
HAL Id: lirmm-01377715
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01377715v1

Submitted on 7 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FP-Hadoop: Efficient Processing of Skewed MapReduce
Jobs

Miguel Liroz-Gistau, Reza Akbarinia, Divyakant Agrawal, Patrick Valduriez

To cite this version:
Miguel Liroz-Gistau, Reza Akbarinia, Divyakant Agrawal, Patrick Valduriez. FP-Hadoop: Ef-
ficient Processing of Skewed MapReduce Jobs. Information Systems, 2016, 60, pp.69-84.
�10.1016/j.is.2016.03.008�. �lirmm-01377715�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01377715v1
https://hal.archives-ouvertes.fr

FP-Hadoop: Efficient Processing of Skewed MapReduce Jobs

Miguel Liroz-Gistaua, Reza Akbariniaa,∗, Divyakant Agrawalb, Patrick Valdurieza

aINRIA Montpellier, France
bDepartment of Computer Science, University of California, Santa Barbara

Abstract

Nowadyas, we are witnessing the fast production of very large amount of data, particularly by the users of online
systems on the Web. However, processing this big data is very challenging since both space and computational require-
ments are hard to satisfy. One solution for dealing with such requirements is to take advantage of parallel frameworks,
such as MapReduce or Spark, that allow to make powerful computing and storage units on top of ordinary machines.
Although these key-based frameworks have been praised for their high scalability and fault tolerance, they show poor
performance in the case of data skew. There are important cases where a high percentage of processing in the reduce
side ends up being done by only one node.

In this paper, we present FP-Hadoop, a Hadoop-based system that renders the reduce side of MapReduce more parallel
by efficiently tackling the problem of reduce data skew. FP-Hadoop introduces a new phase, denoted intermediate reduce
(IR), where blocks of intermediate values are processed by intermediate reduce workers in parallel. With this approach,
even when all intermediate values are associated to the same key, the main part of the reducing work can be performed
in parallel taking benefit of the computing power of all available workers.

We implemented a prototype of FP-Hadoop, and conducted extensive experiments over synthetic and real datasets.
We achieved excellent performance gains compared to native Hadoop, e.g. more than 10 times in reduce time and 5
times in total execution time.

Keywords: MapReduce, Data Skew, Parallel Data Processing

1. Introduction

In the past few years, advances in the Web have made
it possible for the users of information systems to pro-
duce large amount of data. However, processing this big
data is very challenging since both space and computa-
tional requirements are hard to satisfy. One solution for
dealing with such requirements is to take advantage of par-
allel frameworks, such as MapReduce [1] or its IO-efficient
versions such as Spark [2], that allow to make powerful
computing and storage units on top of ordinary machines.

The idea behind MapReduce is simple and elegant.
Given an input file of key-value pairs, and two functions,
map and reduce, each MapReduce job is executed in two
main phases. In the first phase, called map, the input data
is divided into a set of splits, and each split is processed
by a map task in a given worker node. These tasks ap-
ply the map function on every key-value pair of their split
and generate a set of intermediate pairs. In the second
phase, called reduce, all the values of each intermediate
key are grouped and assigned to a reduce task. Reduce

∗Corresponding author
Email addresses: miguel.liroz_gistau@inria.fr

(Miguel Liroz-Gistau), reza.akbarinia@inria.fr
(Reza Akbarinia), agrawal@cs.ucsb.edu (Divyakant Agrawal),
patrick.valduriez@inria.fr (Patrick Valduriez)

tasks are also assigned to worker machines and apply the
reduce function on the created groups to produce the final
results.

Although MapReduce and Spark frameworks have been
praised for their high scalability and fault tolerance, they
show poor performance in the case of data skew. There
are important cases where a high percentage of processing
in the reduce side ends up being done by only one node.
Let’s illustrate this by an example.

Example 1. Top accessed pages in Wikipedia. Suppose
we want to analyze the statistics1 that the free encyclope-
dia, Wikipedia, has published about the visits of its pages
by users. In the statistics, for every hour, there is a file
in which for each visited page, there is a line containing
some information including, among others, its URL, lan-
guage and the number of visits. Given a file, we want to
return for each language, the top-k% accessed pages, e.g.,
top 1%.

To answer this query, we can write a simple program
as in the following Algorithm2:

1http://dumps.wikimedia.org/other/pagecounts-raw/
2This program is just for illustration; actually, it is possible to

write a more efficient code by leveraging on the sorting mechanisms
of MapReduce.

Preprint submitted to Information Systems March 14, 2016

map(id : K1, content : V1)
foreach line 〈lang, page id, num visits, ...〉 in
content do

emit (lang, page info = 〈num visits, page id〉)
end

reduce(lang : K2, pages info : list(V2))
Sort pages info by num visits

foreach page info in top k% do
emit (lang, page id)

end
Algorithm 1: Map and reduce functions for Example 1

In this example, the load of reduce workers may be
highly skewed. In particular, the worker that is responsible
for reducing the English language will receive a lot of val-
ues. According to the statistics published by Wikipedia3,
the percentage of English pages over total was more than
70% in 2002 and more than 25% in 2007. This means for
example that if we use the pages published up to 2007,
when the number of reduce workers is more than 4, then
we have no way for balancing the load because one of the
nodes would receive more than 1/4 of the data. The sit-
uation is even worse when the number of reduce tasks is
high, e.g., 100, in which case after some time, all reduce
workers but one would finish their assigned task, and the
job has to wait for the responsible of English pages to fin-
ish. In this case, the execution time of the reduce phase is
at least equal to the execution time of this task, no matter
the size of the cluster.

There have been some proposals to deal with the prob-
lem of reduce side data skew. One of the main approaches
is to try to uniformly distribute the intermediate values to
the reduce tasks, e.g., by dynamically repartitioning the
keys to the reduce workers [3]. However, this approach is
not efficient in many cases, e.g., when there is only one
single intermediate key, or when most of the values corre-
spond to one of the keys.

One solution for decreasing the reduce side skew is to
filter the intermediate data as much as possible in the map
side, e.g., by using a combiner function. However, the in-
put of the combiner function is restricted to the data of one
map task, thus its filtering power is very limited for some
applications. Let’s illustrate this by using our problem of
top-1%. Suppose we have 1TB of Wikipedia data, and 200
nodes for processing them. To be able to filter some in-
termediate data by the combiner function, we should have
more than 1% of the total values of at least one key (lan-
guage) in the map task. Thus, if we use the default splits
of Hadoop (64 MB size), the combiner function can fil-
ter no data. The solution is to increase significantly the
size of input splits, e.g. more than 10GB (1% of total).
However, using big splits is not advised since it decreases
significantly the MapReduce performance due to the fol-
lowing disadvantages: 1) more map-side skew : with big

3http://en.wikipedia.org/wiki/Wikipedia:Size of Wikipedia

splits, there may be some map tasks that take too much
time (e.g. because of their slow CPU), and this would in-
crease significantly the total MapReduce execution time;
2) less parallelism: big split size means small number of
map tasks, so several nodes (or at least some of their com-
puting slots) may have nothing to do in the map phase. In
our example, with 10GB splits, there will be only 100 map
tasks, thus half of the nodes are idle. This performance
degradation is confirmed by our experimental results re-
ported in Section 5.11).

In this paper, we propose FP-Hadoop, a Hadoop-based
system that uses a novel approach for dealing with the
data skew in reduce side. In FP-Hadoop, there is a new
phase, called intermediate reduce (IR), whose objective is
to make the reduce side of MapReduce more parallel. More
specifically, the programmer replaces his reduce function
by two functions: intermediate reduce (IR) and final re-
duce (FR) functions. Then, FP-Hadoop executes the job
in three phases, each phase corresponding to one of the
functions: map, intermediate reduce (IR) and final reduce
(FR) phases. In the IR phase, even if all intermediate val-
ues belong to only one key (i.e., the extreme case of skew),
the reducing work is done by using the computing power
of all available workers. Briefly, the data reducing in the
IR phase has the following distinguishing features:

• Parallel reducing of each key: The intermediate
values of each key can be processed in parallel by
using multiple intermediate reduce workers.

