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Abstract. Considering Model-Based Systems Engineering (MBSE) principles and needs, this article 

focuses on the design of Domain Specific Modeling Languages (DSMLs) aiming to link modeling, 

verification and validation (V&V) activities. The goal is to ease the work and increase the freedom 

and autonomy of experts from various domains in the process of creating and managing system 

models then to supply experts involved in analyses and decision making processes with models 

characterized by highest level of confidence. This paper introduces and illustrates a tool-equipped 

approach, named “xviCore”, that provides MBSE experts with natively verifiable, executable and 

interoperable DSML named “xviDSML”, i.e., DSML that can be formally and directly checked and 

simulated requesting no huge efforts or skills. 

Introduction 

Model-Based Systems Engineering (MBSE) is the collection of related processes, methods and tools 

used to support the discipline of Systems Engineering in a “model-based” or “model-driven” context 

(ISO/IEC, 2008) (Estefan, 2008). MBSE is based then on the creation and the management of various 

models of a System of Interest (SoI). These models are designed to reach experts’ objectives, e.g., 

understanding, performance analyzes and expected behaviors or ‘–ilities’ (de Weck et al., 2012). 

Each model focuses on a given aspect of a SoI (functional, logical, physical or behavioral) or a given 

point of view (user, designer, manager…). Finally, it is used as a base for decision making. It is 

therefore imperative, prior to any decision (e.g., architectural choice), to proceed model verification 

and validation (V&V) activities. In MBSE context, verification activities aim to demonstrate the 

consistency, correctness and conformity of the model to its modeling language, modeling rules and 

modeling patterns, i.e., to demonstrate that a model is correctly built. In the same way, validation 

activities aim to demonstrate, as much as possible, the relevance and fidelity of a previously verified 

model, to represent the SoI as expected thanks to stakeholders’ requirements, i.e., to demonstrate with 

a sufficient level of confidence that a model is ‘good’ for designers’ purposes. V&V activities must 

consider each of the SoI models, taken them first separately, then pieced together with the other 

models of the same SoI, providing a more complete and suitable representation of it. The goal is then 

to demonstrate the mutual coherence of SoI models, as well as their adequacy and global fidelity to 

the SoI to support the designers’ objectives with an assured level of confidence and excellence. All 

these activities request then to define and use Domain Specific Modeling Languages (DSML) that 

support and facilitate designers when performing V&V activities. This paper presents a tool-equipped 

approach that aims to reach expected level of confidence in the MBSE context, all along design 

processes during which various and heterogeneous DSMLs have to be used, from requirements to 



architectural engineering. This method, named “xviCore”, provides MBSE experts involved in these 

processes with natively verifiable and an executable DSML, i.e., a DSML that can be formally 

checked and simulated with no huge efforts from these experts.  

This paper is structured as follows. Section 2 explains the motivation of the paper, identifying current 

issues. Section 3 presents related works on specifying behavior and formal properties in the realm of 

DSML. Section 4 describes our tool-equipped approach xviCore. A short case study example 

demonstrates the approach’s applicability on well-known MBSE languages in Section 5 before 

concluding. 

Motivation 

The basic principles on which a DSML is based are its syntax and its semantics (Kleppe, 2007). A 

DSML composed solely of its syntaxes (an abstract and a concrete syntax) is operational for the 

creation of models proposing various modeling concepts, relations and attributes that are requested to 

represent the SoI considering aspect and/or designer’s point of view. However, achieving V&V 

requests to reach two goals discussed hereafter.  

First, DSMLs generally lack semantics specification (Harel and Rumpe, 2004). The taxonomy of 

semantics proposed in (Combemale et al., 2009) highlights two different kinds of semantics. One, 

named static semantics, describes DSML’s concepts meaning (abstract and concrete syntaxes), and 

behavior independent structural constraints (pre and post conditions, invariants, etc.). The other, 

named dynamic semantics specifies DSML behavior as a set of rules for each concept and / or each 

relation composing the DSML. The behavior of a modeled SoI is then represented thanks to these 

DSML’s elements behaviors. For instance, the eFFBD core element Function has a behavior 

describing an input/output transformation of Items flows under the control of triggers flows. A 

function F can perform the expected transformation when trigger flows (if they exist) are present, 

input Items are available and previous function (if they exist) put in sequence are ended. Then, 

available resources are reserved and the transformation of energy, material and / or data can begin, 

providing continuously or after a given duration, output items, unlocking finally reserved resources. 

