
HAL Id: lirmm-01376027
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01376027

Submitted on 9 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Toward Recovering Component-based Software Product
Line Architecture from Object-Oriented Product

Variants
Hamzeh Eyal-Salman, Abdelhak-Djamel Seriai

To cite this version:
Hamzeh Eyal-Salman, Abdelhak-Djamel Seriai. Toward Recovering Component-based Software Prod-
uct Line Architecture from Object-Oriented Product Variants. SEKE: Software Engineering and
Knowledge Engineering, Jul 2016, San Francisco, United States. pp.1-7, �10.18293/SEKE2016-066�.
�lirmm-01376027�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01376027
https://hal.archives-ouvertes.fr

Toward Recovering Component-based Software Product Line Architecture from
Object-Oriented Product Variants

Hamzeh Eyal-Salman, Abdelhak-Djamel Seriai

UMR CNRS 5506, LIRMM, University of Montpellier 2 for Sciences and Technology, France
E-mail: {Eyalsalman, Seriai}@lirmm.fr

Abstract

Usually, companies meet different customer needs in a
particular domain by developing variants of a software
product. This is often performed by ad-hoc copying and
modifying of various existing variants to fit purposes of new
one. As the number of product variants grows, such an ad-
hoc development causes severe problems to maintain these
variants. Software Product Line Engineering (SPLE) can
be helpful here by supporting a large-scale reuse systemati-
cally. SPL architecture (SPLA) is a key asset as it is used to
derive architecture for each product in SPL. Unfortunately,
developing SPLA from scratch is a costly task. In this pa-
per, we propose an approach to contribute for recovering
SPLA from existing product variants. This contribution is
two-fold. Firstly, identifying common features and variation
points of features of a given collection of product variants.
Secondly, exploiting commonality and variability in terms
of features to identify mandatory components and variation
points of components as an important step in this recovering
process. To evaluate the proposed approach, we applied it
to two case studies. The experimental results bring evidence
the effectiveness of our approach.

Keywords: product variants, software product line ar-
chitecture, component, variability, feature, recovering.

1 Introduction

It is common for companies developing variants of a
software product to accommodate different customer needs.
These variants provide common features and differ from
one another by providing unique feature combinations.
A feature is “a prominent or distinctive user-visible as-
pect, quality or characteristic of a software system or sys-
tems” [1]. Companies develop separate product variants
where a new product is built by ad-hoc copying and mod-
ifying of various existing variants to fit purposes of new
one. Separately maintaining these variants causes chal-
lenges. Changes in the source code corresponding to com-
mon features (e.g., for bug fixing) must be repeated across

product variants. Therefore, companies need to change their
software development strategy by a transition to a systemic
reuse approach, such as Software Product Line Engineering
(SPLE) to avoid such maintenance problems.

Reuse is a main characteristic of SPLE. It builds core
assets consisting of all reusable software artifacts. SPL ar-
chitecture (SPLA) is a key asset [2]. It is a core architec-
ture that captures high level design decisions for SPL prod-
ucts, including the variation points and variants. These de-
cisions concern in the organization of components and gen-
eral rules that these components have to obey. Commonality
and variability in SPLA (i.e., mandatory components and
variation points (VPs) of components) globally originate
from commonality and variability of customers’ require-
ments/features which are represented by feature model [3].

Developing SPLA from scratch is a costly task because it
should encompass the components realizing all the manda-
tory and varying features in a particular domain. Therefore,
it is useful to exploit product variants for reducing the devel-
opment cost. Recovering SPLA from software product vari-
ants is not considered in the literature. Existing works sup-
port recovering software architecture from single existing
software system [4]. In this paper, we present an approach
to contribute for recovering SPLA from existing product
variants. Our contribution is two-fold. Firstly, identify-
ing common features and VPs of features as this organiza-
tion of features represents the main source of commonality
and variability in SPLA. Secondly, exploiting such identi-
fication to identify mandatory components and VPs com-
ponents for SPLA. We adapt our previous component ex-
traction approach (ROMANTIC) approach to extract com-
ponents [5].

