
HAL Id: lirmm-01377575
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01377575

Submitted on 25 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards V&V suitable Domain Specific Modeling
Languages for MBSE: A tooled approach

Blazo Nastov, Vincent Chapurlat, Christophe Dony, François Pfister

To cite this version:
Blazo Nastov, Vincent Chapurlat, Christophe Dony, François Pfister. Towards V&V suitable Do-
main Specific Modeling Languages for MBSE: A tooled approach. INCOSE 2016 - 26th Annual IN-
COSE International Symposium, Jul 2016, Edinburgh, United Kingdom. pp.556-570, �10.1002/j.2334-
5837.2016.00178.x�. �lirmm-01377575�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01377575
https://hal.archives-ouvertes.fr

Towards V&V suitable Domain Specific Modeling
Languages for MBSE: A tooled approach

Blazo NASTOV

LGI2P

Parc scientifique Georges Besse

30035 Nîmes CEDEX 1 – France

Blazo.Nastov@mines-ales.fr

Christophe DONY

LIRMM

161 rue Ada

34392 Montpellier – France

dony@lirmm.fr

Vincent CHAPURLAT

LGI2P

Parc scientifique Georges Besse

30035 Nîmes CEDEX 1 – France

Vincent.Chapurlat@mines-ales.fr

François PFISTER

LGI2P

Parc scientifique Georges Besse

30035 Nîmes CEDEX 1 – France

Francois.Pfister@mines-ales.fr

Abstract. Considering Model-Based Systems Engineering (MBSE) principles and needs, this article

focuses on the design of Domain Specific Modeling Languages (DSMLs) aiming to link modeling,

verification and validation (V&V) activities. The goal is to ease the work and increase the freedom

and autonomy of experts from various domains in the process of creating and managing system

models then to supply experts involved in analyses and decision making processes with models

characterized by highest level of confidence. This paper introduces and illustrates a tool-equipped

approach, named “xviCore”, that provides MBSE experts with natively verifiable, executable and

interoperable DSML named “xviDSML”, i.e., DSML that can be formally and directly checked and

simulated requesting no huge efforts or skills.

Introduction

Model-Based Systems Engineering (MBSE) is the collection of related processes, methods and tools

used to support the discipline of Systems Engineering in a “model-based” or “model-driven” context

(ISO/IEC, 2008) (Estefan, 2008). MBSE is based then on the creation and the management of various

models of a System of Interest (SoI). These models are designed to reach experts’ objectives, e.g.,

understanding, performance analyzes and expected behaviors or ‘–ilities’ (de Weck et al., 2012).

Each model focuses on a given aspect of a SoI (functional, logical, physical or behavioral) or a given

point of view (user, designer, manager…). Finally, it is used as a base for decision making. It is

therefore imperative, prior to any decision (e.g., architectural choice), to proceed model verification

and validation (V&V) activities. In MBSE context, verification activities aim to demonstrate the

consistency, correctness and conformity of the model to its modeling language, modeling rules and

modeling patterns, i.e., to demonstrate that a model is correctly built. In the same way, validation

activities aim to demonstrate, as much as possible, the relevance and fidelity of a previously verified

model, to represent the SoI as expected thanks to stakeholders’ requirements, i.e., to demonstrate with

a sufficient level of confidence that a model is ‘good’ for designers’ purposes. V&V activities must

consider each of the SoI models, taken them first separately, then pieced together with the other

models of the same SoI, providing a more complete and suitable representation of it. The goal is then

to demonstrate the mutual coherence of SoI models, as well as their adequacy and global fidelity to

the SoI to support the designers’ objectives with an assured level of confidence and excellence. All

these activities request then to define and use Domain Specific Modeling Languages (DSML) that

support and facilitate designers when performing V&V activities. This paper presents a tool-equipped

approach that aims to reach expected level of confidence in the MBSE context, all along design

processes during which various and heterogeneous DSMLs have to be used, from requirements to

architectural engineering. This method, named “xviCore”, provides MBSE experts involved in these

processes with natively verifiable and an executable DSML, i.e., a DSML that can be formally

checked and simulated with no huge efforts from these experts.

This paper is structured as follows. Section 2 explains the motivation of the paper, identifying current

issues. Section 3 presents related works on specifying behavior and formal properties in the realm of

DSML. Section 4 describes our tool-equipped approach xviCore. A short case study example

demonstrates the approach’s applicability on well-known MBSE languages in Section 5 before

concluding.

Motivation

The basic principles on which a DSML is based are its syntax and its semantics (Kleppe, 2007). A

DSML composed solely of its syntaxes (an abstract and a concrete syntax) is operational for the

creation of models proposing various modeling concepts, relations and attributes that are requested to

represent the SoI considering aspect and/or designer’s point of view. However, achieving V&V

requests to reach two goals discussed hereafter.

First, DSMLs generally lack semantics specification (Harel and Rumpe, 2004). The taxonomy of

semantics proposed in (Combemale et al., 2009) highlights two different kinds of semantics. One,

named static semantics, describes DSML’s concepts meaning (abstract and concrete syntaxes), and

behavior independent structural constraints (pre and post conditions, invariants, etc.). The other,

named dynamic semantics specifies DSML behavior as a set of rules for each concept and / or each

relation composing the DSML. The behavior of a modeled SoI is then represented thanks to these

DSML’s elements behaviors. For instance, the eFFBD core element Function has a behavior

describing an input/output transformation of Items flows under the control of triggers flows. A

function F can perform the expected transformation when trigger flows (if they exist) are present,

input Items are available and previous function (if they exist) put in sequence are ended. Then,

available resources are reserved and the transformation of energy, material and / or data can begin,

providing continuously or after a given duration, output items, unlocking finally reserved resources.