Last, any function being decomposable into sub-functions, the behavior of a decomposed function F 

can be then described at two levels of detail: the transformation provided by F without any details of 

transformation provided by its sub-functions or the global and more detailed behavior putting in light 

the role of each of its sub-functions that interact. Such behavior allows logically model simulation, 

i.e., to execute any eFFBD model in our case. The first goal is then to make a DSML executable.

Second, a DSML as well as models created in conformity with this DSML should respect a set of 

properties concerning either its structure (syntax) or behavior (dynamic semantics). Hereafter, a 

property is a provable or evaluable (i.e. quantifiable or qualifiable) characteristic of an artefact (i.e., 

a model M of S built for achieving a design objective) that translates all or part of stakeholder 

expectations to be satisfied by this artefact (Chapurlat, 2014). We promote the use of a formal 

property modeling language to deploy a formal V&V strategy based on formal property proof, as it is 

today used successfully in other domains (Mahfouz, 2013). So, the second goal is to make a DSML or 

any model created by this DSML, “directly provable”. Properties can be checked based on the 

structure and the behavior of the DSML without any model transformation mechanism as used 

classically (Bérard et al., 2013).  

This work aims then to define and develop a tool-equipped method that support simultaneously 

DSML designers’ and model designers’ V&V activities including specification and checking of the 

syntaxes, of behaviors and properties that remains currently lacking.  



State of the art 

Specifying behavior (i.e. dynamic semantics) and formal properties have been a topic of research for 

quite some time now, resulting with a wide diversity of approaches. In the following we give a brief 

overview. 

Translational semantics are specified through exogenous transformations (i.e. transformations 

between models expressed using different languages (Mens and Van Gorp, 2006)). The target 

language should be formally well defined (i.e. it should contain dynamic semantics). Elements from 

the source domain are translated to elements of the target domain. For instance, the semantics of some 

UML diagrams are formalized by using translational semantics as proposed in (Clark et al., 2001). 

The notion of Semantic Anchoring proposed in (Chen et al., 2005), is transformational specification 

of semantics (i.e. kind of translational semantics), between concepts of DSMLs and selected semantic 

units (models of computations with associated operational semantics, specified by using Abstract 

State Machine – ASM). The ASM formal method can be used as an action language to operationally 

define dynamic semantics as proposed in (Gargantini et al., 2009). 

Operational semantics are defined either by action languages or formal behavioral languages.  

Action languages define operational semantics in ad-hoc manner, as a set of operations associated to 

each concept of a DSML. This is done by using Object-Oriented languages (e.g. Java), 

Aspect-Oriented languages (e.g. Kermeta (Muller et al., 2005)), executable constraint languages (e.g. 

xOCL (Clark et al., 2008)) or other approaches like the MOF action language (Paige et al. 2006). The 

EPROVIDE framework (Sadilek & Wachsmuth 2008, 2009) allows the specification of operational 

semantics for a DSML in ad-hoc manner. It is not related to a single technology allowing language 

designer the possibility to choose between Java, Prolog, ASM or QVT. Xcore (Clark et al., 2004), an 

extension of EMOF/Ecore, introduces an action language for specifying operational semantics. 

Similarly, in (Muller et al., 2005) an extension of EMOF by the aspect-oriented language Kermeta is 

proposed. The process of specifying the operational semantics for a DSML consists in weaving the 

operational semantics as a set of operations directly into the abstract syntax. Formal behavioral 

languages such as Statecharts, Petri Nett, or Finite Automata, can also be used for the specification of 

operational semantics. Instead of operations, in this case the behavior is expressed through behavior 

models (created by using one of the formal behavioral languages) and associated to the DSML’s 

concepts. Real-Time UML (Douglass, 2003) specify dynamic semantics as behavioral models, 

where: concepts and relationships are given via the class diagram, behavior for each concept is 

individually defined via the Statechart diagram and the synchronization and event/data exchange is 

given via the collaboration sequence diagram. Another example is given in (Scheidgen and Fischer, 

2007) proposing UML activities and OCL as a formal behavioral language. In contrary to Real-Time 

UML, this approach associate behavioral models directly to classes’ operations. Similarly, in 

(Mayerhofer et al., 2013) an extension of MOF, named xMOF is proposed. The behavioral is modeled 

using the fUML’s activity diagrams and associated to the classes’ operations.  