The remainder of the paper is organized as follows: we
give a necessary background in section 2. Section 3 detail
the proposed approach steps. Next, section 4 shows exper-
imental results and analysis. Sections 5 and 6 discuss the
related work and conclude the paper, respectively.

2 Variation Points in Feature Model and
Software Product Line Architecture

Development of SPLs mainly relies on exploiting com-
monality and managing the variability between SPL’s prod-
ucts to meet all customer requirements [3]. Feature Model
(FM) is a well-known artifact to represent this commonality
and variability in terms of features. Commonality refers to
feature(s) that are a mandatory part of each product. FM
offers three types of feature groups: XOR-Group (alterna-
tive), OR-Group and AND-Group (see Figure 1). Also, we
consider all optional features fallen down from FM root as a
single feature group called OP-Group. Each feature group
represent a VP at the feature level. Such a VP is reflected
in SPLA as a VP of components. An example to clarify the
concept of VP in both SPLA and FM is shown in Figure 2.
This figure shows all available alternatives for a customer to
choose a phone that only supports color, high resolution or
basic screen. It shows that each screen option is realized by
a combination of two components and selection the appro-
priate combination is based on customer choose. Therefore,
an explicit link between features and components is needed
to bind variability in SPLA (VPs) according to customers’
needs.

Figure 1: FM of MobilePhone-SPL [6].

Figure 2: An Example of a Variation Point at Feature and
Architecture Levels.

In our previous work [5], we proposed ROMANTIC ap-
proach to automatically recover a component-based archi-
tecture from the source code of a single existing object-
oriented software. Component is a cluster of classes col-
laborating to provide a function of a software system. In
this paper, we reuse this approach to extract components
from the implementation of each feature group (VP) and
common features.

3 The Proposed Approach

As SPLA encompasses commonality and variability of
customers’ requirements/features, we should first identify
mandatory features (commonality) and VPs of features
(variability) across product variants. Then, we need to ex-
ploit this commonality and variability in SPLA as manda-
tory components and VPs of components respectively. In
our approach, components are extracted from the imple-
mentation of each group of features (i.e., mandatory fea-
tures group and VPs).

Our proposed approach is organized into two phases. In
the first phase, we identify mandatory features and VPs of
features. This phase takes as input product configurations
and feature descriptions. In the second phase, we iden-
tify mandatory components and VPs of components. This
phase takes as input mandatory features, VPs of features
and all feature implementations (as source code classes).
This phase starts by extracting components from classes of
each VP of features and from mandatory features group.
Next, each feature is linked to its corresponding compo-
nent(s) for binding commonality and variability at the ar-
chitectural level in order to identify mandatory components
and VP of components.

3.1 Identifying Mandatory Features and Varia-
tion Points of Features

We analyze the behavior of members of each VP across
product configurations of a given collection of product vari-
ants. A product configuration is a combination of features
supported by a product. This behavior represents a pattern
of VPs. We propose algorithms to detect VP pattern by con-
sidering the definition of each type of VPs.

3.1.1 Basic Definitions

To explain our proposed algorithms, we use a FM inspired
from the mobile phone industry (see Figure 1) to generate
valid configurations [6]. We treat the generated configu-
rations as product variants configurations. Table 1 shows
all possible valid configurations that can be generated from
FM in Figure 1. The check symbol (3) refers to the features

provided by each configuration. Before presenting our al-
gorithms, we start by defining the key concepts which are
shared among the proposed algorithms.

Definition 1 (Feature List). Feature list (FL) is a list of all
unique features in all product configurations. All features
provided by FM shown in Figure 1 represent an example of
FL.

Definition 2 (Feature Set). Feature set is a tuple FS =
[sef, sef] where sef and sef are respectively the set of se-
lected and not-selected features of a product [7]. Thus sef
∩ sef = Φ and sef ∪ sef = FL. The P.sef and P.sef
respectively refer to the set of selected and not-selected fea-
tures of a product P.