• Distributed intermediate block construction:
The input of each intermediate worker is a block
composed of intermediate values distributed over mul-
tiple nodes of the system, and chosen using a schedul-
ing strategy, e.g. locality-aware.

• Hierarchical execution: The processing of inter-
mediate values in the IR phase can be done in sev-
eral levels (iterations). This permits to perform hi-
erarchical execution plans for jobs such as top-k%
queries, in order to decrease the size of the interme-
diate data more and more.

• Non-overwhelming reducing: The size of the in-
termediate blocks is bounded by configurable maxi-
mum value that prevents the intermediate reducers
to be overwhelmed by very large blocks of interme-
diate data.

We implemented a prototype of FP-Hadoop, and con-
ducted extensive experiments over synthetic and real datasets.
The results show excellent performance gains of FP-Hadoop
compared to native Hadoop. For example, in a cluster of
20 nodes with 120GB of input data, FP-Hadoop outper-
formed Hadoop by a factor of about 10 in reduce time, and
a factor of 5 in total execution time.

This paper is a major extension of [4] and [5], with
at least 30% of new materials. In the current paper, we

2

propose a fault-tolerance mechanism that assures the cor-
rectness of the results in the case of failures, and reduces
the amount of data to be re-processed compared to the
native Hadoop. Additionally, we describe the design in
more details and provide a more extensive experimental
evaluation.

The rest of this paper is organized as follows. In Sec-
tion 2, we explain how Hadoop’s MapReduce wroks and
give the necessary details to present our approach. In Sec-
tion 3 we present the principles of FP-Hadoop including
its programming model. Then, in Section 4, we give more
details about its design. In Section 5, we report the re-
sults of our experiments done to evaluate the performance
of FP-Hadoop. In Section 6, we discuss related work, and
Section 7 concludes.

2. MapReduce Background

In this section, we first briefly explain how MapReduce
works in Hadoop. This will be useful to understand the
technical details of FP-Hadoop. Then, we give an abstract
view of the MapReduce execution. This abstract view is
useful to better understand the main differences between
the programming models of Hadoop and FP-Hadoop.

2.1. Job Execution in Hadoop

In Hadoop, for executing a MapReduce job, we need a
master node for coordinating the job execution, and some
worker nodes for executing the map and reduce tasks [6].
The worker nodes can be configured with a predefined
number of slots for map and reduce tasks, so that each
slot is able to execute a single task at a given time.

When a MapReduce job is submitted to a node, it com-
putes the input splits. The number of input splits can be
personalized, but typically there is a one-to-one relation-
ship between splits and file chunks in the filesystem, which
by default have a size of 64MB. The location of these splits
and some information about the job are submitted to the
master that creates a job object with all the necessary
information, including the map and reduce tasks to be ex-
ecuted. One map task is created per input split.

When a map task is assigned to a worker, it is exe-
cuted in a Java Virtual Machine (JVM). The task reads
the corresponding input split, applies the map function on
each input element (e.g. line), and generates intermediate
key-value pairs, which are firstly maintained in a buffer in
main memory. When the content of the buffer reaches a
threshold (by default 80% of its size), the buffered data is
stored on the disk in a file called spill. Before writing the
content of the buffer into the spill, the keys are divided
into several partitions (as many as reduce tasks) using a
partitioning function, and then the values of each key are
sorted and written to its corresponding partition in the
spill. An optional combiner function may be applied on
the buffer data just before they are written into the spills.
The objective of this function is to decrease the size of in-
termediate data that should be transferred to the reduce

workers. Once a map task is completed, the generated
spills are merged into a final output file and the master is
notified.

In the reduce phase, each partition is assigned to one of
the reduce tasks. Each reduce task retrieves the key-value
pairs corresponding to its partition from all the map out-
put files, and merges them using the merge-sort algorithm.
The transfer of data from map workers to the reduce work-
ers is called shuffling, and can be started when a map task
finishes its work. However, the reduce function cannot
be applied until all the map tasks have finished and their
outputs merged and grouped. Each reduce task groups
the values of the same key, applies the reduce function on
the corresponding values, and generates the final output
results. When, all reduce tasks of a job are completed
successfully, the user is notified by the master.

2.2. An Abstract View

In an abstract view, the input of the map phase in
MapReduce can be considered as a set of data splits, which
should be processed by all workers. Thus, each map worker
takes one split, processes it, and then takes another one
until there are no splits in the set. Thus, we can hope for
good parallelism in the map side, since no worker is idle
until there is any split in the split set. But, in the reduce
side, there is not such a parallelism, because the values of
each key should be processed by one reduce worker. Thus,
there may be situations where a high volume of the work is
done by a single worker or a few number of workers, while
the others are idle.

We have made FP-Hadoop more parallel and efficient
than Hadoop since all reduce workers can contribute in
reducing the map output even if the output belong to only
one key.

3. FP-Hadoop Principles

In this section, we introduce the programming model
of FP-Hadoop, its main phases, and the functions that are
necessary for executing jobs. The design details of FP-
Hadoop development are given in the next section.

3.1. Programming Model

In FP-Hadoop, the output of the map tasks is orga-
nized as a set of blocks (splits) which are consumed by
the reduce workers. More specifically, the intermediate
key-value pairs are dynamically grouped into splits, called
Intermediate Result Splits (IR splits for short). The size
of an IR split is bounded between two values, MinIRSize
and MaxIRSize, configurable by the user. Formally, each
IR split is a set of (k, V) pairs such that k is an interme-
diate key and V is a subset of the values generated for k
by the map tasks.

FP-Hadoop executes the jobs in three different phases
(see Figure 1): map, intermediate reduce, and final reduce.
The map phase is almost the same as that of Hadoop in

3

Input Splits

D1 D2

D3 D4

...

Dn-1 Dn

Map workers

M1

...

Mm

Intermediate

key-values

k1

V1,1

V1,2

k2

V2,1

V2,2

V2,3

V2,4

V2,5

k3

V3,1

Intermediate

reduce workers

R1

...

Rr

Intermediate

key-values

k1

V ′
1,1

k2

V ′
2,1

V ′
2,2

k3

V ′
3,1

Final

reduce workers

R1

...

Rr

Results

O1

...

Or

Map phase Intermediate reduce phase Final reduce

phase

Figure 1: FP-Hadoop job processing scheme. The input of the intermediate reduce phase is a set of intermediate splits (blocks) which are
generated dynamically using the intermediate data distributed over map workers. No intermediate reduce worker is idle until there is any
intermediate split. The intermediate reduce phase can be done in several iterations.

the sense that the map workers apply the map function
on the input splits, and produce intermediate key-value
pairs. The only difference is that in FP-Hadoop, the map
output is managed as a set of IR fragments that are used
for constructing IR splits.

There are two different reduce functions: intermediate
reduce (IR) and final reduce (FR) functions.

In the intermediate reduce phase, the IR function is
executed in parallel by reduce workers on the IR splits,
which are constructed using a scheduling strategy from
the intermediate values distributed over the nodes. More
specifically, in this phase, each ready reduce worker takes
an IR split as input, applies the IR function on it, and
produces a set of key-value pairs which may be used for
constructing future IR splits. When a reduce worker fin-
ishes its input split, it takes another split and so on until
there is no more IR splits. In general, programming the
IR function is not very complicated; it can be done in a
similar way as the combiner function of Hadoop. In Sec-
tion 3.2, we give more details about the IR function, and
how it can be programmed.

The intermediate reduce phase can be repeated in sev-
eral iterations, to apply the IR function several times on
the intermediate data and reduce incrementally the final
splits consumed by the FR function (see Figure 2). The
maximum number of iterations can be specified by the pro-
grammer, or be chosen adaptively, i.e., until the interme-
diate reduce tasks input/output size ratio is higher than a
given threshold.