Comparison. Besides the advantage of the facilities and tools available in the target technical space 

for simulation, formal verification, animation etc., translational semantics have several drawbacks. 

Models transformation techniques require first expertise and knowledge in the target semantic 

domain, in transformation languages and tools e.g. ATL (Atlas Transformation Language). Second, 

demonstrating the “equivalence” between the original, to be checked, model and the transformed 

model remain limited, often impossible. Finally, results obtained in the target space should be 

interpreted back according to the concepts of the source space. In contrast, operational semantics has 

several advantages. Since the domain space is well-known to designers, the behavior is directly 

defined on concepts. This allows simulating (to analyze an evolution) and animating (to visualize the 

evolution during simulation) models, as early as possible with minimum effort improving system 

quality and reducing time-to-market. Using this kind of semantics is preferable for prototyping in 

particular for simple behaviors that are expressed through discrete states. However specifying 



operational semantics with action languages seems related to programming languages. Indeed, it is 

preferable to model and to formalize dynamic semantics using formal behavioral languages, but there 

is still a gap between the technical spaces of behavioral languages and the MBSE (Nastov, 2014). 

Several solutions for bridging this gap are based on model transformation having the previously 

stated limitations of translational semantics. Alternative approaches overcome such limitations, 

integrating directly a behavioral language into an already existing metamodeling language (e.g. 

Run-Time UML (Douglass, 2003), XMOF (Mayerhofer et al., 2013) or the approach proposed in 

(Scheidgen and Fischer, 2007)). These approaches allows to execute (even partial) UML models, to 

test them for correctness as early as possible with very little effort, eliminating the need to manually 

write source code for the model means, removing consequently developer coding defects and thereby 

improving system quality and reducing time-to-market. However, integrating a behavioral language 

with a metamodeling language requires additional efforts and work on challenges that are still an 

open issue. First, the integration process is a complex task and using a design pattern for the best 

software engineering practices is highly recommended (Buschman et al., 1996). Second, the formal 

behavioral language has to be carefully chosen for the purpose of verification. Third, behavioral 

languages should be able to operate with typed input/output data and complex expressions built using 

typed data. 

Properties modeling languages. Several formal languages for property modeling have been 

proposed in the literature, for instance Temporal Logics (Linear, Constrained…) (Emerson, 1990), 

OCL or Alloy (Jackson 2002). OCL is complementary to UML and is used to express properties that 

cannot be defined using the UML’s graphical notations. For this OCL predicates specification is 

verbose based on object-oriented notation and navigation. Alloy is less expressive due to its simple 

and generic nature and it is designed for simple semantic specification supporting automated 

lightweight analysis. More globally, applicability and relevance of formal approaches is 

demonstrated, for instance, for the control system of the Paris metro line 14. The B language (Abrial 

& Hoare 2005) was used for the automatic generation of 86,000 lines of code that have not 

experienced software failures since 1997. Among these crucial advantage and other ones, formal 

approaches allows exhaustiveness and traceability of proofs. However, first, using such approaches in 

the MBSE context must overcome several obstacles (Chapurlat 2013). Particularly they remain 

difficult to use, are often considered as time consuming and require particular set of skills, tolls and 

proof techniques. Second and unfortunately, DSML generally used in MBSE are not semantically 

well-defined (as previously discussed) because they lack formal specification and created models can 

be hardly used as base for formal property specification and proof. 