An example of a FS is product P18 = [{Call,
SendPhoto, ReceivePhoto, PhotoExplorer, HighResolution,
GPS}, {Basic, Color, Camera, MP3}] in Table 1.

Definition 3 (Feature Set Table). Feature set table (FST) is
a collection of FSs. Each row in this table represents a
product so that for every product Pi we have Pi.sef ∪ Pi.
sef = FL. Table 1 is an example of FST.

3.1.2 Identifying Mandatory Features

Mandatory features can be identified simply by comparing
feature names of given product configurations (FST) to find
features that are part of each configurations. Then, we prune
FST and FL by excluding mandatory features from their
contents.

3.1.3 Identifying AND Variation Points of Features

The behavior of an AND-Group of features across product
variants seems like an atomic set that its members always
appear or disappear together.

Based on this regular behavior, we start by intersect-
ing pair-wisely all selected feature sides (Pi.sef) for all
products in FST. This intersection aims at finding candidate
sets that their members (features) may appear together. Of
course, not each set represents AND-Group. Therefore, we
pair-wisely check the members of each set against the se-
mantic of the AND-Group. Any pair that does not respect
this semantic is rejected. Consequently, each resulted set is
either an AND-Group only consisting of two members or
a pair of features that comply to a require constraint like
HighResolution and Camera features in Figure 1. There-
fore, we use feature descriptions to filter out pairs that com-
ply to a require constraint by conducting textual matching
between terms of feature descriptions. The idea behind us-
ing feature descriptions is that features that belong to the

Table 1: Product Configurations of Mobile
Phone SPL

Product Ca S R P B H Co Cam M G

P1 3 3

P2 3 3

P3 3 3

P4 3 3 3

P5 3 3 3

P6 3 3 3

P7 3 3 3

P8 3 3 3

P9 3 3 3

P10 3 3 3 3

P11 3 3 3 3

P12 3 3 3 3

P13 3 3 3 3

P14 3 3 3 3 3

P15 3 3 3 3 3

P16 3 3 3 3 3

P17 3 3 3 3 3

P18 3 3 3 3 3 3

P19 3 3 3 3 3 3

P20 3 3 3 3 3 3

P21 3 3 3 3 3 3

P22 3 3 3 3 3 3

P23 3 3 3 3 3 3

P24 3 3 3 3 3 3 3

P25 3 3 3 3 3 3 3

P26 3 3 3 3 3 3 3

P27 3 3 3 3 3 3 3

P28 3 3 3 3 3 3 3 3

Note: we use as column labels the shortest distinguishable prefix of the feature names (e.g. Co
for Color feature shown in Figure 1)

same group should have common terms in their descrip-
tions. As a result, the remaining pairs represent only AND-
Group consisting of two features. Then, we merge together
pairs that have transitive relations to form AND-Groups of
three or more members. Finally, we prune FST and FL by
excluding AND-Groups members.

3.1.4 Identifying XOR Variation Points of Features

The behavior a XOR-Group members across product con-
figurations imposes that the existence only one member in
Pi.sef while the remaining members in Pi.sef . Based on
this behavior, we propose Algorithm 1 to identify XOR-
Groups of features. The main data structures are used
through the algorithm are Multiset and HashMap (line 1). In
lines (2-6), we assume that each feature (F) in FL is a mem-
ber of a XOR-Group. Therefore, if F is provided by many
products in FST, we obtain many sets corresponding to F.
Of course, not all elements of these sets have exclusive re-
lations with F. Therefore, we intersect all these sets to filter
out irrelevant elements (features) as much as possible. After
the intersection, F corresponds to a unique set. Then, F and
its corresponding set is kept as an entry in a HashMap called
ExRe. Each entry represents excluded-relation that takes
the following formate [F ⇔ set of features]. F represents
the left-hand side (LHS) while its corresponding set repre-
sents the right-hand side (RHS). Figure 3 shows excluded-
relations obtained from our illustrative example.

