
HAL Id: lirmm-01377630
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01377630

Submitted on 7 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

OpenMP scheduling on ARM big.LITTLE architecture
Anastasiia Butko, Louisa Bessad, David Novo, Florent Bruguier, Abdoulaye

Gamatié, Gilles Sassatelli, Lionel Torres, Michel Robert

To cite this version:
Anastasiia Butko, Louisa Bessad, David Novo, Florent Bruguier, Abdoulaye Gamatié, et al.. OpenMP
scheduling on ARM big.LITTLE architecture. MULTIPROG 2016 - 9th International Workshop on
Programmability and Architectures for Heterogeneous Multicores, HIPEAC, Jan 2016, Prague, Czech
Republic. �lirmm-01377630�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01377630
https://hal.archives-ouvertes.fr


Position Paper: OpenMP scheduling on ARM
big.LITTLE architecture

Anastasiia Butko, Louisa Bessad, David Novo,
Florent Bruguier, Abdoulaye Gamatié, Gilles Sassatelli,

Lionel Torres, and Michel Robert

LIRMM (CNRS and University of Montpellier), Montpellier, France
firstname.lastname@lirmm.fr

Abstract. Single-ISA heterogeneous multicore systems are emerging as
a promising direction to achieve a more suitable balance between perfor-
mance and energy consumption. However, a proper utilization of these
architectures is essential to reach the energy benefits. In this paper, we
demonstrate the ineffectiveness of popular OpenMP scheduling policies
executing Rodinia benchmark on the Exynos 5 Octa (5422) SoC, which
integrates the ARM big.LITTLE architecture.

1 Introduction

Traditional CPUs consume just too much power and new solutions are needed to
scale up to the ever-growing demand on computational complexity. Accordingly,
major efforts are focusing on achieving a more holistic balance between perfor-
mance and energy consumption. In this context, heterogeneous multicore archi-
tectures are firmly established as the main gateway to higher energy efficiency.
Particularly interesting is the concept of single-ISA heterogeneous multicore sys-
tems [1], which is an attempt to include heterogeneity at the microarchitectural
level while preserving a common abstraction to the software stack. In single-ISA
heterogeneous multicore systems, all cores execute the same machine code and
thus, any core can execute any part of the code. Such model makes it possible
to execute the same OS kernel binary implemented for symmetric Chip Multi-
Processors (CMPs) with only minimal configuration changes.

In order to take advantage of single-ISA heterogeneous multicore architec-
tures, we need an appropriate strategy to manage the distribution of compu-
tation tasks—also known as efficient thread scheduling in multithreading pro-
gramming models. OpenMP [2] is a popular programming model that provides a
shared memory parallel programming interface. It features a thread-based fork-
join task allocation model and various loop scheduling policies to determine the
way in which iterations of a parallel loop are assigned to threads.

This paper measures the impact of different loop scheduling policies in a real
state-of-the-art single-ISA heterogeneous multicore system. We use the Exynos 5
Octa (5422) System-on-Chip (SoC) [3] integrating the ARM big.LITTLE archi-
tecture [4], which couples relatively slower, low-power processor cores (LITTLE)



with relatively more powerful and power-hungry ones (big). We provide insightful
performance and energy consumption results on the Rodinia OpenMP bench-
mark suite [5] and demonstrate the ineffectiveness of typical loop scheduling
policies in the context of single-ISA heterogeneous multicore architectures.