In the final reduce phase, the FR function is applied on
the IR splits generated as the output of the intermediate
reduce phase. The FR function is in charge of performing
the final grouping and production of the results of the
job. Like in Hadoop, the keys are assigned to the reduce
tasks according to a partitioning function. Each reduce
worker pulls all IR splits corresponding to its keys, merges
them, applies the FR function on the values of each key,
and generates the final job results. Since in FP-Hadoop

the final reduce workers receive the values on which the
intermediate workers have worked, the load of the final
reduce workers in FP-Hadoop is usually much lower than
that of the reduce workers in Hadoop.

In the next subsection, we give more details about the
IR and FR functions, and explain how they can be pro-
grammed.

3.2. IR and FR Functions

To take advantage of the intermediate reduce phase,
the programmer should replace his/her reduce function by
intermediate and final reduce functions. Formally, the in-
put and output of map (M), intermediate (IR) and final
reduce (FR) functions is as follows:

M : (K1,V1) → list(K2,V2)

IR : (K2, partial list(V2)) → (K2, partial list(V2))

FR : (K2, list(V2)) → list(K3,V3)

Notice that in IR function, any partial set of interme-
diate values can be received as input. However, in FR
function, all values of an intermediate key are passed to
the function.

Given a reduce function, to write the IR and FR func-
tions, the programmer should separate the sections that
can be processed in parallel and put them in IR function,
and the rest in FR function. Formally, given a reduce
function R, the programmer should find two functions IR
and FR, such that for any intermediate key k and its list
of values S, we have:

R(k, S) = FR(k, 〈IR(k, S1), ..., IR(k, Sn)〉)

for every partition S1 ∪ ... ∪ Sn = S

In Table 1, we enumerate some important functions,
and show their intermediate and FR functions. There are
many functions for which we can use the original reduce

4

Map Phase M · · · M M · · · M M · · · M M · · · M

Intermediate

Phase

Iteration 1
IR

· · ·

IR

· · ·

IR

· · ·

IR

· · ·

Intermediate

Phase

Iteration 2
IR

· · ·

IR

· · ·

Final Reduce

Phase
FR0 FR1

· · ·

Figure 2: Example of hierarchical job execution in FP-Hadoop. In this example, there are two intermediate keys, and the intermediate values
are shown by blue (for key1) and yellow (for key2) colors. The intermediate values of key2 (yellow) are reduced directly by a final reducer just
after the map phase (i.e. without an intermediate phase), because their size is small. But those of key1 (blue) are processed in two iterations
in the intermediate phase. For planning such hierarchical executions, it is sufficient to set a maximum number of iterations, e.g. more than
2, and then everything is done automatically by FP-Hadoop.

Table 1: Examples of some reduce functions and their equivalent intermediate and final functions

Reduce (R) Function Intermediate (IR) and Final (FR) Functions

R = Top-k IR = FR = Top-k

R = SkyLine IR = FR = SkyLine

R = Union IR = FR = Union

R = Sum IR = FR = Sum

R = Max IR = FR = Max

R = Min IR = FR = Min

R = Avg IR = (Sum, Count), FR = (Sum, Count) THEN Sum/Count

function both in the intermediate and final reduce phases,
i.e., we have IR = FR = R. Examples of such functions
are Top-k, SkyLine, Union and Sum.

The following example shows how a Top-k query can
be implemented in FP-Hadoop using the same function for
IR and FR.

Example 2. Top-k. Consider a job that given a scoring
function computes the top-k tuples of a big table. In this
job, the map function computes the score of each read tu-
ple, and emits (key, {tupleID, score}), where key is
the identifier of the set of values on which we want to find
the top-k values. Then, both IR and FR functions can be
implemented as a function that, given a set of {tupleID,
score} pairs, returns the k pairs that have the highest
scores. Thus, in practice, the intermediate reduce workers
generate partial top-k results (top-k tuples of their input
IR splits), and the FR function produces the final results
from intermediate partial results. If the value of k is big,
e.g. 1% of the input as in our motivating example in In-
troduction, then we may need more iterations in the inter-
mediate phase to reduce the intermediate data more and

more. In this case, the execution of the job for overloaded
key(s) can be hierarchical as in Figure 2. To plan such
executions, it is sufficient to set the maximum number of
iterations to the required level, and then FP-Hadoop or-
ganizes multiple iterations for overloaded keys when it is
needed .

A class of functions that can usually take advantage of
the intermediate reduce phase is that of aggregate func-
tions. Examples of such functions are Sum, Min/Max

(using the same function as IR and FR), Avg and Std

(using different functions for IR and FR). Aggregate func-
tions can be classified into three groups [7]:

• Definition 1 (Distributive). Let F be a reduce func-
tion, and S a set of values, and S1 ·...·Sn a partition-
ing over S. F is distributive if there is a function G
such that F (S) = G(〈F (S1), ..., F (Sn)〉).

• Definition 2 (Algebraic). Let F be a reduce func-
tion, and S a set of values, and S1 · ... · Sn a parti-
tioning over S. F is Algebraic if there is a m-valued
function G and a function H such that F (S) = H(〈G(S1)1,
..., G(Sn)1〉, ..., 〈G(S1)m, ..., G(Sn)m〉).

5

• Definition 3 (Holistic). Let F be a reduce func-
tion, and S a set of values, and S1 · ... · Sn a par-
titioning over S. F is Holistic if there is not a m-
valued function (with bounded m) that characterizes
the computation. In other words, F is holistic if it
is neither distributive nor algebraic.

Intuitively, a function is distributive if it can be computed
in a distributed manner. Examples of such functions are
Count, Sum, Min, and Max. Distributive functions can
particularly benefit from the usage of intermediate reduce
tasks, as they usually reduce the data size significantly. Al-
gebraic functions are the functions that can be computed
by using a bounded number of distributive functions. Ex-
amples of algebraic functions are AVG and Std. These
functions can also take advantage of intermediate reduce
tasks. In holistic functions, there is no constant bound on
the storage size needed to describe a sub-aggregate. Some
holistic functions, such as SkyLine, may take great ad-
vantage of running an intermediate phase. For some other
holistic functions, it may be difficult to find an efficient
intermediate function.

We precise that if it is difficult to find an efficient IR
function for a job, it is sufficient to specify no IR function,
then the final reduce phase starts just after the map phase,
i.e., like in Hadoop.

4. Design Details

In this section, we describe our design choices in FP-
Hadoop. We focus on the activities that do not exist in
Hadoop or are very different in FP-Hadoop, particularly:
1) management of IR fragments used for making IR splits;
2) intermediate task scheduling; 3) intermediate and final
reduce task creation; 4) management of multiple iterations
in the intermediate reduce phase.

4.1. IR Fragments for Constructing IR Splits

In this subsection, we describe our approach for con-
structing the IR splits that are the working blocks of the
reducers in the intermediate reduce phase.

In Hadoop, the output of the map tasks is kept in the
form of temporary files (called spills). Each spill contains
a set of partitions, such that each partition involves a set
of keys and their values. These spills are merged at the
end of the map task, and the data of each partition is sent
to one of the reducers.

In FP-Hadoop, the spills are not merged. Each par-
tition of a spill generates an IR fragment, and the IR
fragments are used for making IR splits. When a spill
is produced by a map task, the information about the
spill’s IR fragments, which we call IRF metadata, is sent
to the master node by using the heartbeat message passing
mechanism4. An IR fragment is uniquely identified by the

4This mechanism is used for communication between the master
and workers

task which produced it, its spill number and the partition.
The data flow between FP-Haddop components is shown
in Figure 3.

Notice that the choice of using spills as the output unit
of the map phase provides the following advantages. The
intermediate phase may start as soon as sufficient spills
have been produced, even if no map task has yet finished,
thus increasing the parallelism. Moreover, the fact that
spills are bounded in size guarantees that IR split maxi-
mum size is respected. This would not be the case if the
whole output of a map task is used, since its size is un-
bounded and could be by itself bigger than the IR split
limit.

For keeping IRF metadata, the master of FP-Hadoop
uses a specific data structure called IR fragment table (IRF
Table). Each partition has an entry in IRF Table that
points to a list keeping the IR fragment metadata of the
partition, e.g., size, spill and the ID of the map worker
where the IR fragment has been produced. The mas-
ter uses the information in IRF Table for constructing IR
splits and assigning them to ready reduce workers. This is
done mainly based on the scheduling strategies described
in the next subsection.