The elements of RHS of an entry in ExRe are a combina-
tion of features so that this combination may only consist of
members of the same XOR-Group’s or it may include mem-
bers of other XOR-Groups. Therefore, lines (7-14) check

Algorithm 1: Identifying XOR-Group Variation Points
Input: FST, FL, Feature Descriptions
Output: XGF (XOR-Groups of Fetures)

1 XGF← φ, //multiset ExRe← φ //HashMap
2 foreach F ∈ FL do
3 foreach i from 1 to |FST | do
4 if F ∈ Pi.sef then
5 intersect← intersect ∩ Pi.sef

6 ExRe.put(F, intersect) //ExRe.put(key, value)

7 foreach entry En ∈ ExRe do
8 Set RHS← En.getValue(), count← 0
9 Set CurExRe← RHS, add(CurExRe, En.getKey())

10 if !(CurExRe ∈ XGF) then
11 foreach feature f ∈ RHS do
12 Set temp1← CurExRe, remove (temp1, f)
13 if temp1 ⊆ ExRe.getValue(f) then
14 count++

15 if count = |RHS| then
16 add(XGF, CurExRe)

17 XGF← ApplyFeaDes(XGF)
18 Purne(FST, FL, XGF)
19 return XGF

each entry in ExRe against the definition of XOR-Group.
Considering that an entry (En) in ExRe is a XOR-Group,
this means that each feature (f) in the RHS of En must ap-
pear as a LHS of another excluded-relation (Ex1) and RHS
of Ex1 must contain all En’s features except f. By apply-
ing these lines, entries 2, 3 and 4 in Figure 3 are identified
as candidate XOR-Groups and put in XGF while others are
rejected (lines 15-16). XGF may contain groups only con-
sist of two members (e.g., entry 3 in Figure 3). Such groups
are not necessary to represent XOR-Groups. They may be
pairs of features that comply to an exclude-constraint such
as GPS and Basic features in Figure 1. Therefore in line
17, we use feature descriptions (ApplyFeaDes()) to identify
and then remove such groups from XGF. Additionally, XGF
may contain groups have the semantic of a XOR-Group but
in fact their members can not be aggregated as a group.
Such a situation occurs due to cross tree constraints (i.e.,
require and exclude constraints). For example, entry 2 in
Figure 3 is identified as XOR-Group in spite of Camera fea-
ture in this entry belongs to OR-Group. This happened due
to the cross tree constraint between Camera and HighReso-
lution, which create an alternative relation between Camera
and both Basic and Color (see Figure 1). In this situation,
we use also feature descriptions to identify such groups. In
line 18, we prune FST and FL by excluding members of
XOR-Groups.

Figure 3: All Excluded-Relations of FM in Figure 1.

3.1.5 Identifying OR and OP Variation Points of Fea-
tures

Although the remaining features in FST are only OR-
Groups and OP-Groups, the identification of their members
is a challenge because the behavior of members of these
groups is arbitrarily. For the identification of OP-Groups,
we completely rely on feature descriptions. We consider
features that have common keywords in their descriptions
belong to the same OR-Group. In this way, we can identify
OR-Groups. After identifying OR-Groups, the remaining
features represent the members of a single OP-Group.

3.2 Identifying Mandatory Components and
Variation Points of Components

3.2.1 Component Extraction

In our approach, a component is extracted based on RO-
MANTIC approach as a cluster of classes. ROMANTIC
is applied to source code classes implementing mandatory
features, AND-Group, XOR-Group, OR-Group and OP-
Group. Such an application respects the components orga-
nization in SPLA (i.e., mandatory components and VPs of
components). Components that are extracted from the im-
plementation of mandatory features constitute the manda-
tory components while components extracted from each
feature group constitute members of a VP in SPLA.