Last, any function being decomposable into sub-functions, the behavior of a decomposed function F

can be then described at two levels of detail: the transformation provided by F without any details of

transformation provided by its sub-functions or the global and more detailed behavior putting in light

the role of each of its sub-functions that interact. Such behavior allows logically model simulation,

i.e., to execute any eFFBD model in our case. The first goal is then to make a DSML executable.

Second, a DSML as well as models created in conformity with this DSML should respect a set of

properties concerning either its structure (syntax) or behavior (dynamic semantics). Hereafter, a

property is a provable or evaluable (i.e. quantifiable or qualifiable) characteristic of an artefact (i.e.,

a model M of S built for achieving a design objective) that translates all or part of stakeholder

expectations to be satisfied by this artefact (Chapurlat, 2014). We promote the use of a formal

property modeling language to deploy a formal V&V strategy based on formal property proof, as it is

today used successfully in other domains (Mahfouz, 2013). So, the second goal is to make a DSML or

any model created by this DSML, “directly provable”. Properties can be checked based on the

structure and the behavior of the DSML without any model transformation mechanism as used

classically (Bérard et al., 2013).

This work aims then to define and develop a tool-equipped method that support simultaneously

DSML designers’ and model designers’ V&V activities including specification and checking of the

syntaxes, of behaviors and properties that remains currently lacking.

State of the art

Specifying behavior (i.e. dynamic semantics) and formal properties have been a topic of research for

quite some time now, resulting with a wide diversity of approaches. In the following we give a brief

overview.

Translational semantics are specified through exogenous transformations (i.e. transformations

between models expressed using different languages (Mens and Van Gorp, 2006)). The target

language should be formally well defined (i.e. it should contain dynamic semantics). Elements from

the source domain are translated to elements of the target domain. For instance, the semantics of some

UML diagrams are formalized by using translational semantics as proposed in (Clark et al., 2001).

The notion of Semantic Anchoring proposed in (Chen et al., 2005), is transformational specification

of semantics (i.e. kind of translational semantics), between concepts of DSMLs and selected semantic

units (models of computations with associated operational semantics, specified by using Abstract

State Machine – ASM). The ASM formal method can be used as an action language to operationally

define dynamic semantics as proposed in (Gargantini et al., 2009).

Operational semantics are defined either by action languages or formal behavioral languages.

Action languages define operational semantics in ad-hoc manner, as a set of operations associated to

each concept of a DSML. This is done by using Object-Oriented languages (e.g. Java),

Aspect-Oriented languages (e.g. Kermeta (Muller et al., 2005)), executable constraint languages (e.g.

xOCL (Clark et al., 2008)) or other approaches like the MOF action language (Paige et al. 2006). The

EPROVIDE framework (Sadilek & Wachsmuth 2008, 2009) allows the specification of operational

semantics for a DSML in ad-hoc manner. It is not related to a single technology allowing language

designer the possibility to choose between Java, Prolog, ASM or QVT. Xcore (Clark et al., 2004), an

extension of EMOF/Ecore, introduces an action language for specifying operational semantics.

Similarly, in (Muller et al., 2005) an extension of EMOF by the aspect-oriented language Kermeta is

proposed. The process of specifying the operational semantics for a DSML consists in weaving the

operational semantics as a set of operations directly into the abstract syntax. Formal behavioral

languages such as Statecharts, Petri Nett, or Finite Automata, can also be used for the specification of

operational semantics. Instead of operations, in this case the behavior is expressed through behavior

models (created by using one of the formal behavioral languages) and associated to the DSML’s

concepts. Real-Time UML (Douglass, 2003) specify dynamic semantics as behavioral models,

where: concepts and relationships are given via the class diagram, behavior for each concept is

individually defined via the Statechart diagram and the synchronization and event/data exchange is

given via the collaboration sequence diagram. Another example is given in (Scheidgen and Fischer,

2007) proposing UML activities and OCL as a formal behavioral language. In contrary to Real-Time

UML, this approach associate behavioral models directly to classes’ operations. Similarly, in

(Mayerhofer et al., 2013) an extension of MOF, named xMOF is proposed. The behavioral is modeled

using the fUML’s activity diagrams and associated to the classes’ operations.

Comparison. Besides the advantage of the facilities and tools available in the target technical space

for simulation, formal verification, animation etc., translational semantics have several drawbacks.

Models transformation techniques require first expertise and knowledge in the target semantic

domain, in transformation languages and tools e.g. ATL (Atlas Transformation Language). Second,

demonstrating the “equivalence” between the original, to be checked, model and the transformed

model remain limited, often impossible. Finally, results obtained in the target space should be

interpreted back according to the concepts of the source space. In contrast, operational semantics has

several advantages. Since the domain space is well-known to designers, the behavior is directly

defined on concepts. This allows simulating (to analyze an evolution) and animating (to visualize the

evolution during simulation) models, as early as possible with minimum effort improving system

quality and reducing time-to-market. Using this kind of semantics is preferable for prototyping in

particular for simple behaviors that are expressed through discrete states. However specifying

operational semantics with action languages seems related to programming languages. Indeed, it is

preferable to model and to formalize dynamic semantics using formal behavioral languages, but there

is still a gap between the technical spaces of behavioral languages and the MBSE (Nastov, 2014).