4.2. Scheduling Strategies

The master node is responsible for scheduling the inter-
mediate and final reduce tasks. For this, it uses a compo-
nent called Reduce Scheduler that schedules the tasks by
using a customizable scheduling strategy. Here we describe
the scheduling strategies which are used in FP-Hadoop; we
present the details of Reduce Scheduler in Section 4.4.

For scheduling an intermediate reduce task, the most
important issue is to choose the IR fragments that belong
to the IR split that should be processed by the task. The
strategies, which are currently implemented in FP-Hadoop
are:

• Greedy : In this strategy, IR fragments are chosen
from within the biggest partition, i.e., the partition
whose IR fragments account for the highest total
size. In the IRF Table, for each partition, along with
the list of IR fragments we store its total size, allow-
ing to chose the partition by a simple vertical scan
of IRF Table. After choosing the partition, we se-
lect IR fragments starting from the head of the list
until reaching the MaxIRSize value, i.e., the upper
bound size for an IR split. This strategy is the de-
fault strategy in FP-Hadoop.

• Locality-aware: In this strategy, the objective is to
choose for a worker w the IR fragments that are on
its local disk or close to it. Consequently, we chose
the partition p for which the IR fragments produced
in w account for the biggest size, provided that p’s
total size is as least MinIRSize. From the partition’s
fragments, we select those local to w until reaching

6

Map Worker

Input
Split

Map task map1

map

function

Buffer

spill1

p0 ... prp0

IRFi

...
spillm

p0 ... pr

Intermediate Reduce Worker

IR task ir1

IR fragments

...

...

IR Split

IRF0

IRFn

IRFjIR

function

Master

IR Fragments Table (IRF Table)

p0

IRFi info

map1
spill1
size

map2
spill1
size

...

..
.

pr

map1
spill1
size

...

Reduce
Scheduler

heartBeat: 〈IRFi info, ...〉

1
IR task info: 〈..., IRFi info, ...〉

2

3

heartBeat: 〈IRFj info〉

4

Figure 3: Data flow between a map worker, the master and an intermediate reduce worker. The communicated messages are shown in their
sent order.

MaxIRSize. If their total size is inferior to MinIR-
Size we keep taking fragments until reaching MinIR-
Size, first choosing from those produced in the same
rack as w and then from the same data center.

4.3. Multiple Iterations

FP-Hadoop can be configured to execute the interme-
diate reduce phase in several iterations, in such a way that
the output of each iteration is consumed by the next it-
eration. Notice that the output of IR tasks in phase n
produces the IR fragments that are to be consumed in
phase n+ 1.

An example of Top-k query execution over Wikipedia
data (described in Section 5) is shown in Figure 4, where
each phase is depicted as a rectangle whose height repre-
sents its input size and its length the execution time in
seconds. In this example, there are two iterations for the
intermediate reduce phase (shown with gray rectangles).
We can see how each iteration further reduces the inter-
mediate data size so that when the final reduce phase (in
blue) is executed, its input size is sufficiently small.

In FP-Hadoop, there is a parameter MaxNumIter that
defines the maximum number of iterations. Notice that
this parameter just establishes the maximum number, but
in practice each partition may be processed in a different
number of iterations, for instance depending on its size,
input/output ratio or skew.

10

5

100 200 300 400

In
p

u
t

si
ze

 (
G

B
)

Execution time (s)

Figure 4: Input size of different phases in multiple iterations example

FP-Hadoop provides the following strategies for con-
figuring the number of iterations:

• Size-based: In this approach, an iteration is launched
only if its input size is more that a given thresh-
old, MinIterSize. By default, FP-Hadoop uses the
same value as MinIRSize (i.e. the minimum size
of IR splits). The actual number of iterations may
vary among partitions, and the maximum number
may not be reached, e.g. if the size of intermedi-

7

ate data was originally small or has been sufficiently
reduced during previous iterations. The extreme sce-
nario corresponds to the case when the map output
for a given partition is less than MinIterSize. In this
case, the final reduce phase is directly launched.

• Input/Output-Ratio-based: In this approach, an iter-
ation is launched when the ratio between the input
and output size of the previous iteration is greater
than a system parameter IORatio. The rationale
is that if the input/output ratio is lower than some
value, then further intermediate iterations will not
help reducing the size of the partition in considera-
tion, and hence, will not improve the job execution
performance.

• Skew-based: In this approach, an intermediate it-
eration is launched for a given partition if its size
is SkewRatio times higher than the average parti-
tion size. Thus it only executes more iterations for
the overloaded partitions. For example by setting
SkewRatio equal to 2, only the partitions whose size
is at least twice the average size are consumed in a
new iteration, and the others are sent to the final
reduce phase.

4.4. Reduce Scheduler

To schedule the intermediate and final reduce tasks,
the master node uses a component called Reduce Sched-
uler. The scheduling is done using a generic algorithm
whose pseudo-code is shown in Algorithm 2. The algo-
rithm scans IRF Table, and selects the best partition for
constructing the IR split which should be consumed by the
worker. Then, based on the size of the data in the par-
tition and the maximum number of iterations, it decides
whether to launch a final reduce task or an intermediate
task. If it decides to launch a final reduce task, it uses all
IR fragments of the partition. In the other case, i.e., an
intermediate reduce task, it chooses the fragments of the
IR split from the best partition based on the scheduling
strategy.

The main functions that are used in the generic schedul-
ing algorithm (Algorithm 2) are as follows:

• isBestPartition(). Based on the scheduling strategy,
this function selects a partition from which the IR
fragments of the task will be chosen. For example,
with the Greedy strategy, it selects the partition that
has the biggest data size among the partitions satis-
fying the scheduling constraints, i.e., their total size
is at least MinIRSize, and the number of fragments
of the partition are at least MinIRFs , which can be
configured by the user.

• shouldRunFR(). This function decides if the final
reduce task should be launched for the data of a
partition. The decision depends on the number of it-
erations that should be executed in the intermediate

Input: w: Worker with the idle slot, P : set of
partitions

Result: t: Task to run
begin

chosen Partition ← ∅
for each p ∈ P do

if isBestPartition(p, chosen Partition, w) then
chosen Partition ← p

end

end
if shouldRunFR(chosen Partition) then

t← create FR Task(chosen Partition)
else

t← create IR Task(chosen Partition)
end
return t

end
Algorithm 2: Generic scheduling algorithm

reduce phase. If the current iteration for a partition
is the last iteration to be done, and the tasks of the
iteration have finished successfully, the final reduce
task can be scheduled.

• create FR Task(). This function creates a final re-
duce task. It simply uses all the IR fragments from
the partition given by isBestPartition function.

• create IR Task(). This function creates an interme-
diate reduce task. It takes the partition given by
isBestPartition function, and chooses a set of IR
fragments as the IR split of the task. The frag-
ments are chosen based on the scheduling strategy,
for instance local fragments would be favored in the
locality-aware strategy, whereas in the basic Greedy
scheduling strategy, IR fragments are added to the
task’s IR split while they do not surpass MaxIRSize.
The task metadata are sent to the ready worker (see
Figure 3).

To implement new scheduling strategies in Reduce Sched-
uler, usually it is sufficient to change the above functions.
For instance, to implement locality-aware strategy instead
of Greedy strategy, we changed isBestPartition function
(that selects the partition to use) in such a way that it
gives the priority to the partition that has the maximum
IR fragments generated in the ready worker, and then
changed generateIntermediateRT function to choose the
IR fragments accordingly, e.g., favor local fragments.