The implementations of feature group may have shared
source code classes. Such classes are not specific to a cer-
tain feature group and they implement features having cross
cutting behavior across all other features. Therefore, we
determine such classes and then we apply ROMANTIC to
these classes as a group. The extracted components rep-
resent a group of component called Shared-Com. They are
not specific for a certain VP in SPLA. The selection of these
components for products development depends on the se-
lection of their associated features.

3.2.2 Recovering Feature-to-Component Traceability
Links

From the previous step, we notice that components of a VP
are not necessary having the semantic of that VP. For exam-
ple, consider that F1 and F2 are two features which belong

to XOR-Group, and components extracted from the source
code implementing this group are [com1, com2, com3 and
com4]. Also, assume that the first three components im-
plement F1 while com4 implements F2. In this case the
relation among the first three components is not exclu-
sive although they belong to exclusive VP. This is because
the mapping between components and features is many-to-
many [3]. This means that a feature’s implementation may
be scattered over more than one component inside a VP
and also a component may implement more than one fea-
ture. This mapping should be considered during the creation
of VPs through establishing explicit links between features
and their corresponding components in SPLA. These links
are useful for binding variability in SPLA. Such links deter-
mine a combination of components inside each VP so that
each combination represents a variant of that VP. Determin-
ing variants of each VP in SPLA is important to specify the
constraints among components.

Such traceability links between features and compo-
nents can be established by exploiting the transitive rela-
tion between features and components through source code
classes. A feature is implemented by classes and a com-
ponent is composed of classes. Therefore, classes are a
shared element between features and components, which al-
low linking them together. After such linking, it is normal
to have shared components between all features belonging
to the same VP due to the many-to-many mapping between
features and components. Therefore, these components are
not specific to a certain feature but they are related to the
parent of those features and form a parent of VP of compo-
nents in SPLA.

4 Experimental Results and Evaluation

We organize our evaluation into two parts. In the first
part, we evaluate the algorithms used to identify mandatory
features and VPs of features. In the second part, we evalu-
ate the identification of mandatory components and VPs of
components.

4.1 Case Studies

To evaluate our approach, we apply it to two case stud-
ies: ArgoUML-SPL and MobileMedia. ArgoUML-SPL is
the SPL for the UML modeling tool ArgoUML. It is open
source JAVA application and provides nine features. These
features are organized as a mandatory feature, an OR-Group
and an OP-Group. It supports two features (Cognitive Sup-
port and Logging) that have crosscutting behavior through
all other features [8]. We obtain the description of each
feature of ArgoUML-SPL through its official website and
manual instructions1. Due to space limitation we can not

1http://argouml-spl.stage.tigris.org/

be able to present ArgoUML-SPL’s FM. MobileMedia is a
JAVA open source which manipulates multimedia on mo-
bile devices. It was implemented in 8 subsequent releases.
Each release represents a variant corresponds to an evolu-
tionary step of the system development. We only consider
releases (1-3 and 5-6) due to the nature of the evolution, as
features in excluded releases do not have the same imple-
mentation in these releases. The description of MobileMe-
dia’s features are obtained by official website of MobileMe-
dia2, descriptions of its use cases and analyzing source code
comments.

4.2 Validating the Identification of Mandatory
Features and VPs of Features

As a base for evaluation, we match each VP identified by
our approach with its corresponding VP in the focused FM.
This matching is measured by using two metrics inspired
from information retrieval field, namely Precision and Re-
call. Precision measures the accuracy of identifying mem-
bers of a VP according to the relevant members of that VP.
Recall measures to what degree the members of identified
VP covers the relevant members of that VP. The relevant
members of each VP are determined from the FM. All mea-
sures have values within [0,1]. Our proposed algorithms
aims to achieve high precision and recall. We propose the
equations 1 and 2 to adapt Precision and Recall in our con-
text. IM VP and RM VP in these equations represent re-
spectively Identified and Actual members of V Pi.

We randomly generate two sets from ArgoUML-SPL’s
FM and three sets from MobileMedia using FeatureIDE
tool. Each generated set has different size and it also cov-
ers all features shown in its corresponding FM. The set1 in
all case studies represents all possible configurations can be
generated from its corresponding FM.

