length at least 2v(p) then p contains a doubled
pattern as a factor. Thus, Theorem 1 implies Theorem 2.(b).

2 Extending the power series method

In this section, we borrow an idea from the entropy compression method to extend the
power series method as used by Bell and Goh [3], Rampersad [12], and Blanchet-Sadri
and Woodhouse [4].

Let us describe the method. Let L ⊂ Σ∗m be a factorial language defined by a set
F of forbidden factors of length at least 2. We denote the factor complexity of L by
ni = L ∩ Σi

m. We define L′ as the set of words w such that w is not in L and the prefix
of length |w| − 1 of w is in L. For every forbidden factor f ∈ F , we choose a number
1 6 sf 6 |f |. Then, for every i > 1, we define an integer ai such that

ai > max
u∈L

∣∣{v ∈ Σi
m | uv ∈ L′, uv = bf, f ∈ F, sf = i

}∣∣ .
We consider the formal power series P (x) = 1 −mx +

∑
i>1 aix

i. If P (x) has a positive

real root x0, then ni > x−i0 for every i > 0.
Let us rewrite that P (x0) = 1−mx0 +

∑
i>1 aix

i
0 = 0 as

m−
∑
i>1

aix
i−1
0 = x−10 (1)

Since n0 = 1, we will prove by induction that ni

ni−1
> x−10 in order to obtain that ni > x−i0

for every i > 0. By using (1), we obtain the base case: n1

n0
= n1 = m > x−10 . Now, for

every length i > 1, there are:

• mi words in Σi
m,

• ni words in L,
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• at most
∑

16j6i ni−jaj words in L′,

• m(mi−1 − ni−1) words in Σi
m \ {L ∪ L′}.

This gives ni+
∑

16j6i njai−j +m(mi−1−ni−1) > mi, that is, ni > mni−1−
∑

16j6i ni−jaj.

ni

ni−1
> m−

∑
16j6i aj

ni−j

ni−1

> m−
∑

16j6i ajx
j−1
0 By induction

> m−
∑

j>1 ajx
j−1
0

= x−10 By (1)

The power series method used in previous papers [3, 4, 12] corresponds to the special
case such that sf = |f | for every forbidden factor. Our condition is that P (x) = 0 for
some x > 0 whereas the condition in these papers is that every coefficient of the series
expansion of 1

P (x)
is positive. The two conditions are actually equivalent. The result

in [11] concerns series of the form S(x) = 1 + a1x+ a2x
2 + a3x

3 + . . . with real coefficients
such that a1 < 0 and ai > 0 for every i > 2. It states that every coefficient of the series
1/S(x) = b0 + b1x+ b2x

2 + b3x
3 + . . . is positive if and only if S(x) has a positive real root

x0. Moreover, we have bi > x−i0 for every i > 0.
The entropy compression method as developped by Gonçalves, Montassier, and Pin-

lou [6] uses a condition equivalent to P (x) = 0. The benefit of the present method is that
we get an exponential lower bound on the factor complexity. It is not clear whether it is
possible to get such a lower bound when using entropy compression for graph coloring,
since words have a simpler structure than graphs.

3 Applying the method

In this section, we show that some doubled patterns on 4 and 5 variables are 3-avoidable.
Given a pattern p, every occurrence f of p is a forbidden factor. With an abuse of notation,
we denote by |A| the length of the image of the variable A of p in the occurrence f . This
notation is used to define the length sf .

Let us first consider doubled patterns with 4 variables. We begin with patterns of
length 9, so that one variable, say A, appears 3 times. We set sf = |f |. Using the obvious
upper bound on the number of pattern occurrences, we obtain

P (x) = 1− 3x+
∑

a,b,c,d>1 3a+b+c+dx3a+2b+2c+2d

= 1− 3x+
∑

a,b,c,d>1 (3x3)
a

(3x2)
b
(3x2)

c
(3x2)

d

= 1− 3x+
(∑

a>1 (3x3)
a) (∑

b>1 (3x2)
b
) (∑

c>1 (3x2)
c) (∑

d>1 (3x2)
d
)

= 1− 3x+
(

1
1−3x3 − 1

) (
1

1−3x2 − 1
) (

1
1−3x2 − 1

) (
1

1−3x2 − 1
)

= 1− 3x+
(

1
1−3x3 − 1

) (
1

1−3x2 − 1
)3

= 1−3x−9x2+24x3+36x4−54x5−108x6+243x8+162x9−243x10
(1−3x3)(1−3x2)3 .