4.5. Fault Tolerance

In Hadoop, the master marks a task as failed either
if an error is reported (e.g., an Exception of the program
or a sudden exit of the JVM) or if it has not received
a progress update from the task for a given period [1].
In both cases, the task is scheduled for re-execution, if
possible in a different node. During the execution of a
job, the output of completed map tasks should be kept

8

Before Event After

t = t1

f1 f2 f3 Schedule task iri

Input = {f1, f2}

f3

t = t2

f6 Task iri fails f6 f1 f2

t = t3

f6 f1 f2 Schedule task irj

Input = {f6, f1}

f2

Figure 5: Task failure example.

m1 f1

m2 f2

m3 f3

m4 f4

m5 f5

m6 f6

m7 f7

m8 f8

ir1 f9

ir2 f10

ir3 f11

ir4 f12

ir5 f13

ir6 f14

rp

IRF Table for partition p

Re-insert rp input

f13 f14

Replace f14

f13 f11 f12

Replace f12

f13 f11 f7 f8

Figure 6: Worker failure example.

available in the workers’ disks until the job finishes. The
reason is that any reduce task reads data from all map
tasks’ output. If a worker fails, intermediate data stored
on its disk is not available any more. Consequently, in
addition to running tasks, all successfully completed map
tasks executed in the worker need to be rescheduled to
make their output available again.

In FP-Hadoop, the behavior in the case of failure is
slightly different, because we have to consider intermediate
reduce tasks and we can also profit from the fact that
they only read data from a subset of the map tasks. As
in Hadoop, we distinguish two scenarios: task failure and
worker failure.

4.5.1. Task Failure

For map and final reduce tasks, the behavior is exactly
the same as in native Hadoop, that is, the failed task is
scheduled for re-execution, if possible in a different node.

In the case of IR tasks, we need to re-inject their in-
put IR fragments metadata into the IRF Table. Then, the
fragments will be assigned to another task, not necessar-
ily grouped in the same IR Split. Since new IRFs may
be available, the reduce scheduler may choose to combine
them in different ways.

The case of an IR task failure is illustrated in the ex-
ample shown in Figure 5. The state of the IRFs list cor-
responding to a given partition p in the IRF Table is pre-
sented before and after each event. In time t = t1 task
ir i is scheduled with input fragments f1 and f2. Then,
in time t = t2 the task fails and, consequently, its input
fragments are injected back in the list. Notice that since t1
some fragments have already been consumed (e.g. f3) and
new fragments inserted (e.g. f6). Finally, when an idle
worker asks for a new task in time t = t3, fragments are
grouped differently and its input is composed of fragments
f6 and f1.

9

4.5.2. Worker Failure

If a worker node fails, if in the node there were running
tasks, they need to be re-scheduled. Map tasks are simply
re-executed and the input fragments of intermediate and
final reduce tasks are re-injected into the IRF Table.

In FP-Hadoop, as opposed to native Hadoop, not all
completed tasks’ output is needed in the future, since their
data may have already been consumed and reduced by
intermediate reduce tasks in subsequent iterations of the
execution tree. Indeed, FP-Hadoop uses a mechanism that
only requires the re-execution of a minimal amount of tasks
in the case of a worker failure.

Each IR fragment stores within its metadata the infor-
mation about their provenance, that is, a reference to the
fragments that were used on its generation. In the failure
of a worker, just after input IR fragments of running tasks
are reinserted to the IRF Table, each fragment stored in
the failed node is replaced by the fragments that were used
on its construction. If within those fragments, there are
some fragments that are stored in the failed node, they
are replaced by their predecessors as well. Fragments are
replaced recursively by their predecessors until they are
available or they have been generated in a map task. Only
in that case, the map task is scheduled for re-execution.
Re-injected fragments can be consumed by new IR tasks
following the standard procedure.

Let’s illustrate this with the example of Figure 6, in
which the execution tree for a given partition p is shown.
Reduce task r was running in the worker node when it
failed. IR fragments stored in the failed node are shad-
owed. The input fragments f12 and f14 are re-inserted to
the IRF Table as in a single task failure. Then, unavailable
fragments are replaced recursively by their predecessors.
In this way, f14 is replaced by f11 and f12 and then f12
by f7 and f8. No map task needs to be re-executed and
the re-injected fragments can be consumed again by new
tasks.

FP-Hadoop recovery strategy only re-processes the data
that is needed to finish the execution of the job, as op-
posed to native Hadoop, which needs to re-execute all map
tasks and non-finished reduce tasks executed in the failed
worker. Furthermore, as IR tasks have already reduced
the size of the intermediate data, the amount of data to
be treated is reduced even more, thus accelerating the re-
covery process.

5. Performance Evaluation

We implemented a prototype of FP-Hadoop by modi-
fying Hadoop’s components. In this section, we report on
the results of our experiments for evaluating the perfor-
mance of FP-Hadoop 5. We first discuss the experimental

5The executable code of FP-Hadoop as well as
the tested jobs are accessible in the following page:
http://gforge.inria.fr/plugins/mediawiki/wiki/fp-hadoop/

setup such as the datasets, queries and the experimental
platform. Then, we discuss the results of our tests done
to study the performance of FP-Hadoop in different sit-
uations, particularly by varying parameters such as the
number of nodes in the cluster, the size of input data, etc.

5.1. Setup

We run the experiments in the Grid500 platform6 in a
cluster with up to 50 nodes. The nodes are provided with
Intel Quad-Core Xeon L5335 processors with 4 cores each,
and 16GB of RAM. Nodes are connected through a switch
providing a Gigagbit ethernet connection to each node.

We compare FP-Hadoop with standard Apache Hadoop
and SkewTune [3] which is the closest related work to ours
(see a brief description in Related Work Section).

In all our experiments, we use a combiner function (for
Hadoop, FP-Hadoop and SkewTune) that is executed on
the results of map tasks before sending them to the reduce
tasks. This function is use to decrease the amount of data
transferred from map to reduce workers, and so to decrease
the load of reduce workers.

The results of the experiments are the average of three
runs. We measure two metrics:

• Execution time. This is the time interval (in seconds)
between the moment when the job is launched and
the moment when it ends. This is our default metrics
reported for most of the results.

• Reduce time. We use this metric to consider the time
that is used only for shuffling and reducing. It is
measured as the time interval between the moment
when the last map task is finished and the end of the
job.

With respect to Hadoop’s configuration, the number of
slots was set to the number of cores. All the experiments
are executed with a number of reduce workers equal to the
number of machines. We change io.sort.factor to 100,
as advised in [6], which actually favors Hadoop. For the
rest of the parameters, we employ Hadoop’s default values.

The default values for the parameters which we employ
in our experiments are as follows. The default number of
nodes which we use in our cluster is 20. Unless otherwise
specified, the input data size in the experiments is 20 GB.

In FP-Hadoop, we use the default Greedy scheduling
strategy as the high throughput of the network limits the
impact of the locality-aware strategy. The default value
for MinIRSize is set to 512 MB. The value of MaxIRSize
is always twice as that of MinIRSize, and the maximum
number of iterations is set to 1.

5.2. Queries and Datasets

We use the following combinations of MapReduce jobs
and datasets to assess the performance of our prototype:

6http://www.grid5000.fr

10

http://gforge.inria.fr/plugins/mediawiki/wiki/fp-hadoop/
http://www.grid5000.fr

Top-k% (TK). This job, which is our default job
in the experiments, corresponds to the query from the
Wikipedia example described in the introduction of the
paper. The input dataset is stored in the form of lines
with the schema:

Visits(language, article, num views, other data)

Our query consists on retrieving for each language the
k% most visited articles. The default value of k is 1, i.e.,
by default the query returns 1% of the input data. We
have used real-world and synthetic datasets. The real-
world dataset (TK-RD) is obtained from the logs about
Wikipedia page visits7 consisting of a set of files each con-
taining the statistics collected for a single hour. We also
produced two synthetic datasets, in which we can control
the number of keys and their skew. In the first synthetic
dataset (TK-SK), which is the default dataset, the num-
ber of articles per language follows a Zipfian distribution
function

f(l, S,N) =
1/ls

∑N

n=1(1/n
s)

that returns the frequency of rank l, where S and N are
the parameters that define the distribution, i.e., f(1, S,N)
returns the frequency of the most popular language. The
default value for Zipf exponent parameter (S) is 1, and
the parameter N is equal to the number of languages (10
by default). In the second synthetic dataset (TK-U), the
articles are uniformly distributed in the keys.