Precision(V Pi) =
|IM V Pi

⋂
RM V Pi|

|IM V Pi|
× 100% (1)

Recall(V Pi) =
|IM V Pi

⋂
RM V Pi|

|RM V Pi|
× 100% (2)

Table 2 shows obtained results by applying our algo-
rithms to product configurations generated from FMs of
case studies considered. In this table, we present Precision
and Recall for each identified VP and average Precision and
Recall for all identified VPs corresponding in each set of
configurations. Highlighted rows refer to VPs that identi-
fied by our algorithms but they actually are not present in
FMs of cases studies considered (false-positive VPs).

In MobileMedia case study, the proposed algorithms
give 100% Precision and 100% Recall for each VP in both

2http://www.ic.unicamp.br/ tizzei/mobilemedia/

Table 2: Precision and Recall of Identified VPs of Features
for Both ArgoUML-SPL and MobileMedia.

ArgoUML-SPL

Set1: No. Configurations = 256 (All possible configurations)
Precision Recall Average Precision Average Recall

Mandatory 100% 100%

58% 67%OR-Group VP1 67% 100%
OP-Group VP1 0.0% 0.0%

Set2: No. Configurations = 7
Mandatory 100% 100%

58% 67%OR-Group VP1 67% 100%
OP-Group VP1 0.0% 0.0%

MobileMedia

Set1: No. Configurations = 16 (All possible configurations)
Mandatory 100% 100%

100% 100%OR-Group VP1 100% 100%
OP-Group VP1 100% 100%

Set2: No. Configurations = 8
Mandatory 100% 100%

25% 25%OR-Group VP1 0.0% 0.0%
OP-Group VP1 0.0% 0.0%

XOR-Group VP1 0.0% 0.0%
XOR-Group VP2 0.0% 0.0%

Set3: No. Configurations = 5
Mandatory 100% 100%

100% 100%OR-Group VP1 100% 100%
OP-Group VP1 100% 100%

set1 (containing all possible configurations) and set3 (con-
taining only 5 configurations). This is because these con-
figurations have a high diversity of feature combinations to
detect the behavior of members of each VP. In set 2, al-
though the number of configurations is half of all possible
configurations, the proposed algorithms fails to identify two
VPs (OR-Group VP1, OP-Group VP1) and return two false
positive VPs (XOR-Group VP1, XOR-Group VP2).

In ArgoUML-SPL, the identified VPs from set1 and set2
have the same Precision and Recall values in spite of set1
represents all possible configurations while set2 represents
very small number of configurations. This is due to the fact
that the FM of ArgoUML-SPL just offers two types of VPs
(OR-Group VP1, OP-Group VP1) which this means that
we only rely on feature descriptions to identify these VPs
and do not pay attention to the number of available config-
urations. We also notice that the algorithms failed to iden-
tify CognitiveSupport and Logging (their label is OP-Group
VP1) as VP of type OP-Group but they are identified as OR-
Group. This is because these features share keywords with
all other features as they have a crosscutting behavior in all
ArgoUML-SPL features. Therefore, (CognitiveSupport and
Logging) are identified as members of OR-Group VP1. This
leads to degrade Precision and Recall values of OP-Group
VP1 and OR-Group VP1 as shown in Table 2.

4.3 Validating the Identification of VPs of Com-
ponents

For space limitation, we present only the result of apply-
ing our approach to ArgoUML-SPL case study. We gener-
ate 7 products corresponding to the second set of configura-
tions in ArgoUMl-SPL (see Table 2).

Table 3: Common Components and Variation Points at Ar-
chitectural Level for ArgoUML-SPL.