Several solutions for bridging this gap are based on model transformation having the previously

stated limitations of translational semantics. Alternative approaches overcome such limitations,

integrating directly a behavioral language into an already existing metamodeling language (e.g.

Run-Time UML (Douglass, 2003), XMOF (Mayerhofer et al., 2013) or the approach proposed in

(Scheidgen and Fischer, 2007)). These approaches allows to execute (even partial) UML models, to

test them for correctness as early as possible with very little effort, eliminating the need to manually

write source code for the model means, removing consequently developer coding defects and thereby

improving system quality and reducing time-to-market. However, integrating a behavioral language

with a metamodeling language requires additional efforts and work on challenges that are still an

open issue. First, the integration process is a complex task and using a design pattern for the best

software engineering practices is highly recommended (Buschman et al., 1996). Second, the formal

behavioral language has to be carefully chosen for the purpose of verification. Third, behavioral

languages should be able to operate with typed input/output data and complex expressions built using

typed data.

Properties modeling languages. Several formal languages for property modeling have been

proposed in the literature, for instance Temporal Logics (Linear, Constrained…) (Emerson, 1990),

OCL or Alloy (Jackson 2002). OCL is complementary to UML and is used to express properties that

cannot be defined using the UML’s graphical notations. For this OCL predicates specification is

verbose based on object-oriented notation and navigation. Alloy is less expressive due to its simple

and generic nature and it is designed for simple semantic specification supporting automated

lightweight analysis. More globally, applicability and relevance of formal approaches is

demonstrated, for instance, for the control system of the Paris metro line 14. The B language (Abrial

& Hoare 2005) was used for the automatic generation of 86,000 lines of code that have not

experienced software failures since 1997. Among these crucial advantage and other ones, formal

approaches allows exhaustiveness and traceability of proofs. However, first, using such approaches in

the MBSE context must overcome several obstacles (Chapurlat 2013). Particularly they remain

difficult to use, are often considered as time consuming and require particular set of skills, tolls and

proof techniques. Second and unfortunately, DSML generally used in MBSE are not semantically

well-defined (as previously discussed) because they lack formal specification and created models can

be hardly used as base for formal property specification and proof.

Contribution: An approach for designing V&V suitable DSMLs

Remaining the goals presented before, this approach, illustrated in Figure 1, must guide and assist

experts (DSML designers as Models designers and Model users) to define DSMLs that can be

verified for well-constructiveness and be used to create models that can be simulated and formally

checked. We provide in the next theoretical bases and a tooled approach for designing sufficiently

“formal” and “precise” DSMLs. This approach is composed 1) of an object oriented metamodeling

language, here considered EMOF, 2) a formal behavioral modeling language that is in the current

version of our work an extended version of the Interpreted Sequential machine (Vandermeulen, 1996)

named eISM, 3) a property modeling language that is CREI (Chapurlat, 2013) and 4) a language for

concrete syntaxes (out of the scope of this paper). The result is presented as a single and integrated

meta-language “xviCore” (executable verifiable and interoperable core concepts and mechanisms)

for creating DSML denoted then “xviDSML”. An xviDSML includes specification of its syntaxes

(abstract and concrete), its behavior (dynamic semantics) and properties. Note that, the proposed

framework is not related to here described metalanguages (i.e. EMOF, CREI or eISM). In contrary,

any metamodeling object-oriented, formal behavioral modeling or property modeling languages can

be used instead. We discussed and justify however, our choice hereafter.

Figure 1. xviCore - a framework for designing DSMLs for V&V objectives.

DSML life cycle and properties modelling

Hereafter followed DSML life cycle is shown in Figure 2 mixing two main phases. The first phase is

called “DSML design time” during which the DSML syntaxes and semantics are designed following

approaches of metamodeling (Pfister et al., 2014) and executable metamodeling (Combemale et al.,

2009). The second phase is called “DSML run time” which is split up into two sub-phases called

respectively “Model design time” and “Model run time”. Indeed, model designer may design then

check, simulate and animate or comment then improve if requested one or more models created with

the DSML issued form DSML design time. For each phase and sub-phase appear various and specific

constraints, expectations and rules to be considered. These ones are modelled as properties having to

be checked. We propose structuring properties as synthetized in Figure 2 into modeling properties

and system properties.

Figure 2: DSML life cycle vs. properties specification / proof and simulation / animation

A modelling property might express features or requirements specific to assume

well-constructiveness and coherence of a model or a DSML (DSML or model verification

objectives). A system property aims to translate stakeholders’ and systems’ requirements, functional,

physical of operational aspects aiming to assume model relevance thanks to model designer’s purpose

(DSML or model validation objectives). Modelling and system properties can focus both on static or

dynamic (i.e. time dependent) aspects of the DSML or of the pointed out model.

For DSML Design time, modelling properties are structured into:

 DSML Structural Properties (SP): these static properties specify the language’s abstract syntax.