We perform several tests varying the data size, among
other parameters, up to 120GB. The query is implemented
using a secondary sort [6], where intermediate keys are
sorted first by language and then by the article’s number
of visits, but only grouped by language.

Inverted Index (II). This job consists of generating
an inverted index with the words of the English Wikipedia
articles8, as in [3]. We use a RADIX partitioner to map
letters of the alphabet to reduce tasks and produce a lex-
icographically ordered output. We execute the job with a
dataset containing 20GB of Wikipedia articles.

PageRank (PR). This query applies the PageRank [8]
algorithm to a graph in order to assign weights to the ver-
tices. As in [3] we use the implementation provided by
Cloud99. And as dataset, we use the PLD graph from
Web Data Commons10 whose size is about 2.8GB.

Wordcount (WC). Finally, we use the wordcount job
provided in Hadoop standard framework. We apply it to a
dataset generated with the RandomWriter job provided in
the Hadoop distribution. We test this job with a 100GB
dataset.

7http://dumps.wikimedia.org/other/pagecounts-raw/
8http://dumps.wikimedia.org/enwiki/latest/
9http://www.umiacs.umd.edu/ jim-

mylin/Cloud9/docs/index.html
10http://webdatacommons.org/hyperlinkgraph/

5.3. Scalability

We investigate the effect of the input size on the perfor-
mance of FP-Hadoop compared to Hadoop. Using TK-SK
dataset, Figures 7b and 7a show the reduce time and ex-
ecution time respectively, by varying the input size up to
120 GB, MinIRSize set to 5 GB, and other parameters
set as default values described in Section 5.1. Figures 7c
and 7d show the performance using TK-RD dataset with
sizes up to 100 GB, while other parameters as default val-
ues described in Section 5.1. As expected, increasing the
input size increases the execution time of both Hadoop
and FP-Hadoop, because more data should be processed
by map and reduce workers. However, the performance of
FP-Hadoop is much better than Hadoop when we increase
the size of input data. For example, in Figure 7a, the
speed-up of FP-Hadoop vs Hadoop on execution time is
around 1.4 for input size of 20GB, but this gain increases
to around 5 when the input size is 120GB. For the latter
data size, the reduce time of FP-Hadoop is more than 10
times lower than Hadoop.

The reason for this significant performance gain is that
in the intermediate reduce phase of FP-Hadoop the re-
duce workers collaborate on processing the values of the
keys containing a high number of values while in Hadoop a
single task has to process all this data. This is illustrated
in Figures 7e and 7f, where we compare the execution time
of the longest reduce tasks of Hadoop and FP-Hadoop for
TK-RD and 20GB. We can see that the longest task in
Hadoop is the responsible of the poor performance in the
reduce phase, which explains the total execution time. In
FP-Hadoop, the longest task is 4 times shorter, and this
is a consequence of the improved parallelism.

5.4. Effect of Cluster Size

We study the effect of the number of nodes of the clus-
ter on performance. Figure 8a shows the execution time
by varying the number of nodes, and other parameters
set as default values described in Section 5.1. Increas-
ing the number of nodes decreases the execution time of
both Hadoop and FP-Hadoop. However, FP-Hadoop ben-
efits more from the increasing number of nodes. In Fig-
ure 8a, with 5 nodes, FP-Hadoop outperforms Hadoop by
a factor of around 1.75. However, when the number of
nodes is equal to 50, the improvement factor is around 4.
This increase in the gain can be explained by the fact that
when there are more nodes in the system, more nodes can
collaborate on the values of hot keys in FP-Hadoop. In
opposition, in Hadoop, although using higher number of
nodes can decrease the execution time of the map phase,
it cannot significantly decrease the reduce phase time, in
particular if there are intermediate keys with high number
of values.

5.5. Effect of the Number of Intermediate Keys

In our tests, we use the attribute language as the inter-
mediate key for grouping the intermediate values. Here,

11

 0

 1000

 2000

 3000

 4000

 5000

 6000

 20 40 60 80 100 120

E
xe

cu
tio

n
tim

e
(s

)

Input data size (GB)

Hadoop
FP-Hadoop

(a)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 20 40 60 80 100 120

R
ed

uc
e

tim
e

(s
)

Input data size (GB)

Hadoop
FP-Hadoop

(b)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 20 40 60 80 100 120

E
xe

cu
tio

n
tim

e
(s

)

Wikipedia data size (GB)

Hadoop
FP-Hadoop

(c)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 20 40 60 80 100 120

R
ed

uc
e

tim
e

(s
)

Input data size (GB)

Hadoop
FP-Hadoop

(d)

 0

 200

 400

 600

 800

 1000

 1200

 1400

E
xe

cu
tio

n
tim

e
(s

)

Longest reduce tasks

(e)

 0

 200

 400

 600

 800

 1000

 1200

 1400

E
xe

cu
tio

n
tim

e
(s

)

Longest reduce tasks

(f)

Figure 7: Scalability of FP-Hadoop: With TK-SK (a) reduce time and (b) execution time; with TK-RD (c) execution time, (d) reduce time
and longest reduce tasks with 20GB for (e) Hadoop and (f) FP-Hadoop.

 0

 100

 200

 300

 400

 500

 600

 700

 10 20 30 40 50

E
xe

cu
tio

n
tim

e
(s

)

Number of nodes

Hadoop
FP-Hadoop

(a)

 0

 100

 200

 300

 400

 500

 600

 0 10 20 30 40 50 60

E
xe

cu
tio

n
tim

e
(s

)

 Number of intermediate keys

Hadoop
FP-Hadoop

(b)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1 2 3 4 5

E
xe

cu
tio

n
tim

e
(s

)

zipf exponent (S)

Hadoop
FP-Hadoop

(c)

 0

 200

 400

 600

 800

 1000

II TK-Sk PR WC

E
xe

cu
tio

n
tim

e
(s

)

Queries

Hadoop
FP-Hadoop

(d)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 10 20 30 40 50 60 70

E
xe

cu
tio

n
tim

e
(s

)

k (%)

Hadoop
FP-Hadoop

(e)

Figure 8: Effect of several parameters on the performance of FP-Hadoop: (a) number of intermediate keys, (b) zipfian exponent, (c) data
skew and queries, (d) cluster size, (e) intermediate data filtering

12

we report the results of our experiments done to study the
effect of this parameter on the performance of FP-Hadoop
and Hadoop.

Figure 8b shows the execution time with varying the
number of keys (languages) from 50 to 5, and other param-
eters set as default values. When the number of keys is
lower than 20, Hadoop cannot take advantage of all avail-
able reduce nodes (there were 20 cluster nodes in this test).
However, in FP-Hadoop, the intermediate reduce workers
can contribute in processing the values of the keys that
have high numbers of values. This is why there is a signif-
icant difference between the execution time of FP-Hadoop
and Hadoop in these cases.

Even for the cases where the number of keys is higher
than the number of nodes (i.e., 20), the execution time
of FP-Hadoop is better than that of Hadoop, because in
these cases, there are keys with high number of values, and
Hadoop cannot well balance the load of reduce workers.

For Hadoop, when increasing the number of keys, the
execution time decreases until some number of keys and
then it becomes constant. We performed our tests with up
to 200 keys, and observed that after 60 keys, there is no
decrease in the execution time of Hadoop.

5.6. Effect of High Skew in Reduce Workers Load

Here, we study the effect of high data skew on perfor-
mance by varying the zipf exponent (S) used for generating
synthetic datasets with Zipfian distribution. The higher is
S, the higher is the skew in the size of the data (articles)
assigned to the keys (languages).

Figure 8c shows the execution time with varying zipf
exponent S from 1 to 5, and other parameters set as default
values. The figure shows that the data skew has a big neg-
ative impact on the performance of Hadoop, but its impact
on FP-Hadoop is slight. The gain factor of FP-Hadoop in-
creases by increasing S. The reason is that by increasing
S, there will be intermediate keys with higher number of
intermediate values, and these keys are the bottlenecks in
Hadoop, because the values of each key are processed by
only one reduce worker.