At Architecture Level: OR-VP1

At Feature Level: OR-Group VP1 (State, Activity, UseCase, Collaboration, Deployment, Sequence)
Parent Components Member Components
Fig Prop Diagram Action Mode List State Action Fig Button New Prop State Selection
Fig Diagram State Sequence Model Activity Renderer UML Model List Fig Prop Case Use
UML Fig Diagram Init Model Action List Action Fig Mode Iterator Message State Attributes
Go Fig To State Diagram Collaboration Machine

At Architecture Level: OP-VP1

At Feature Level: OP-Group VP1 (CognitiveSupport, Logging)
Parent Components Member Components

No Parent Components

Cr Wiz Child Many Conflict No Gen
Cr To Name Do By Missing Class
To Go Cr Init Wiz
Cr Resolved Abstract Transitions Name
Wiz Default Step To Renderer Tree Prop
Cr Goals Dialog Add Param Type To
Node Decision Knowledge Goal Priority Type
Cr Go Wiz No Name Operation Invalid
List Action To Object Tab Do
Table Cr Checklist To Abstract UML Model

At Architecture Level: Mandatory Components

At Feature level: Mandatory Features: Class
Parent Components Member Components

No Parent Components

Fig Style List Panel Class diagram Model
Package Character Port Rect Fig
Action Show Hide Visibility Stereotype
Classdiagram Fig Subsystem Association Edge
Classdiagram Fig Event Edge Object
Selection Fig Class Node List Stereotype

At Architecture Level: Shared-Com

Cr Without Instance Classifier
Cr Without Class Component
Cr Without Instance Node Comp
Cr Without Instance Classifier Node Collection Iterator
Cr Without Node Component
Cr Without Instance Classifier Component
Cr Interface Without Component

Table 3 shows the identified mandatory components and
VPs of components by applying our approach to the 7 prod-
ucts of ArgoUML-SPL code base. Parent Components col-
umn presents components that form the parent of a VP
while Member Components column presents components
that form members of that VP. In this table, we show for
each VP at the architecture level its corresponding VP at
the feature level. The name of the identified VPs of com-
ponents in this table as a follows: OR-VP1 and OP-VP1.
For components of OR-VP1, we notice that all names of
parent components share the term “Diagram”. This means
that they are not specific to certain feature (UML Diagram)
but they may support all UML diagrams. By referring to
ArgoUML-SPL’s FM, we can find out that the group of fea-
tures corresponding to OR-VP1 is under title “Diagrams”.
Consequently, our approach can distinguish between par-
ent components and member components. For components
of OP-VP1 which is corresponded to CognitiveSupport and
Logging features, our approach identifies no parent compo-
nents for this VP. This is because its components are only
extracted from the implementation of (CognitiveSupport)
while the Logging feature is implemented by external li-
brary (Log4J) [8]. From the names of these components,
we can notice that they specific to CognitiveSupport be-
cause their names contain “Cr” term which refers to Crit-
ics supported by CognitiveSupport feature. For mandatory

components which are extracted from the implementation
of mandatory feature (Class diagram), the names of these
components show that these components implement this
feature as their names contain the term “Classdiagram”. Of
course, there is no parent components for mandatory com-
ponents because there is only one feature. For components
of Shared-Com, all components of this group related to only
CognitiveSupport as their names include “Cr” term. This
is expected because this feature has across cutting behav-
ior through all other features. This means the implementa-
tion of this feature is shared among the implementation of
other feature groups, which that represents the semantic of
Shared-Com group. Consequently, our approach can extract
and determine components that are shared between VPs of
components (Shared-Com).

5 Related Work

The existing works support only forward engineering
way for building SPLA. In [9], Sochos et al. propose to cre-
ate SPLA based on FM. A strong mapping between features
and components are established based on four transforma-
tions on the initial FM leading to SPLA. According to their
approach components are developed from scratch to imple-
ment the transformed features. In [10], Trinidad et al. pro-
pose to automatically build a component model from a FM
for developing dynamic SPL. They create for each feature a
component and relations among features become relations
among components. In [11], Zhang et al. propose to map
feature to architectural components for building SPLA. In
their approach, features are classified according to the vari-
ability type into mandatory and optional. In their approach,
a component is created for each feature. The components
of crosscutting features are implemented by object-oriented
techniques while the components of non-crosscutting fea-
tures are implemented by aspect-oriented techniques.