Metamodeling languages such as EMF/EMOF provide the means for specifying such properties

xviCore : Meta-Language composed of four languages

DSML

Abstract syntax

(metamodel)

« conformity »

Behavioral

specification

(dynamic semantics)

Model

structure

Model

« executes »

Object-Oriented

metamodeling language
Property modeling

language

Formal behavioral

modeling language

Model property

specification

Language for

concrete syntaxes

Concrete syntax

(graphical)

DSML property

specification

Model

representation

Lifecycle phases Structural properties

DSML run time

M
o
d
el

 v
er

si
o
n
in

g

DSML design time

Model design time

Model runtime

well-constructed DSML?

well-constructed Model?

D
S
M

L
 v

er
si

o
n
in

g

DSML structural properties (SP)

DSML representational properties (RP)

DSML structural constraint properties (SCP)

DSML behavioral properties (BP)

DSML behavioral constraint properties (BCP)

Model structural properties (MSP)

Model representational Properties (MRP)

Model structural constraint properties (MSCP)

Object structural constraint properties (OSCP)

Simulation

(using BP and BCP to simulate MSP)

Animation

(constantly update MRP)

Behavioral properties

through a metamodel. For instance eFFBD functional and behavioral modelling language (enhanced

Functional Flows Block Diagram) (DoD, 2001) can be designed as a set of classes, each one

representing one of the following core elements: Function, Item, Resource and various Control

Constructs (e.g. parallel, sequential or iterative execution), a set of typed attributes detailing each of

these elements (e.g. quality and quantity of a Resource, purpose of a function) and a set of

relationships between them (e.g. a relationship inputs between Item and Function).

 DSML Representational Properties (RP): these static properties specify the language

representation, forming the language concrete syntax. It includes information about the graphical or

textual representation about each of abstract syntax elements. For instance, the graphical

representation of the concept Function from the eFFBD language can be defined as a blue rectangular

form.

 DSML Structural Constraint Properties (SCP): these both static and dynamic properties are

complementary to SP and specify restrictions or supply additional information about the DSML

structure that cannot be specified using the SP. They are used to check the well-constructiveness of an

abstract syntax, including structural invariants, value derivations, and concepts attributes initial

values or types, etc. For instance, the quantity of a provided or a requested resource should always

belong to Z+ (always be positive or zero).

 DSML Behavioral Properties (BP): these dynamic properties specify the language behavior,

forming the language’s dynamic semantics. They are gathered into a behavioral specification that can

be implemented using different techniques (action languages e.g. for defining a method “execute”

inside Function, behavioral modeling languages as shown in the next, but also transformational

languages or executable constraint languages).

 DSML Behavioral Constraint Properties (BCP): these properties complement the BP and

specify restrictions or supply additional information about the language behavior. They are used to

check the well-constructiveness of a dynamic semantics, including behavioral invariants, pre and

post-conditions, etc.

For DSML run time, i.e. Model design time and Model run time, modelling properties are structured

into:

 Model Structural Properties (MSP): these static properties specify model’s structure in

conformity with DSML abstract syntax. So they are based upon SP (abstract syntax) and CSP

(structural constraints).

 Model Representational Properties (MRP): these static properties specify model’s

representation, forming a graphical or textual image inside an editor so they are constrained by the

RP.

Finally, last modelling properties and system properties are structured into:

 Model Structural Constraint Properties (MSCP): these both static and dynamic properties are

specifically tailored for a given model and do not apply to other models created by using the same

DSML. Object Structural Constraint Properties (OSCP): similarly to MSCP, these properties are

specifically tailored for a given concept e.g. a Function F1, and do not apply to other instances of the

same concept inside a model.

For instance, the property “a function generally consume more resources than producing in a given

time” can be considered to be satisfied in all eFFBD models as an invariant property (MSCP) but can

also be occasionally considered as not satisfied in a particular case in which a function F consume a

resource but restore it before releasing (OSCP).

In parallel, models are simulated and animated taking into consideration previously specified

properties concerning language’s semantics (BP and BCP) but also properties concerning model’s

semantics (MBCP and OBCP). Model simulation is based on a gradual computation of behavioral

rules specified by DSML’s dynamic semantics, while model animation is a visual interpretation of a

simulation result, according to DSML concrete syntax, i.e., a result to the systematic visualization of

changes driven by the computation of the interpretation rules from DSML’s dynamic semantics. If

errors are detected, the model has to be revised consequently updating and improving it (i.e. model

versioning).

Unified Properties Specification Language (UPSL) is proposed to formalize properties. This generic

property modelling language has been applied in various fields and particularly in Systems

Engineering named “UPSL-SE” (Chapurlat, 2013) specifically designed to complement the

methodological and technical toolbox for V&V. The goal of this framework is to encourage and ease

the work of engineers that are not familiar with formal property modeling languages. USPL-SE is

based on the CREI (Cause Relation Effect and Indicators) property model. Briefly, a property is a

compound entity, composed of causes (C) linked to a group of effects (E) via a parameterized,

temporized and constrained relation (R) between C and E. The relationship formally describes how

the set of causes C, when verified, induces a modification on the whole set of effects E and can be

eventually evaluated by considering indicators (I). CREI language is here used to specify structural

and behavioral (i.e. evolution-dependent) properties, characterizing both model and modeled system.