5.7. Effect of Data Skew on Different Queries

Figure 8d shows the total execution time of FP-Hadoop
by using several queries and their corresponding data as
described in Section 5.1. The results show that FP-Hadoop
outperforms Hadoop, in all cases except for the word-count
query (WC).

The extent of the gain depends on the amount of re-
duction that can be performed in the intermediate phase
as a result of the partial aggregation. This explains while
the best case is for TK-Sk, where each IR task can reduce
the data back to k tuples and also while the reduction in
PR is small, since only the mass contributions can be ag-
gregated while the node structure has to be passed along
untouched.

For the word-count query, the execution time of FP-
Hadoop is a little bit (3%) higher than Hadoop, and this

increase corresponds to the overhead of the intermediate
reduce phase. Indeed, in this query, there is no skew in
the reduce side, because the partitioner can balance well
the reduce load among workers. FP-Hadoop spends some
time to detect that there is no skew in the intermediate
results, and then launches the final reduce phase. Thus,
its execution time is slightly higher than Hadoop. Notice
that even this small overhead can be avoided by disabling
the intermediate reduce phase.

5.8. Effect of Intermediate Data Filtering

Using parameter k in the top-k% query, we can control
the amount of data that may be filtered by the intermedi-
ate reduce tasks. In fact, in the top-k% query we return
k% of the data that have the highest values. Thus, in the
output of a map task or input data of an intermediate re-
duce task, if the amount of data is higher than k% of the
total data, then we can keep the k% highest ranked data
and filter the rest. Therefore, the lower is k, the higher is
the capacity of data filtering by intermediate reduce tasks.

Figure 8e shows the performance of the two systems
by varying k in top-k% query and other parameters set
as default values. The figure shows that the lower is k,
the better is the performance gain of FP-Hadoop. The
reason is that with lower k values, the intermediate reduce
tasks can filter more intermediate values. In particular, for
values lower than 10%, FP-Hadoop can profit well from
the filtering in intermediate reduce workers. For values
higher than 10%, the data filtering by intermediate reduce
workers decreases significantly, this is why the gain of FP-
Hadoop reduces. However, even for k values higher than
10%, there is a significant difference between the execution
time of FP-Hadoop and Hadoop.

5.9. Analysis of FP-Hadoop Parameters

We investigate the effect of the MinIRSize parameter
on the performance of FP-Hadoop. For this, we use two
configurations: 1) FP-Hadoop: the default configuration
described in Section 5.1, with one iteration in the inter-
mediate reduce phase; 2) FP-Hadoop-Iterations : in this
configuration, we set the maximum number of iterations
to be 10. As discussed in Section 4.3, the real number of
iterations may be lower than this maximum value, e.g. be-
cause in an iteration the size of a partition may be lower
than MinIRSize.

By varying MinIRSize, Figure 9a shows the execution
time of FP-Hadoop and FP-Hadoop-Iterations by varying
the MinIRSize parameter for processing an input of size
100GB, and other parameters set as default values. The
results show that in FP-Hadoop with one iteration, when
we setMinIRSize to small values (e.g., lower than 128MB),
the execution time is not very good. This suggests to not
choose very small values for MinIRSize, when using only
one iteration. The reason is that in these cases, we cannot
well take advantage of the one iteration in the intermediate
reduce phase, since with very small IR Splits the amount

13

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 1 2 3 4 5

E
xe

cu
tio

n
tim

e
(s

)

MinIRsize (GB)

FP-Hadoop
FP-Hadoop-Iterations

(a)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 1 2 3 4 5

N
um

be
r

of
 it

er
at

io
ns

MinIRsize (GB)

FP-Hadoop-Iterations

(b)

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20 25 30 35

N
um

be
r

of
 I

R
 ta

sk
s

Partition Size (GB)

MinIRSize = 500MB
MinIRSize = 1GB

(c)

Figure 9: Analysis of FP-Hadoop parameters: (a) MinIRSize and iterations, (b) number of performed iterations (c) number of IR tasks.

of data that can be filtered by intermediate tasks may not
by large.

However, by using more iterations in FP-Hadoop-Iterations,
even with small MinIRSize values, the response time is
good, since it uses more iterations to take advantage of
the intermediate phase. Figure 9b shows the number of
iterations done by FP-Hadoop-Iterations, when using dif-
ferent MinIRSize values. We observe that as MinIRSize
increases, less iterations are needed to complete the inter-
mediate phase.

In our experiments, when using FP-Hadoop with one
iteration, the best configuration for MinIRSize is in the
cases where it is close to the ratio of the map output size
over the number of reduce workers.

We also study the number of IR tasks launched by
the Reduce Scheduler. Figure 9c depicts the number of
scheduled IR tasks vs. the partition sizes for TK-SK with
100GB with MinIRSize of 500MB and 1GB. The relation
is clear: the bigger the partition, the higher the number of
scheduled IR tasks. This is an expected behavior of FP-
Hadoop, which tries to fully take advantage of parallelism
for the overloaded partitions.

5.10. Comparison with SkewTune

Here, we compare FP-Hadoop with SkewTune [3]. Fig-
ures 10a and 10b show the reduce time and execution time
of both approaches, using the data and parameters de-
scribed in Section 5.1. For these experiments, we down-
loaded the SkewTune prototype that is publicly acces-
sible11. The data which we used are the default data
and sizes described in Section 5.1 (e.g. 20GB of data for
TK-SK). As the results show, FP-Hadoop can outperform
SkewTune with significant factors. This is particularly no-
ticeable for TK-SK, where SkewTune cannot divide the
execution of the most popular key into several tasks.

5.11. Effect of Map Split Size

As discussed in Introduction of this paper, in order
to use the combiner function to decrease the reduce skew

11https://code.google.com/p/skewtune/

in the jobs such as Top-k%, we need to increase the size
of the map splits significantly, giving more chance to the
combiner to filter the intermediate data. In this section,
we study the effect of increasing the map split size on per-
formance of Hadoop and FP-Hadoop. Notice that in our
previous experiments for all compared systems, we used
the combiner function, and the default map split size was
64MB which was the default value in Hadoop. Figures
11a and 11b show the execution times for top-k% and II
queries, respectively. We varied the map split size from
64MB to 4GB, and other parameters set as default values
described in Section 5.1. In order to do so, we reinjected
the input data with the corresponding file system block
size, as in Hadoop the default behavior creates a map split
for each file block.

For top-k% query, we observe a slight improvement in
performance at the beginning (until the size of 256MB) for
both Hadoop and FP-Hadoop. But, the performance de-
grades significantly for higher split sizes. For the inverted
index (II) query, increasing the map split size has also a
negative impact. The reason is that although increasing
the size of the splits in the map phase may increase the
chance of the combiner function to filter more interme-
diate data, using big size splits increases significantly the
execution time of this phase, particularly because less map
workers may participate in the map phase. Thus, the con-
clusion is that the combiner function can not make Hadoop
as efficient as FP-Hadoop in processing high skewed data
(e.g. in top-k% query) , even by using big size map splits.

5.12. Discussion

Overall the performance results show the effectiveness
of FP-Hadoop for dealing with the data skew in the re-
duce side. For example, the results show that for 120GB
of input data, FP-Hadoop can outperform Hadoop with
factors of 10 and 5 in reduce time and total execution
time respectively. This gain increases when augmenting
the data size. The results also show that increasing the
number of nodes of the cluster can significantly increase
the gain of FP-Hadoop compared to Hadoop.

The results also show that there are jobs for which
the IR phase has no benefits. This occurs particularly

14

 0

 200

 400

 600

 800

 1000

II TK-Sk PR

E
xe

cu
tio

n
tim

e
(s

)

Queries

SkewTune
FP-Hadoop

(a)

 0

 100

 200

 300

 400

 500

II TK-Sk PR

R
ed

uc
e

tim
e

(s
)

Queries

SkewTune
FP-Hadoop

(b)

Figure 10: Comparison of FP-Hadoop and SkewTune (a) reduce time, (b) execution time.