Then P (x) admits x0 = 0.3400 . . . as its smallest positive real root. So, every doubled
pattern p with 4 variables and length 9 is 3-avoidable and there exist at least x−n0 > 2.941n
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ternary words avoiding p. Notice that for patterns with 4 variables and length at least
10, every term of

∑
a,b,c,d>1 3a+b+c+dx3a+2b+2c+2d in P (x) gets multiplied by some positive

power of x. Since 0 < x < 1, every term is now smaller than in the previous case. So P (x)
admits a smallest positive real root that is smaller than 0.3400 . . . Thus, these patterns
are also 3-avoidable.

Now, we consider patterns with length 8, so that every variable appears exactly twice.
If such a pattern has ABCD as a prefix, then we set sf = |f |

2
= |A|+ |B|+ |C|+ |D|. So

we obtain P (x) = 1− 3x+
∑

a,b,c,d>1 x
a+b+c+d = 1− 3x+

(
1

1−x − 1
)4

. Then P (x) admits
0.3819 . . . as its smallest positive real root, so that this pattern is 3-avoidable.

Among the remaining patterns, we rule out patterns containing an occurrence of a dou-
bled pattern with at most 3 variables. Also, if one pattern is the reverse of another, then
they have the same avoidability index and we consider only one of the two. Thus, there re-
main the following patterns: ABACBDCD, ABACDBDC, ABACDCBD, ABCADBDC,
ABCADCBD, ABCADCDB, and ABCBDADC.

Now we consider doubled patterns with 5 variables. Similarly, we rule out every
pattern of length at least 11 with the method by setting sf = |f |. Then we check that

P (x) = 1− 3x+
∑

a,b,c,d,e>1 3a+b+c+d+ex3a+2b+2c+2d+2e = 1− 3x+
(

1
1−3x3 − 1

) (
1

1−3x2 − 1
)4

has a positive real root.
We also rule out every pattern of length 10 having ABC as a prefix. We set sf =

|f | − |ABC| = |A| + |B| + |C| + 2|D| + 2|E|. Then we check that P (x) = 1 − 3x +∑
a,b,c,d,e>1 3d+exa+b+c+2d+2e = 1− 3x+

(
1

1−x − 1
)3 ( 1

1−3x2 − 1
)2

has a positive real root.
Again, we rule out patterns containing an occurrence of a doubled pattern with at most

4 variables and patterns whose reversed pattern is already considered. Thus, there remain
the following patterns: ABACBDCEDE, ABACDBCEDE, and ABACDBDECE.

4 Sporadic doubled patterns

In this section, we consider the 10 doubled patterns on 4 and 5 variables whose 3-
avoidability has not been obtained in the previous section.

We define the avoidability exponent AE(p) of a pattern p as the largest real x such
that every x-free word avoids p. This notion is not pertinent e.g. for the pattern
ABWBAXACY CAZBC studied by Baker, McNulty, and Taylor [1], since for every
ε > 0, there exists a (1 + ε)-free word containing an occurrence of that pattern. However,
AE(p) > 1 for every doubled pattern. To see that, consider a factor A . . . A of p. If an x-
free word contains an occurrence of p, then the image of this factor is a repetition such that
the image of A cannot be too large compared to the images of the variables occurring be-
tween the As in p. We have similar constraints for every variable and this set of constraints
becomes unsatisfiable as x decreases towards 1. We present one way of obtaining the avoid-
ability exponent for a doubled pattern p of length 2v(p). We construct the v(p) × v(p)
matrix M such that Mi,j is the number of occurrences of the variable Xj between the two
occurrences of the variable Xi. We compute the largest eigenvalue β of M and then we
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have AE(p) = 1 + 1
β+1

. For example if p = ABACDCBD, then we get M =

[
0 1 0 0
1 0 0 1
0 2 0 1
0 1 1 0

]
,

β = 1.9403 . . . , and AE(p) = 1 + 1
β+1

= 1.3400 . . . . The avoidability exponents of the

10 patterns considered in this section range from AE(ABCADBDC) = 1.292893219 to
AE(ABACBDCD) = 1.381966011. For each pattern p among the 10, we give a uniform

morphism m : Σ∗5 → Σ∗2 such that for every
(

5
4

+
)

-free word w ∈ Σ∗5, we have that m(w)

avoids p. The proof that p is avoided follows the method in [9]. Since there exist expo-

nentially many
(

5
4

+
)

-free words over Σ5 [7], there exist exponentially many binary words

avoiding p.