Contribution: An approach for designing V&V suitable DSMLs  

Remaining the goals presented before, this approach, illustrated in Figure 1, must guide and assist 

experts (DSML designers as Models designers and Model users) to define DSMLs that can be 

verified for well-constructiveness and be used to create models that can be simulated and formally 

checked. We provide in the next theoretical bases and a tooled approach for designing sufficiently 

“formal” and “precise” DSMLs. This approach is composed 1) of an object oriented metamodeling 

language, here considered EMOF, 2) a formal behavioral modeling language that is in the current 

version of our work an extended version of the Interpreted Sequential machine (Vandermeulen, 1996) 

named eISM, 3) a property modeling language that is CREI (Chapurlat, 2013) and 4) a language for 

concrete syntaxes (out of the scope of this paper). The result is presented as a single and integrated 

meta-language “xviCore” (executable verifiable and interoperable core concepts and mechanisms) 

for creating DSML denoted then “xviDSML”. An xviDSML includes specification of its syntaxes 

(abstract and concrete), its behavior (dynamic semantics) and properties. Note that, the proposed 

framework is not related to here described metalanguages (i.e. EMOF, CREI or eISM). In contrary, 

any metamodeling object-oriented, formal behavioral modeling or property modeling languages can 

be used instead. We discussed and justify however, our choice hereafter. 



Figure 1. xviCore - a framework for designing DSMLs for V&V objectives. 

DSML life cycle and properties modelling 

Hereafter followed DSML life cycle is shown in Figure 2 mixing two main phases. The first phase is 

called “DSML design time” during which the DSML syntaxes and semantics are designed following 

approaches of metamodeling (Pfister et al., 2014) and executable metamodeling (Combemale et al., 

2009). The second phase is called “DSML run time” which is split up into two sub-phases called 

respectively “Model design time” and “Model run time”. Indeed, model designer may design then 

check, simulate and animate or comment then improve if requested one or more models created with 

the DSML issued form DSML design time. For each phase and sub-phase appear various and specific 

constraints, expectations and rules to be considered. These ones are modelled as properties having to 

be checked. We propose structuring properties as synthetized in Figure 2 into modeling properties 

and system properties.  

Figure 2: DSML life cycle vs. properties specification / proof and simulation / animation 

A modelling property might express features or requirements specific to assume 

well-constructiveness and coherence of a model or a DSML (DSML or model verification 

objectives). A system property aims to translate stakeholders’ and systems’ requirements, functional, 

physical of operational aspects aiming to assume model relevance thanks to model designer’s purpose 

(DSML or model validation objectives). Modelling and system properties can focus both on static or 

dynamic (i.e. time dependent) aspects of the DSML or of the pointed out model. 

For DSML Design time, modelling properties are structured into: 

 DSML Structural Properties (SP): these static properties specify the language’s abstract syntax.

Metamodeling languages such as EMF/EMOF provide the means for specifying such properties 
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through a metamodel. For instance eFFBD functional and behavioral modelling language (enhanced 

Functional Flows Block Diagram) (DoD, 2001) can be designed as a set of classes, each one 

representing one of the following core elements: Function, Item, Resource and various Control 

Constructs (e.g. parallel, sequential or iterative execution), a set of typed attributes detailing each of 

these elements (e.g. quality and quantity of a Resource, purpose of a function) and a set of 

relationships between them (e.g. a relationship inputs between Item and Function).  

 DSML Representational Properties (RP): these static properties specify the language

representation, forming the language concrete syntax. It includes information about the graphical or 

textual representation about each of abstract syntax elements. For instance, the graphical 

representation of the concept Function from the eFFBD language can be defined as a blue rectangular 

form. 

 DSML Structural Constraint Properties (SCP): these both static and dynamic properties are

complementary to SP and specify restrictions or supply additional information about the DSML 

structure that cannot be specified using the SP. They are used to check the well-constructiveness of an 

abstract syntax, including structural invariants, value derivations, and concepts attributes initial 

values or types, etc. For instance, the quantity of a provided or a requested resource should always 

belong to Z+ (always be positive or zero). 

 DSML Behavioral Properties (BP): these dynamic properties specify the language behavior,

forming the language’s dynamic semantics. They are gathered into a behavioral specification that can 

be implemented using different techniques (action languages e.g. for defining a method “execute” 

inside Function, behavioral modeling languages as shown in the next, but also transformational 

languages or executable constraint languages).  