For this, USPL-SE takes into consideration the syntaxes and the behavior (dynamic semantics) of a

DSML. Last, UPSL-SE authorizes the use of several proof tools such as for instance UPPAAL and a

property modeling and proof framework based on Conceptual Graphs as proposed in (Mallek et al.,

2012). Due to lack of space, for more details concerning the formalization of UPSL-SE and

illustration cases, readers are encouraged to see (Chapurlat, 2014).

Formal Behavioral Modeling Language

The xviCore metalanguage includes a framework for behavioral specification based on the

blackboard design pattern that is used in the field of Model Driven Engineering (MDE). This pattern

is a behavioral pattern “affecting when and how processes react and perform”. It establishes

relationships between independent modules called “autonomous processes” that read and write

relevant data from/in a “blackboard” considered as a shared and structured memory. They are

synchronized by a “controller” which monitors the properties on the black board and prioritizes

autonomous processes (Lalanda, 1997).

Figure 3. Modeling xviCore following the blackboard design pattern principles.

This framework, illustrated in Figure 3 is then based on:

1) Controller (C): modeled by the Controller class, it is used to schedule the execution of all

behavioral models from a DSML according 1) to a logical clock managing multiscale time and

stability hypotheses, and 2) eISM execution algorithm discussed in (Nastov et al., 2014).

2) Black Board (BB): modeled by the BlackBoard class, BB is the common and time dependent base

of information where behavioral models of a DSML write their output data (O) and read their input

data (I), enabling information exchange. It is formally defined as a 5-uplet 𝐵𝐵 ≝ 〈𝐴𝑇, 𝐿𝑇, 𝑉, 𝑆, 𝑅〉
where: AT is the set of variables specifying the time of adding. LT is the set of “lifetime” variables,

indicating the remaining time before updating messages from the BT. V is the set of “variables carried

out by the messages. S is the set of “sender” variables specifying the behavioral model that sent the

message and 𝑅 = {𝑅1, . . , 𝑅𝑘} is the set of “receivers” variables indicating the behavioral models that

read the message.

3) Behavioral model: modeled by the class BehavioralModel, it is used to model the behavior of

different DSML concepts that are modeled through classes in the DSML metamodel. It corresponds

to the “autonomous processes” module of the blackboard design pattern. Behavioral models are

designed using a behavioral modeling language that can be based on continuous or discrete events

hypotheses. In this article, for discrete behavioral description, we choose eISM. In comparison to

other discrete events modeling languages, eISM offers several features. First, it operates with typed

input/output data (primitive types, e.g., Boolean, Integer, Real, Character or compound type) and

complex expressions built using internal typed data. Second, it separates the states / transitions

description from the data specification, limiting the combinatorial explosion of the number of states

(i.e., some states can be specified as variables). Finally, models created by using eISM have formal

underlying structure, based on the Linear Temporal Logic (LTL) allowing formal verification without

transforming an eISM model (Larnac et al., 1997). Last, and in contrast, within the field of MDE, the

overall behavior of a DSML is captured through the behaviors of concepts, taken separately, but

interacting also with the behavior of other concepts from the same DSML improving then internal

interoperability as suggested. Therefore, eISM is able to model such interactions between behavioral

models (i.e., behavioral coordination) thanks to the blackboard design pattern, as discussed above.

For more details on eISM, please refer to (Nastov et al., 2016).

Application case

We examine here and enrich two well-known languages of SE community: xvi-eFFBD and xvi-PBD.

These languages can be then used to create eFFBD and PBD models, simulated and checked

following behavioral and properties modelling principles described in previous section. The example

consists here to define primary functional and physical architectures of a system S by using

respectively xvi-eFFBD and xvi-PBD DSML. S is a liquid transfer system from an external source

tanker to an external destination tanker, controlled by a user.

Phase 1: DSML design time for xvi-eFFBD and xvi-PBD

eFFBD (Enhanced Functional Flow Block Diagram) is a functional-modeling language allowing

system designers to describe both functional and behavioral aspects of complex, distributed,

hierarchical, concurrent and communicating systems (Aizier et al., 2012). In (Haskins et al., 2011) a

short history of FFBD is described as well as its main evolution eFFBD. The core elements of the

eFFBD language evocated in previous section are modelled in Figure 4 that describes partial abstract

syntax of eFFBD. In this metamodel, we distinguish a Resource Flow describing requested Resources

of a function that consumes them and restores them after execution and an Item Flow describing items

that are needed and consumed as inputs for a function or provided as outputs after transformation.

eFFBD has several constructs illustrated in Figure 5: Diagram, Branch, Sequence, AND, OR,

Iteration and Loop. A Diagram is where the other elements are placed, composed of begin and end

operators, a main branch and a set of input/output objects (i.e., items or resources) carried by flows.

The branch is composed of various control constructs allowing engineer to describe how functions

are chained, put in parallelism, in exclusion... A construct can either be 1) a function control construct

composed of a set of functions (eventually one unique function) put in sequence, or 2) an operator

control construction containing minimum one branch beginning on a begin operator and ending on an

end operator. Four types of operator control construction are introduced: AND, OR, Iteration and

Loop.

Figure 4. The core elements of the eFFBD language and the flows relating them to each other.