2 The Exynos 5 Octa (5422) SoC

2.1 Platform Description

We run our experiments on the Odroid-XU3 board, which contains the Exynos
5 Octa (5422) SoC with the ARM big.LITTLE architecture. ARM big.LITTLE
technology features two sets of cores: a low performance energy-efficient cluster
that is called “LITTLE” and power hungry high performance cluster that is
called “big”. The Exynos 5 Octa (5422) SoC architecture and its main param-
eters are presented in Figure 1. It contains: (1) a cluster of four out-of-order
superscalar Cortex-A15 cores with 32kB private caches and 2MB L2 cache, and
(2) a cluster of four in-order Cortex-A7 cores with 32kB private caches and
512KB L2 cache. Each cluster operates at independent frequencies, ranging from
200MHz up to 1.4GHz for the LITTLE and up to 2GHz for the big. The SoC
contains 2GB LPDDR3 RAM, which runs at 933MHz frequency and with 2x32
bit bus achieves 14.9GB/s memory bandwidth. The L2 caches are connected to
the main memory via the 64-bit Cache Coherent Interconnect (CCI) 400 [6].

��������	
����

������

��	


�������

������

��	


�������

������

��	


�������

������

��	


�������

�����������

��������������������������������������

������� ���	
!���������������"#!���$ ��#

������������ ���������������

�������������

������

�$��	


�������

������

�$��	


�������

������

�$��	


�������

������

�$��	


�������

%������������

Fig. 1: Exynos 5 Octa (5422) SoC.

2.2 Software Support

Execution models. ARM big.LITTLE processors have three main software
execution models [4]. The first and simplest model is called cluster migration. A
single cluster is active at a time, and migration is triggered on a given workload
threshold. The second mode named CPU migration relies on pairing every “big”
core with a “LITTLE” core. Each pair of cores acts as a virtual core in which



only one actual core among the combined two is powered up and running at a
time. Only four physical cores at most are active. The main difference between
cluster migration and CPUmigration models is that the four actual cores running
at a time are identical in the former while they can be different in the latter.
The heterogeneous multiprocessing (HMP) mode—also known as Global Task
Scheduling (GTS)–allows using all of the cores simultaneously. Clearly, HMP
provides the highest flexibility and consequently it is the promising mode to
achieve the best performance/energy trade-offs.

Benchmarks. We consider the Rodinia benchmark suite for heterogeneous
computing [5]. It is composed of applications and kernels of different nature
in terms of workload, from domains such as bioinformatics, image processing,
data mining, medical imaging and physics simulation. It also includes classical
algorithms like LU decomposition and graph traversal. In our experiments, the
OpenMP implementations are configured with 4 or 8 threads, depending on the
number of cores that are visible to the thread scheduling algorithm. Due to
space constraints, we selected the following subset of benchmarks: backprop, bfs,
heartwall, hotspot, kmeans openmp/serial, lud, nn, nw and srad v1/v2.

Thread scheduling algorithms. OpenMP provides three loop scheduling
algorithms, which allows determining the way in which iterations of a parallel
loop are assigned to threads. The static scheduling is the default loop schedul-
ing algorithm, which divides the loop into equal or almost equal chunks. This
scheduling provides the lowest overhead, but, as we will show in the results, the
potential load imbalance can cause significant synchronization overheads. The
dynamic scheduling assignings chunks at runtime once threads complete previ-
ously assigned iterations. An internal work queue of chunk-sized blocks is used.
By default, the chunk size is ‘1’ and this can be explicitly specified by a pro-
grammer at compile time. Finally, the guided scheduling is similar to dynamic
scheduling, but the chunk size exponentially decreases from the value calculated
as #interations/#threads to ‘1’ by default or to a value explicitly specified by
a programmer at compile time.

In the next section, we consider these three loop scheduling policies with
the default chunk size. Furthermore, the experiments are run with the following
software system configuration: the Ubuntu 14.04 Linux kernel LTS 3.10, the
GCC 4.8.2 compiler and the OpenMPI 3.1 libraries.