 DSML Behavioral Constraint Properties (BCP): these properties complement the BP and

specify restrictions or supply additional information about the language behavior. They are used to 

check the well-constructiveness of a dynamic semantics, including behavioral invariants, pre and 

post-conditions, etc.  

For DSML run time, i.e. Model design time and Model run time, modelling properties are structured 

into: 

 Model Structural Properties (MSP): these static properties specify model’s structure in

conformity with DSML abstract syntax. So they are based upon SP (abstract syntax) and CSP 

(structural constraints). 

 Model Representational Properties (MRP): these static properties specify model’s

representation, forming a graphical or textual image inside an editor so they are constrained by the 

RP. 

Finally, last modelling properties and system properties are structured into: 

 Model Structural Constraint Properties (MSCP): these both static and dynamic properties are

specifically tailored for a given model and do not apply to other models created by using the same 

DSML. Object Structural Constraint Properties (OSCP): similarly to MSCP, these properties are 

specifically tailored for a given concept e.g. a Function F1, and do not apply to other instances of the 

same concept inside a model.  

For instance, the property “a function generally consume more resources than producing in a given 

time” can be considered to be satisfied in all eFFBD models as an invariant property (MSCP) but can 

also be occasionally considered as not satisfied in a particular case in which a function F consume a 

resource but restore it before releasing (OSCP). 



In parallel, models are simulated and animated taking into consideration previously specified 

properties concerning language’s semantics (BP and BCP) but also properties concerning model’s 

semantics (MBCP and OBCP). Model simulation is based on a gradual computation of behavioral 

rules specified by DSML’s dynamic semantics, while model animation is a visual interpretation of a 

simulation result, according to DSML concrete syntax, i.e., a result to the systematic visualization of 

changes driven by the computation of the interpretation rules from DSML’s dynamic semantics. If 

errors are detected, the model has to be revised consequently updating and improving it (i.e. model 

versioning). 

Unified Properties Specification Language (UPSL) is proposed to formalize properties. This generic 

property modelling language has been applied in various fields and particularly in Systems 

Engineering named “UPSL-SE” (Chapurlat, 2013) specifically designed to complement the 

methodological and technical toolbox for V&V. The goal of this framework is to encourage and ease 

the work of engineers that are not familiar with formal property modeling languages. USPL-SE is 

based on the CREI (Cause Relation Effect and Indicators) property model.  Briefly, a property is a 

compound entity, composed of causes (C) linked to a group of effects (E) via a parameterized, 

temporized and constrained relation (R) between C and E. The relationship formally describes how 

the set of causes C, when verified, induces a modification on the whole set of effects E and can be 

eventually evaluated by considering indicators (I). CREI language is here used to specify structural 

and behavioral (i.e. evolution-dependent) properties, characterizing both model and modeled system. 

For this, USPL-SE takes into consideration the syntaxes and the behavior (dynamic semantics) of a 

DSML. Last, UPSL-SE authorizes the use of several proof tools such as for instance UPPAAL and a 

property modeling and proof framework based on Conceptual Graphs as proposed in (Mallek et al., 

2012). Due to lack of space, for more details concerning the formalization of UPSL-SE and 

illustration cases, readers are encouraged to see (Chapurlat, 2014). 

Formal Behavioral Modeling Language 

The xviCore metalanguage includes a framework for behavioral specification based on the 

blackboard design pattern that is used in the field of Model Driven Engineering (MDE). This pattern 

is a behavioral pattern “affecting when and how processes react and perform”. It establishes 

relationships between independent modules called “autonomous processes” that read and write 

relevant data from/in a “blackboard” considered as a shared and structured memory. They are 

synchronized by a “controller” which monitors the properties on the black board and prioritizes 

autonomous processes (Lalanda, 1997). 

Figure 3. Modeling xviCore following the blackboard design pattern principles. 

This framework, illustrated in Figure 3 is then based on: 

1) Controller (C): modeled by the Controller class, it is used to schedule the execution of all

behavioral models from a DSML according 1) to a logical clock managing multiscale time and

stability hypotheses, and 2) eISM execution algorithm discussed in (Nastov et al., 2014).