Finally, both packages, illustrated in Figure 4 and Figure 5 are merged into a unique eFFBD

metamodel. The next step consists in modeling the eFFBD behavior. For this purpose eISM

behavioral models have to be associated to the following concepts: Constructs (i.e. diagram, branch,

sequence, iteration, etc.), Function, Item and Resource. Unfortunately, due to lack of space we model

hereafter only the behavioral model of Function.

Figure 5. eFFBD modelling language construct (summary)

As illustrated in Figure 6, it is composed of six states: Sleep, Authorized, Execution, Finished,

Suspended and Aborted. A Function is initially in the Sleep state, waiting for a request to start

execution (start event). When the request arrives, the Function enter Authorized state, meaning that

that input/output transformation is possible depending on the availability of all input Items and

Resources as well as the state of the Components on which the Function is allocated (condition : c1).

When the previous condition is satisfied, the update transformingInputs is activated (i.e. the real

transformation of energy, material and / or data happens) and the Functions enters Execution state.

The transformation least a certain time period (condition: c2), before producing outputs (update:

providingOutputs) forcing the Function into Finished state. In case of dysfunction of the component

(discussed hereafter) on which the function has been allocated (suspended event), a function is

Suspended and eventually Aborted, assuming the component does not reply on time (condition: c5).

PBD (Physical Block Diagram) is a block-modeling language providing systems engineers with a

block-and-line diagram representing the various components and sub-systems and physical links that

connect components within a system or system segment (Long, 2007). It offers a more detailed view

of the architectural composition.

Figure 6. An example of a state model of the Function concept from eFFBD.

The core elements of the PBD language, illustrated in the metamodel of Figure 7, are: Component,

Link, Interface and Context.

Figure 7. A metamodel of the PBD language (right) and its interactions with the eFFBD language (left).

A Component models a physical part linked by a Link to another component by using Interface. Let’s

us note that the concept Function from the eFFBD language is linked to Component by a relation

allocated to/performs allowing then to describe which functions are allocated then performed by

which components. In the same way, a relation allows us to describe how the input, output, and

triggers flows of allocated functions are then themselves allocated to a Link devoted then to carry out

these flows from external source (Context) or from an existing Component. Once the metamodel is

completed, behavioral models should be modeled and associated to the following concepts:

Component, Interface and Link. We focus hereafter only on the eISM behavioral model associated to

the concept Component as illustrated in Figure 8.

Figure 8. An example of a state model of the Component concept from PBD.

This is composed of five states: non-Active (NA), active (A), producing (P) and breakdown (SS) or

(ES). A component is initially non-active (NA) waiting for energy (activate event) to get prepared for

a state. When the signal is received, the update activating is activated and the component enters

activates state (A). It starts producing, when the start signal is received, activating the update

producing (i.e. the component performs its function) and it enters producing state (P). Components

perform their functions until they receive, either a stop signal, which put them in the previous state

(update stopping is activated), or a breakdown signal (update emergency is activated), which

immediately makes them stop producing and puts them in waiting states (SS or ES) depending on the

signal nature (internal default or external default). Additionally, a component provides its performing

functions with its current state (see the notify update), allowing them to take the component’s current

state into account inside their behavioral model (see Function’s conditions).

A DSML should also explicate a set of properties concerning its structure or behavior. We previously

classified DSML structural constraint properties (SCP) and DSML behavioral constraint properties

(BCP). For instance, the SCP “quantity of a provided or a requested resource should belong to Z+

(always be positive or zero)” can be specified as:

SCP1 ∶= ∀f ∈ Function | f. resourceFlowInputs. forAll
(rfc ∶ 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝐹𝑙𝑜𝑤𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟 | rfc. requestedQuantity >= 0)

SCP2 ∶= ∀f ∈ Function | f. providings. forAll
(rfp ∶ 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝐹𝑙𝑜𝑤𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟 | rfp. providedQuantity >= 0)

The used formalism to define BCP depends on the used technique for behavioral specification. In this

case, UPSL properties are then transformed into LTL (Linear Temporal Logic) that can be used to

check properties for any eISM (Larnac et al. 1997). For instance, the following property: “there is one

and only one current active state unique at any time step” is defined as (P means P is always true

and oP means P will be true at next moment of the computed evolution of the model) is defined as:

BCP1 ∶= ∀x, y ∈ States | x ≠ y ⟹ (x ⊃ ¬y)

Phase 2: DSML Run time for xviModels design time and xviModels run time

xvi-eFFBD and xvi-PBD DSML allows us to define preliminary functional and physical architectures

of S. For readability reasons, the tool CORE from Vitech Corp (Long, 2007) has been here used to

show xvi-eFFBD and xvi-PBD expected concrete syntaxes illustrated in Figure 9. Equipped

modelling, checking and simulation / animation framework implementing xvi-eFFBD and xvi-PBD

is currently under development.

First, S behavior can be simulated by linking the two architectural models shown in Figure 9. All

Functions (Communicate, Control transfer, Survey and Pump) behaviors are simulated according to

the eISM model illustrated in Figure 6. All Components (Source and Destination Tankers, Pump,

Controller, Connectors and HMI System) behaviors are simulated according to the eISM model

illustrated in Figure 8. The Controller schedules (i.e. synchronizes) each of the eISM models

associated to Function and Component which are executed based on the evolution algorithm

proposed in (Nastov et al., 2014) and using Black Board as previously described. After each eISM

evolution cycle, MS Properties are updated. This allows model animation, i.e., MRP update the

graphical editor based on the updated data from the MSP. Note that, the MSP and MRP must always

conform to their respective SP and RP.