• AE(ABACBDCD) = 1.381966011, 17-uniform morphism

0 7→ 00000111101010110
1 7→ 00000110100100110
2 7→ 00000011100110111
3 7→ 00000011010101111
4 7→ 00000011001001011

• AE(ABACDBDC) = 1.333333333, 33-uniform morphism

0 7→ 000000101101000111111011001010111
1 7→ 000000100110100001111101001010111
2 7→ 000000010110100001111111010010111
3 7→ 000000010011010100011111010010111
4 7→ 000000010011001000001111010010111

• AE(ABACDCBD) = 1.340090632, 28-uniform morphism

0 7→ 0000101010001110010000111111
1 7→ 0000001111010001101001111111
2 7→ 0000001101000011110100100111
3 7→ 0000001011110000110100111111
4 7→ 0000001010111100100001111111

• AE(ABCADBDC) = 1.292893219, 21-uniform morphism

0 7→ 000011101101011111010
1 7→ 000010110100100111101
2 7→ 000001101110100101111
3 7→ 000001101011001111111
4 7→ 000000110111010111111
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• AE(ABCADCBD) = 1.295597743, 22-uniform morphism

0 7→ 0000011011010100011111
1 7→ 0000011010101001001111
2 7→ 0000001101100100111111
3 7→ 0000001010110000111111
4 7→ 0000000110101001110111

• AE(ABCADCDB) = 1.327621756, 26-uniform morphism

0 7→ 00000011110010101011000111
1 7→ 00000011010111111001011011
2 7→ 00000010011111101001110111
3 7→ 00000001001111110001010111
4 7→ 00000001000111111001010111

• AE(ABCBDADC) = 1.302775638, 33-uniform morphism

0 7→ 000000101111110011000110011111101
1 7→ 000000101111001000001100111111101
2 7→ 000000011011111001100000100111101
3 7→ 000000011010101011000001001111101
4 7→ 000000010111110010101010011111011

• AE(ABACBDCEDE) = 1.366025404, 15-uniform morphism

0 7→ 001011011110000
1 7→ 001010100111111
2 7→ 000110010011000
3 7→ 000011111111100
4 7→ 000011010101110

• AE(ABACDBCEDE) = 1.302775638, 18-uniform morphism

0 7→ 000010110100100111
1 7→ 000010100111111111
2 7→ 000000110110011111
3 7→ 000000101010101111
4 7→ 000000000111100111

• AE(ABACDBDECE) = 1.320416579, 22-uniform morphism

0 7→ 0000001111110001011011
1 7→ 0000001111100100110101
2 7→ 0000001111100001101101
3 7→ 0000001111001001011100
4 7→ 0000001111000010101100
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5 Simultaneous avoidance of doubled patterns

Bell and Goh [3] have also considered the avoidance of multiple patterns simultaneously
and ask (question 3) whether there exist an infinite word over a finite alphabet that avoids
every doubled pattern. We give a negative answer.

A word w is n-splitted if |w| ≡ 0 (mod n) and every factor wi such that w =

w1w2 . . . wn and |wi| = |w|
n

for 1 6 i 6 n contains every letter in w. An n-splitted

pattern is defined similarly. Let us prove by induction on k that every word w ∈ Σnk

k

contains an n-splitted factor. The assertion is true for k = 1. Now, if the word w ∈ Σnk

k is
not itself n-splitted, then by definition it must contain a factor wi that does not contain
every letter of w. So we have wi ∈ Σnk−1

k−1 . By induction, wi contains an n-splitted factor,
and so does w.

This implies that for every fixed n, every infinite word over a finite alphabet contains
n-splitted factors. Moreover, an n-splitted word is an occurrence of an n-splitted pattern
such that every variable has a distinct image of length 1. So, for every fixed n, the set of
all n-splitted patterns is not avoidable by an infinite word over a finite alphabet.

Notice that if n > 2, then an n-splitted word (resp. pattern) contains a 2-splitted
word (resp. pattern) and a 2-splitted word (resp. pattern) is doubled.

6 Conclusion

Our results answer settles the first of two questions of our previous paper [10]. The
second question is whether there exists a finite k such that every doubled pattern with at
least k variables is 2-avoidable. As already noticed [10], such a k is at least 5 since, e.g.,
ABCCBADD is not 2-avoidable.
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