2) Black Board (BB): modeled by the BlackBoard class, BB is the common and time dependent base

of information where behavioral models of a DSML write their output data (O) and read their input



data (I), enabling information exchange. It is formally defined as a 5-uplet 𝐵𝐵 ≝ 〈𝐴𝑇, 𝐿𝑇, 𝑉, 𝑆, 𝑅〉 
where: AT is the set of variables specifying the time of adding. LT is the set of “lifetime” variables, 

indicating the remaining time before updating messages from the BT. V is the set of “variables carried 

out by the messages. S is the set of “sender” variables specifying the behavioral model that sent the 

message and 𝑅 = {𝑅1, . . , 𝑅𝑘} is the set of “receivers” variables indicating the behavioral models that

read the message.  

3) Behavioral model: modeled by the class BehavioralModel, it is used to model the behavior of

different DSML concepts that are modeled through classes in the DSML metamodel. It corresponds

to the “autonomous processes” module of the blackboard design pattern. Behavioral models are

designed using a behavioral modeling language that can be based on continuous or discrete events

hypotheses. In this article, for discrete behavioral description, we choose eISM. In comparison to

other discrete events modeling languages, eISM offers several features. First, it operates with typed

input/output data (primitive types, e.g., Boolean, Integer, Real, Character or compound type) and

complex expressions built using internal typed data. Second, it separates the states / transitions

description from the data specification, limiting the combinatorial explosion of the number of states

(i.e., some states can be specified as variables). Finally, models created by using eISM have formal

underlying structure, based on the Linear Temporal Logic (LTL) allowing formal verification without

transforming an eISM model (Larnac et al., 1997). Last, and in contrast, within the field of MDE, the

overall behavior of a DSML is captured through the behaviors of concepts, taken separately, but

interacting also with the behavior of other concepts from the same DSML improving then internal

interoperability as suggested. Therefore, eISM is able to model such interactions between behavioral

models (i.e., behavioral coordination) thanks to the blackboard design pattern, as discussed above.

For more details on eISM, please refer to (Nastov et al., 2016).

Application case 

We examine here and enrich two well-known languages of SE community: xvi-eFFBD and xvi-PBD. 

These languages can be then used to create eFFBD and PBD models, simulated and checked 

following behavioral and properties modelling principles described in previous section. The example 

consists here to define primary functional and physical architectures of a system S by using 

respectively xvi-eFFBD and xvi-PBD DSML. S is a liquid transfer system from an external source 

tanker to an external destination tanker, controlled by a user.  

Phase 1: DSML design time for xvi-eFFBD and xvi-PBD 

eFFBD (Enhanced Functional Flow Block Diagram) is a functional-modeling language allowing 

system designers to describe both functional and behavioral aspects of complex, distributed, 

hierarchical, concurrent and communicating systems (Aizier et al., 2012). In (Haskins et al., 2011) a 

short history of FFBD is described as well as its main evolution eFFBD. The core elements of the 

eFFBD language evocated in previous section are modelled in Figure 4 that describes partial abstract 

syntax of eFFBD. In this metamodel, we distinguish a Resource Flow describing requested Resources 

of a function that consumes them and restores them after execution and an Item Flow describing items 

that are needed and consumed as inputs for a function or provided as outputs after transformation. 

eFFBD has several constructs illustrated in Figure 5: Diagram, Branch, Sequence, AND, OR, 

Iteration and Loop. A Diagram is where the other elements are placed, composed of begin and end 

operators, a main branch and a set of input/output objects (i.e., items or resources) carried by flows. 

The branch is composed of various control constructs allowing engineer to describe how functions 

are chained, put in parallelism, in exclusion... A construct can either be 1) a function control construct 

composed of a set of functions (eventually one unique function) put in sequence, or 2) an operator 

control construction containing minimum one branch beginning on a begin operator and ending on an 

end operator. Four types of operator control construction are introduced: AND, OR, Iteration and 

Loop.  



Figure 4. The core elements of the eFFBD language and the flows relating them to each other. 