6 Conclusions

In this paper, we have proposed an approach for recov-
ering SPLA from software product variants. Our approach
focused on identifying mandatory components and varia-
tion points of components as an important step toward re-
covering SPLA. We analyzed commonality and variability
across product variants in terms of features, as they rep-
resent the main source of commonality and variability in
SPLA. In our experimental evaluation using two case stud-
ies, we showed that if we have small number of configu-
rations with high diversity and precise feature descriptions,
our approach achieves high precision and recall of identified
variation points of features, and hence this leads to identify
relevant variation point of components.

References

[1] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak,
and A. S. Peterson, “Feature-oriented domain analysis
(foda) feasibility study,” November 1990.

[2] F. J. v. d. Linden, K. Schmid, and E. Rommes, Soft-
ware Product Lines in Action: The Best Industrial
Practice in Product Line Engineering. Secaucus, NJ,
USA: Springer-Verlag New York, Inc., 2007.

[3] K. Pohl, G. Bckle, and F. J. van der Linden, “Software
product line engineering: Foundations, principles and
techniques.” Springer Publishing Company, Incorpo-
rated, 2010.

[4] L. de Silva and D. Balasubramaniam, “Controlling
software architecture erosion: A survey,” J. Syst.
Softw., vol. 85, no. 1, pp. 132–151, Jan. 2012.

[5] S. Chardigny, A. Seriai, M. Oussalah, and D. Tamza-
lit, “Extraction of component-based architecture from
object-oriented systems,” in WICSA, 2008, pp. 285–
288.

[6] D. Benavides, S. Segura, and A. Ruiz-Cortés, “Auto-
mated analysis of feature models 20 years later: A lit-
erature review,” Inf. Syst., vol. 35, no. 6, pp. 615–636,
Sep. 2010.

[7] E. N. Haslinger, R. E. Lopez-Herrejon, and A. Egyed,
“Reverse engineering feature models from programs’
feature sets,” ser. WCRE ’11. Washington, DC, USA:
IEEE Computer Society, 2011, pp. 308–312.

[8] M. V. Couto, M. T. Valente, and E. Figueiredo, “Ex-
tracting software product lines: A case study using
conditional compilation,” ser. CSMR ’11. Wash-
ington, DC, USA: IEEE Computer Society, 2011, pp.
191–200.

[9] P. Sochos, M. Riebisch, and I. Philippow, “The
feature-architecture mapping (FArM) method for
feature-oriented development of software product
lines,” ser. ECBS ’06. Washington, DC, USA: IEEE
Computer Society, 2006, pp. 308–318.

[10] P. Trinidad, A. R. Corts, J. Pena, and D. Benavides,
“Mapping feature models onto component models to
build dynamic software product lines.” in SPLC (2).
Kindai Kagaku Sha Co. Ltd., Tokyo, Japan, 2007, pp.
51–56.

[11] J. Zhang, X. Cai, and G. Liu, “Mapping features to
architectural components in aspect-oriented software
product lines,” ser. CSSE ’08. Washington, DC,
USA: IEEE Computer Society, 2008, pp. 94–97.

	Introduction
	Variation Points in Feature Model and Software Product Line Architecture
	The Proposed Approach
	Identifying Mandatory Features and Variation Points of Features
	Basic Definitions
	Identifying Mandatory Features
	Identifying AND Variation Points of Features
	Identifying XOR Variation Points of Features
	Identifying OR and OP Variation Points of Features

	Identifying Mandatory Components and Variation Points of Components
	Component Extraction
	Recovering Feature-to-Component Traceability Links

	Experimental Results and Evaluation
	Case Studies
	Validating the Identification of Mandatory Features and VPs of Features
	Validating the Identification of VPs of Components

	Related Work
	Conclusions