Second, properties such as MSCP and OSCP can be defined. For example, we try to demonstrate:

 The pump stops working either when no more input liquid remains to pump or when ordered.

This expectation can be described through the following OSCP:

OSCP1 ∶= Pump. getState() = NA ⇒
Pump. getMision(). getInputItems("input liquid"). quantity = 0

OR Pump. getMision(). getInputTriggers("𝑜𝑟𝑑𝑒𝑟"). getValue() = terminated

Note that this property is described using both architectures (eFFBD and PBD), i.e., we test the

current state of the component Pump (PBD architecture) and then we navigate to its mission Pump to

verify its input liquid quantity and input trigger orders (eFFBD architecture).

Figure 9. A functional (left) and physical (right) architecture of a liquid transfer system.

 All functions must stop (i.e. use a Loop Exit construct). This expectation can be described as an

MSCP:

MSCP1 ∶= ∀lp LP | lp. hasLoopExit() = true

 All functions must stop simultaneously under the control of Control Transfer Function, is

finally described as a OSCP:

OSCP2 ∶= Control Transfer. getLoopCond("trnsfert finished") = true ⇒
∀f ∈ Function, t <> Control Transfer | t. getLoopCond("terminated") = true

Conclusion

This paper introduces a model-based methodology, in the form of a tooled approach, for modeling

sufficiently formal DSML achieving V&V objectives. It is composed of a metamodeling language

(i.e. EMOF), a formal behavioral modeling language (i.e. an extended version of the ISM named

eISM) and a property modeling language (i.e. CREI). The result is presented as a single and

integrated meta-language “xviCore” (executable verifiable and interoperable core concepts and

mechanisms) for creating DSML denoted then “xviDSML”. Such xviDSMLs provide the means for

designing simultaneously abstract and concrete syntaxes (i.e., domain concepts, relationships and

their representations), behavioral specification (i.e., domain concepts behavior) and properties

specification (i.e., properties respected by the domain concepts). As a consequence, models created

by such xviDSML can be simulated, animated and checked by using formal proof techniques. In

addition, the proposed approach is extensible and therefore not related to introduced metalanguages

(i.e. EMOF, CREI or eISM). In contrary, any metamodeling object-oriented, behavioral modeling or

property modeling languages can be used instead. Other contributions remain still a subject of a

debate. At a final stage, we aim at integrating continuous and hybrid behavior models together with

the here presented discrete-events behavioral models.

References
Abrial, J. R., and Hoare, A. 2005. The B-book: assigning programs to meanings. Cambridge University Press.

Aizier, B., Chapurlat, V., Lisy-Destrez, S., Prun, D., Seidner, C., and Wippler, J.-L., 2012. “xFFBD: towards a formal

yet functional modeling language for system designers,” In 22
nd

 Annual INCOSE Symposium.

Bérard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit, A., Petrucci, L., and Schnoebelen, P. 2013. Systems and

software verification: model-checking techniques and tools. Springer Science & Business Media.

Buschman, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M., 1996. A system of patterns: pattern-oriented

software architecture. Wiley & Sons.

Chapurlat, V., 2013. “UPSL-SE: A model verification framework for Systems Engineering.” Computers in Industry,

64(5), 581-597.

Chapurlat V., 2014. “Property concept and modelling language for Model-Based Systems Engineering (MBSE)

context.” Internal Research Report (open request)

Chen, K., Sztipanovits, J., Abdelwalhed, S., and Jackson, E., 2005. “Semantic anchoring with model transformations.”

In the European Conference on Modelling Foundations and Applications, ECMFA, pages 115–129.

Clark, T., Evans, E., and Kent, S., 2001. “The Metamodelling Language Calculus: Foundation Semantics for UML. In

Conference on Fundamental Approaches to Software Engineering.” FASE, pages 17–31, Springer.

Clark, T., Evans, A., Sammut, P., and Willans, J. 2004. “An eXecutable metamodelling facility for domain specific

language design.”

Clark, T., Sammut, P., and Willans, J. 2008. “Superlanguages: developing languages and applications with XMF.”

Combemale, B. Crégut, X. Garoche, P.-L. and Thirioux, X. 2009. “Essay on Semantics Definition in MDE.” An

Instrumented Approach for Model Verification. Journal of Software, 4(6).

de Weck, O. L., Ross, A. M., and Rhodes, D. H. 2012. “Investigating relationships and semantic sets amongst system

lifecycle properties (Ilities).” In Third international engineering systems symposium CESUN.

DoD, 2001. “Systems Engineering Fundamentals,” Def. Acquis. Univ. Press (available at:

http://ocw.mit.edu/courses/aeronautics-and-astronautics/16-885j-aircraft-systems-engineering-fall-2005/readin

gs/sefguide_01_01.pdf last visited 2015-11-02)

Douglass, B. P. 2003. “Real time UML.” Formal Techniques in Real-Time and Fault-Tolerant Systems: 7th

International Symposium, FTRTFT 2002. Co-sponsored by IFIP WG 2.2. Oldenburg, Germany. Proceedings.

Vol. 2469. Springer.

Emerson, E., 1990. “Temporal and modal logic,” Handbook of Theoretical Computer Science, vol. B. MIT Press.