Finally, both packages, illustrated in Figure 4 and Figure 5 are merged into a unique eFFBD 

metamodel. The next step consists in modeling the eFFBD behavior. For this purpose eISM 

behavioral models have to be associated to the following concepts: Constructs (i.e. diagram, branch, 

sequence, iteration, etc.), Function, Item and Resource. Unfortunately, due to lack of space we model 

hereafter only the behavioral model of Function. 

Figure 5. eFFBD modelling language construct (summary) 

As illustrated in Figure 6, it is composed of six states: Sleep, Authorized, Execution, Finished, 

Suspended and Aborted. A Function is initially in the Sleep state, waiting for a request to start 

execution (start event). When the request arrives, the Function enter Authorized state, meaning that 

that input/output transformation is possible depending on the availability of all input Items and 

Resources as well as the state of the Components on which the Function is allocated (condition : c1). 

When the previous condition is satisfied, the update transformingInputs is activated (i.e. the real 

transformation of energy, material and / or data happens) and the Functions enters Execution state. 

The transformation least a certain time period (condition: c2), before producing outputs (update: 

providingOutputs) forcing the Function into Finished state. In case of dysfunction of the component 

(discussed hereafter) on which the function has been allocated (suspended event), a function is 

Suspended and eventually Aborted, assuming the component does not reply on time (condition: c5). 

PBD (Physical Block Diagram) is a block-modeling language providing systems engineers with a 

block-and-line diagram representing the various components and sub-systems and physical links that 

connect components within a system or system segment (Long, 2007). It offers a more detailed view 

of the architectural composition.  



Figure 6. An example of a state model of the Function concept from eFFBD. 

The core elements of the PBD language, illustrated in the metamodel of Figure 7, are: Component, 

Link, Interface and Context.  

Figure 7. A metamodel of the PBD language (right) and its interactions with the eFFBD language (left). 

A Component models a physical part linked by a Link to another component by using Interface. Let’s 

us note that the concept Function from the eFFBD language is linked to Component by a relation 

allocated to/performs allowing then to describe which functions are allocated then performed by 

which components. In the same way, a relation allows us to describe how the input, output, and 

triggers flows of allocated functions are then themselves allocated to a Link devoted then to carry out 

these flows from external source (Context) or from an existing Component. Once the metamodel is 

completed, behavioral models should be modeled and associated to the following concepts: 

Component, Interface and Link. We focus hereafter only on the eISM behavioral model associated to 

the concept Component as illustrated in Figure 8.  

Figure 8. An example of a state model of the Component concept from PBD. 

This is composed of five states: non-Active (NA), active (A), producing (P) and breakdown (SS) or 

(ES). A component is initially non-active (NA) waiting for energy (activate event) to get prepared for 



a state. When the signal is received, the update activating is activated and the component enters 

activates state (A). It starts producing, when the start signal is received, activating the update 

producing (i.e. the component performs its function) and it enters producing state (P). Components 

perform their functions until they receive, either a stop signal, which put them in the previous state 

(update stopping is activated), or a breakdown signal (update emergency is activated), which 

immediately makes them stop producing and puts them in waiting states (SS or ES) depending on the 

signal nature (internal default or external default). Additionally, a component provides its performing 

functions with its current state (see the notify update), allowing them to take the component’s current 

state into account inside their behavioral model (see Function’s conditions). 

A DSML should also explicate a set of properties concerning its structure or behavior. We previously 

classified DSML structural constraint properties (SCP) and DSML behavioral constraint properties 

(BCP). For instance, the SCP “quantity of a provided or a requested resource should belong to Z+ 

(always be positive or zero)” can be specified as: 

SCP1 ∶= ∀f ∈ Function | f. resourceFlowInputs. forAll 
(rfc ∶  𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝐹𝑙𝑜𝑤𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟 | rfc. requestedQuantity >= 0) 

SCP2 ∶= ∀f ∈ Function | f. providings. forAll 
(rfp ∶  𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝐹𝑙𝑜𝑤𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟 | rfp. providedQuantity >= 0) 