3 Experimental Results

In this section we present a detailed analysis of the OpenMP implementation
of the Rodinia benchmark suite running on the ARM big.LITTLE architecture.
We consider the following configurations:

– Cortex-A7 cluster running at 200 MHz, 800 MHz and 1.4 GHz;
– Cortex-A15 cluster running at 200 MHz, 800 MHz and 2GHz;
– Cortex-A7/A15 clusters running at 200/200 MHz, 800/800 MHz, 1.4/2 GHz,

200 MHz/2 GHz and 1.4 GHz/200 MHz.



Static Thread Scheduling. Figure 2(a) shows in logarithmic scale the
measured execution time of different configurations using the static scheduling
algorithm. The results are normalized with respect to the slowest configuration,
i.e., Cortex-A7 running at 200MHz. As expected, the highest performance is
typically achieved by the Cortex-A15 running at 2GHz. For example, a speedup
of 21x is observed when running the kmeans openmp in the big cluster. When
using the HMP mode to simultaneously run on the big and LITTLE clusters
(i.e., A7/A15 in the figure), the execution time is usually slower to that of the
big cluster alone, despite using four additional actives cores. An even higher
penalty is observed when operating the LITTLE cluster at a lower frequency,
especially so for the lud, nn and nw applications.

������
���	
����	
����	

��

��

�������	
������

�����	����	
��������

������������������

������������������������� �!���! ���!��"#�"�$�����

%
�
��

�
�	
��
�&
�
��
�
�
�

���

�

�

�

��

��

(a) Execution time speedup comparison

������
���	
����	
����	

��
�������	
������

�����	����	
��������

��������������������

������������������������� �!���! ���!��"#�"�$�����

%
�
��

�
�	
��
�&
!�
'

���
�
�

�
��
��

(b) EtoS comparison

Fig. 2: Normalized speedup using Static scheduling (reference A7 at 200MHz).

Figure 2(b) shows the normalized Energy to Solution (EtoS) measured with
the on-board power monitors present in the Odroid-XU3 board. Results are
again normalized against the reference Cortex-A7 running at 200MHz. We ob-
serve, that the Cortex-A7 cluster is generally more energy-efficient than the
Cortex-A15. Furthermore, the best energy efficiency is achieved when operating
at 800MHz. Besides, we also observe that for a few applications (i.e., bfs, kmeans
serial, and srad v1 ) the Cortex-A15 running at 800MHz provides slightly better
EtoS than the reference Cortex-A7 cluster. These applications benefit the most
from the A15 out-of-order architecture achieving the largest speedups. This leads



Master thread

OMP thread 1
OMP thread 2
OMP thread 3

0.4755s

OMP thread 4

OMP thread 5

OMP thread 6
OMP thread 7

0.4760s 0.4765s Time

Cortex-A7
Cortex-A7
Cortex-A7

Cortex-A7

Cortex-A15
Cortex-A15
Cortex-A15
Cortex-A15

Complete runtime

zoom

Master thread OMP worker thread OMP barrier (idle)

Fig. 3: lud on HMP big.LITTLE at 200MHz/2GHz.

to a higher energy efficiency despite running on a core of higher power consump-
tion. When using the HMP mode, some application exhibit a very high EtoS.
Particularly high are the EtoS of the lud and nn applications executed in the
configuration Cortex-A7/A15 running at 200MHz/2GHz. Our experiments also
show that HMP is less energy efficient than the big cluster running at maximum
frequency (i.e., A15 2GHz). In conclusion, static thread scheduling achieves a
highly suboptimal use of our heterogeneous architecture, which turns out to be
slower and less energy efficient than a single big cluster.

Further investigations were carried out with Scalasca [7] and Vampir [8] soft-
ware tools that permit instrumenting the code and visualizing low-level behavior
based on collected execution traces. Figure 3 shows a snapshot of the execution
trace of the lud application alongside a zoom on two consecutive parallel-for
loop constructs. It is clearly visible that the OpenMP runtime spawned eight
threads, which got assigned to the eight cores. The four threads assigned to the
Cortex-A15 cores completed execution of their chunks significantly faster than
the Cortex-A7 cores. As a result, the execution critical path is affected by the
slowest cores, which slows down system performance.