Editor: J. van Leeuwen ISBN 0262220393, pp. 955-1072, 1990

Estefan, J. A. 2008. “Survey of Model-Based Systems Engineering (MBSE) Methodologies 2. Differentiating

Methodologies from Processes, Methods, and Lifecycle Models.” Jet Propuls., vol. 25, pp. 1–70.

Gargantini, A., Riccobene, E., and Scandurra, P. 2009. “A semantic framework for metamodel-based languages.” In

Automated Software Engineering, ASE, 16(3-4), 415-454.

Harel, D., and Rumpe, B. 2004. “Meaningful modeling: what’s the semantics of “semantics”?” Computer, 37(10),

64-72.

Haskins, C., Forsberg, K., and Krueger, M., 2011. “Systems Engineering Handbook: A Guide for System Life Cycle

Processes and Activities,” Systems Engineering, INCOSE.

ISO/IEC. 2008. “ISO/IEC 15288 : Systems and software engineering - System life cycle processes.” vol. 2008, no. 1.

IEEE, p. 5.

Jackson, D. 2002. “Alloy: a lightweight object modelling notation.” ACM Transactions on Software Engineering and

Methodology (TOSEM), 11(2), 256-290.

Kohavi, Z., 1978. “Switching and Finite Automata Theory,” Computer Science Series, Tata McGraw Hill.

Kleppe, A. G. 2007. “A language description is more than a metamodel.”

Larnac, M., Chapurlat, V., Magnier, J., and Chenot, B., 1997. “Formal Representation and Proof of the Interpreted

Sequential Machine Model.” EUROCAST, Las Palmas.

Long, J. E., 2007 “MBSE in Practice: Developing Systems with CORE,” Vitech briefing slides, Vitech Corporation,

Vienna, VA, 2007.

Mahfouz, A. A., Mohammed, M. K., and Salem, F. A. 2013. “Modeling, Simulation and Dynamics Analysis Issues of

Electric Motor, for Mechatronics Applications, Using Different Approaches and Verification by

MATLAB/Simulink.” International Journal of Intelligent Systems and Applications (IJISA), 5(5), 39.

Mallek, S., Daclin, N., and Chapurlat, V., 2012. “The application of interoperability requirement specification and

verification to collaborative processes in industry,” Computers in Industry, n°63 (2012) 643–658.

Mayerhofer, T. Langer, P. Wimmer, M. and Kappel, G. 2013. “xMOF: Executable DSMLs based on fUML.” In

Software Language Engineering (pp. 56-75). Springer International Publishing.

Mens, T., and Van Gorp, P. 2006. “A taxonomy of model transformation.” Electronic Notes in Theoretical Computer

Science, 152, 125-142.

Muller, P. A., Fleurey, F., and Jézéquel, J. M. 2005. “Weaving executability into object-oriented meta-languages.” In

Model Driven Engineering Languages and Systems (pp. 264-278). Springer Berlin Heidelberg.

Nastov, B. 2014 “Contribution to Model Verification: Operational Semantics for Systems Engineering Modeling

Languages,” CIEL, Paris, France.

Nastov, B., Chapurlat, V., Dony, C., and Pfister, F., 2015. “A Verification Approach from MDE Applied to Model

Based Systems Engineering: xeFFBD Dynamic Semantics.” In Complex Systems Design & Management (pp.

225-238). Springer International Publishing.

Nastov, B., Chapurlat, V., Dony, C., and Pfister, F., 2016. “Towards Semantical DSMLs for Complex or

Cyber-Physical Systems.” In 11
th

 International conference on Evaluation of Novel Approaches to Software

Engineering. Springer International Publishing.

Paige, R. F., Kolovos, D. S., and Polack, F. A. 2006. “An action semantics for MOF 2.0.” In Proceedings of ACM

symposium on Applied computing (pp. 1304-1305). ACM.

Pfister, F., Huchard, M., and Nebut, C., 2014. “A Framework for Concurrent Design of Metamodels and Diagrams -

Towards an Agile Method for the Synthesis of Domain Specific Graphical Modeling Languages.” In the

International Conference on Enterprise Information Systems, Lisbon, Portugal.

Rivera, J. E., Romero, J. R., and Vallecillo, A. 2009. “Behavior, time and viewpoint consistency: Three challenges for

MDE.” In Models in Software Engineering (pp. 60-65). Springer Berlin Heidelberg.

Rozier, K. Y., 2011. “Linear temporal logic symbolic model checking.” Computer Science Review, 5(2), 163-203.

Sadilek, D. A., and Wachsmuth, G. 2008. “Prototyping visual interpreters and debuggers for domain-specific modelling

languages.” In Model Driven Architecture–Foundations and Applications (pp. 63-78). Springer Berlin

Heidelberg.

Sadilek, D. A., and Wachsmuth, G. 2009. “Using grammarware languages to define operational semantics of modelled

languages.” In Objects, Components, Models and Patterns (pp. 348-356). Springer Berlin Heidelberg.

Scheidgen. M, and Fischer, J. 2007. “Human comprehensible and machine processable specifications of operational

semantics.” In the European Conference on Modelling Foundations and Applications, ECMFA, volume 4530 of

LNCS - pages 157–171. Springer.

Vandermeulen, E., 1996. “Machine Séquentielle Interprétée.” PhD Thesis University of Montpellier II (in French).