The used formalism to define BCP depends on the used technique for behavioral specification. In this 

case, UPSL properties are then transformed into LTL (Linear Temporal Logic) that can be used to 

check properties for any eISM (Larnac et al. 1997). For instance, the following property: “there is one 

and only one current active state unique at any time step” is defined as (P means P is always true 

and oP means P will be true at next moment of the computed evolution of the model) is defined as: 

BCP1 ∶= ∀x, y ∈ States | x ≠ y ⟹  (x ⊃ ¬y)  

Phase 2: DSML Run time for xviModels design time and xviModels run time 

xvi-eFFBD and xvi-PBD DSML allows us to define preliminary functional and physical architectures

of S. For readability reasons, the tool CORE from Vitech Corp (Long, 2007) has been here used to

show xvi-eFFBD and xvi-PBD expected concrete syntaxes illustrated in Figure 9. Equipped

modelling, checking and simulation / animation framework implementing xvi-eFFBD and xvi-PBD

is currently under development.

First, S behavior can be simulated by linking the two architectural models shown in Figure 9. All 

Functions (Communicate, Control transfer, Survey and Pump) behaviors are simulated according to 

the eISM model illustrated in Figure 6. All Components (Source and Destination Tankers, Pump, 

Controller, Connectors and HMI System) behaviors are simulated according to the eISM model 

illustrated in Figure 8. The Controller schedules (i.e. synchronizes) each of the eISM models 

associated to Function and Component which are executed based on the evolution algorithm 

proposed in (Nastov et al., 2014) and using Black Board as previously described. After each eISM 

evolution cycle, MS Properties are updated. This allows model animation, i.e., MRP update the 

graphical editor based on the updated data from the MSP. Note that, the MSP and MRP must always 

conform to their respective SP and RP. 

Second, properties such as MSCP and OSCP can be defined. For example, we try to demonstrate: 

 The pump stops working either when no more input liquid remains to pump or when ordered.

This expectation can be described through the following OSCP: 

OSCP1 ∶= Pump. getState() = NA ⇒ 
Pump. getMision(). getInputItems("input liquid"). quantity = 0 



OR Pump. getMision(). getInputTriggers("𝑜𝑟𝑑𝑒𝑟"). getValue() = terminated 

Note that this property is described using both architectures (eFFBD and PBD), i.e., we test the 

current state of the component Pump (PBD architecture) and then we navigate to its mission Pump to 

verify its input liquid quantity and input trigger orders (eFFBD architecture). 

Figure 9. A functional (left) and physical (right) architecture of a liquid transfer system. 

 All functions must stop (i.e. use a Loop Exit construct). This expectation can be described as an

MSCP: 

MSCP1 ∶= ∀lp LP |  lp. hasLoopExit() = true 

 All functions must stop simultaneously under the control of Control Transfer Function, is

finally described as a OSCP: 

OSCP2 ∶= Control Transfer. getLoopCond("trnsfert finished") = true ⇒ 
∀f ∈ Function, t <> Control Transfer | t. getLoopCond("terminated") = true 

Conclusion 

This paper introduces a model-based methodology, in the form of a tooled approach, for modeling 

sufficiently formal DSML achieving V&V objectives. It is composed of a metamodeling language 

(i.e. EMOF), a formal behavioral modeling language (i.e. an extended version of the ISM named 

eISM) and a property modeling language (i.e. CREI). The result is presented as a single and 

integrated meta-language “xviCore” (executable verifiable and interoperable core concepts and 

mechanisms) for creating DSML denoted then “xviDSML”. Such xviDSMLs provide the means for 

designing simultaneously abstract and concrete syntaxes (i.e., domain concepts, relationships and 

their representations), behavioral specification (i.e., domain concepts behavior) and properties 

specification (i.e., properties respected by the domain concepts). As a consequence, models created 



by such xviDSML can be simulated, animated and checked by using formal proof techniques. In 

addition, the proposed approach is extensible and therefore not related to introduced metalanguages 

(i.e. EMOF, CREI or eISM). In contrary, any metamodeling object-oriented, behavioral modeling or 

property modeling languages can be used instead. Other contributions remain still a subject of a 

debate. At a final stage, we aim at integrating continuous and hybrid behavior models together with 

the here presented discrete-events behavioral models. 
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