Dynamic and Guided Thread Scheduling. Figures 4(a-b) respectively
illustrate the execution time using dynamic and guided thread scheduling nor-
malized by the static scheduling discussed previously. The dynamic scheduling is
able to achieve good speedups for some applications (e.g., nn) but also degrades
the performance of some others (e.g., nw). Something very similar happens with
the guided scheduling but with different application/configuration sets. For ex-
ample, the heartwall is now degraded for the 1.4GHz/200MHz configuration
while the nn achieves a 1.8x speedup.

Figures 4(c-d) respectively show the EtoS of the dynamic and guided schedul-
ing normalized by the static scheduling. We observe a very high correlation with
respect to the corresponding execution time graphs. Accordingly, we can con-
clude that there is no existing policy that is generally superior. The best policy
will depend on the application and on the architecture configuration. However,
we believe that none of the policies is able to fully leverage the heterogeneity of
our architecture and that more intelligent thread scheduling policies are needed



to sustain the energy efficiency promised by single-ISA heterogeneous multicore
systems.

�����������	
���������������	�������	�

��������		
����������
�		
�������		
�� �		
����������
�		
����������		
���

��������		
����������
�		
�������		
�� �		
����������
�		
����������		
���

�����������	
���������������	�������	�

	��������	��	
���������������	�������	�

��������		
����������
�		
�������		
�� �		
����������
�		
����������		
���

�
�
��

��
��
��
��
��
�

	

	�

�

��

�

��

�

���������	��	
���������������	�������	�

��������		
����������
�		
�������		
�� �		
����������
�		
����������		
���

��� !��!

�"#

$����%���

$��#!��

 ���&#

�'�

&&

&%

#���(�
#���(�

�
�
��

��
��
��
��
!
��
�
'
!

	

	�

�

��

�

Fig. 4: Normalized execution time speedup and EtoS.

4 Conclusion

In this paper, we evaluate performance and energy trade-offs of single-ISA het-
erogeneous multicore system. The investigations were conducted on the Odroid
XU3 board including an ARM big.LITTLE Exynos 5 Octa (5422) chip. We
provided performance and energy results on the Rodinia OpenMP benchmark
suit using typical loop scheduling policies, i.e. static, dynamic and guided. The
results show that the given policies are inefficient in the use of heterogeneous
cores.

Therefore, we conclude that further research is required to propose suitable
scheduling policies able to leverage the superior energy efficiency of LITTLE
cores while maintaining the faster execution times of big cores.

5 Acknowledgement

The research leading to these results has received funding from the European
Union’s Seventh Framework Programme (FP7/2007-2016) under the Mont-Blanc
2 Project: http://www.montblanc-project.eu, grant agreement no 610402.



References

1. R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I. Farkas,
“Single-isa heterogeneous multi-core architectures for multithreaded workload per-
formance,” in Proceedings of the 31st Annual International Symposium on Computer
Architecture, ISCA ’04, (Washington, DC, USA), pp. 64–, IEEE Computer Society,
2004.

2. O. A. R. Board, “The openmp api specification for parallel programming.”
http://openmp.org/wp/, November 2015.

3. Samsung, “Exynos Octa SoC.” https://http://www.samsung.com/, November
2015.

4. B. Jeff, “big.little technology moves towards fully heterogeneous global task schedul-
ing.” http://www.arm.com/files/pdf/, November 2013.

5. S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S.-H. Lee, and K. Skadron,
“Rodinia: A benchmark suite for heterogeneous computing,” in Workload Charac-
terization, 2009. IISWC 2009. IEEE International Symposium on, pp. 44–54, Oct
2009.

6. ARM, CoreLink CCI-400 Cache Coherent Interconnect Technical Reference Manual,
November 16 2012. Revision r1p1.

7. “Scalasca.” http://www.scalasca.org/, November 2015.
8. “Vampir - performance optimization.” https://www.vampir.eu/, November 2015.