 0

 200

 400

 600

 800

 1000

 0 1000 2000 3000 4000

E
xe

cu
tio

n
tim

e
(s

)

Map split size (MB)

Hadoop
FP-Hadoop

(a)

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000
 2200

 0 500 1000 1500 2000

E
xe

cu
tio

n
tim

e
(s

)

Map split size (MB)

Hadoop
FP-Hadoop

(b)

Figure 11: Effect of map split size on (a) Top-k% (TK-SK) and (b) Inverted Index.

in the cases where there is no skew in the intermediate
data or the skew can be significantly decreased in the map
phase by using a combiner function, e.g. in the word count
job which we tested. In these cases, it is sufficient to not
declare an IR function, then FP-Hadoop executes the job
without performing the IR phase.

6. Related Work

In the literature, there have been many efforts to im-
prove MapReduce [9], particularly by supporting high level
languages on top of it, e.g., Pig [10], optimizing I/O cost,
e.g., by using column-oriented techniques for data stor-
age [11, 12, 13], supporting loops [14], adding index [15],
caching intermediate data [16], supporting special opera-
tions such as join and Skyline [17, 18, 19, 20, 21, 22, 23, 24],
balancing data skew [25, 26], etc. Hereafter, we briefly
present some of them that are the most related to our
work.

The approach proposed in [26] tries to balance data
skew in reduce tasks by subdividing keys with large value
sets. It requires some user interaction or user knowledge
of statistics or sampling, in order to estimate in advance
the values size of each key, and then subdivide the keys
with large values. Gufler et al. [25] propose an adaptive
approach which collects statistics about intermediate key
frequencies and assigns them to the reduce tasks dynam-

ically at scheduling time. In a similar approach, Sailfish
[27] collects some information about the intermediate keys,
and uses them for optimizing the number of reduce tasks
and partitioning the keys to reducer workers. However,
these approaches are not efficient when all or a big part
of the intermediate values belong to only one key or a few
number of keys (i.e., less than the number of reduce work-
ers).

SkewTune [3] adopts an on-the-fly approach that de-
tects straggling reduce tasks and dynamically repartitions
their input keys among the reduce workers that have com-
pleted their work. This approach can be efficient in the
cases where the slow progress of a reduce task is due to in-
appropriate initial partitioning of the key-values to reduce
tasks. But, it does not allow the collaboration of reduce
workers on the same key.

Haloop [14] extends MapReduce to serve applications
that need iterative programs. Although iterative programs
in MapReduce can be done by executing a sequence of
MapReduce jobs, they may suffer from big data transfer
between reduce and map workers of successive iterations.
Haloop offers a programming interface to express iterative
programs and implements a task scheduling that enables
data reuse across iterations. However, it does not allow
hierarchical execution plans for reducing the intermediate
values of one key, as in our intermediate reduce phase.
Memory Map Reduce (M3R) [28] is an implementation of

15

Hadoop that keeps the results of map tasks in memory and
transfers them to the reduce tasks via message passing, i.e.,
without passing via the local disks. M3R is very efficient,
but can be used only for the applications in which inter-
mediate key-values can fit in memory. SpongeFiles [29] is
a system that uses the available memory of nodes in the
cluster to construct a distributed-memory, for minimizing
the disk spilling in MapReduce jobs, and thereby improv-
ing performance. The idea of using main memory for data
storage has been also exploited in Spark [2], an alterna-
tive to MapReduce, that uses the concept of Resilient Dis-
tributed Datasets (RDDs) to transparently store data in
memory and persist it to disc only when needed. The con-
cept of intermediate reduce phase proposed in FP-Hadoop
can be used as a complementary mechanism in the systems
such as Haloop, M3R, SpongeFiles and Spark, to resolve
the problem of data skew when reducing the intermediate
data.

In MapReduce Online [30], instead of waiting for re-
duce tasks to pull the map outputs, the map tasks push
their results periodically to the reduce tasks. This allows
to increase the overlap between the map and shuffle phases,
and consequently to reduce the total execution time. Sim-
ilarly, we also benefit from an increased overlap as we do
not need to wait for the end of a map task in order to start
transferring its output. But, MapReduce Online does not
resolve the problem data skew in overloaded keys.

There have been systems proposing new phases to MapRe-
duce in order to deal with special problems. For exam-
ple in Map-Reduce-Merge [19], in addition to the map
and reduce phases, a third phase called merge is added
to MapReduce in order to merge the reduce outputs of
two different MapReduce jobs. The merge phase is partic-
ularly used for implementing multi-join operations. How-
ever, Map-Reduce-Merge and other solutions proposed for
join query processing, e.g. [17, 22], cannot be used for re-
solving the problem of data skew due to overloaded keys.

In general, none of the existing solutions in the litera-
ture can deal with data skew in the cases when most of the
intermediate values correspond to a single key, or when the
number of keys is less than the number of reduce workers.
But, FP-Hadoop addresses this problem by enabling the
reducers to work in the IR phase on dynamically generated
blocks of intermediate values, which can belong to a single
key.

7. Conclusion

In this paper, we presented FP-Hadoop, a system that
brings more parallelism to the MapReduce job processing
by allowing the reduce workers to collaborate on processing
the intermediate values of a key. We added a new phase
to the job processing, called intermediate reduce phase, in
which the input of reduce workers is considered as a set
of IR Splits (blocks). The reduce workers collaborate on
processing IR splits until finishing them, thus no reduce
worker becomes idle in this phase. In the final reduce

phase, we just group the results of the intermediate reduce
phase.

By enabling the collaboration of reduce workers on the
values of each key, FP-Hadoop improves significantly the
performance of jobs, in particular in the case of skew in
the values assigned to the intermediate keys, and this is
done without requiring any statistical information about
the distribution of values.

We evaluated the performance of FP-Hadoop through
experiments over synthetic and real datasets. The results
show excellent gains compared to Hadoop. For example,
over a cluster of 20 nodes with 120GB of input data, FP-
Hadoop can outperform Hadoop by a factor of about 10
in reduce time, and a factor of 5 in total execution time.
The results show that the higher is the number of nodes,
the higher can be the gain of FP-Hadoop. They also show
that the bigger is the size of the input data, the higher can
be the improvement gain of FP-Hadoop.

Aknowledgements

Experiments presented in this paper were carried out
using the Grid’5000 experimental testbed, being developed
under the INRIA ALADDIN development action with sup-
port from CNRS, RENATER and several universities as
well as other funding bodies (see https://www.grid5000.fr).

References

[1] J. Dean, S. Ghemawat, MapReduce: Simplified data process-
ing on large clusters, in: 6th Symposium on Operating System
Design and Implementation (OSDI), 2004.

[2] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. Mc-
Cauly, M. J. Franklin, S. Shenker, I. Stoica, Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster
computing, in: USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI), 2012.

[3] Y. Kwon, M. Balazinska, B. Howe, J. A. Rolia, Skewtune: mit-
igating skew in mapreduce applications, in: SIGMOD, 2012.

[4] R. Akbarinia, M. Liroz-Gistau, D. Agrawal, P. Valduriez, An
efficient solution for processing skewed mapreduce jobs, in:
Database and Expert Systems Applications (DEXA), 2015.

[5] M. Liroz-Gistau, R. Akbarinia, P. Valduriez, Fp-hadoop: Effi-
cient execution of parallel jobs over skewed data, PVLDB 8 (12)
(2015) 1856–1859.

[6] T. White, Hadoop - The Definitive Guide: Storage and Analysis
at Internet Scale (3rd ed.), O’Reilly, 2012.

[7] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart,
M. Venkatrao, F. Pellow, H. Pirahesh, Data cube: A relational
aggregation operator generalizing group-by, cross-tab, and sub
totals, Data Min. Knowl. Discov. 1 (1) (1997) 29–53.

[8] S. Brin, L. Page, The anatomy of a large-scale hypertextual web
search engine, Computer Networks 30 (1-7) (1998) 107–117.

[9] K.-H. Lee, Y.-J. Lee, H. Choi, Y. D. Chung, B. Moon, Parallel
data processing with mapreduce: a survey, SIGMOD Record
40 (4) (2011) 11–20.

[10] C. Olston, B. Reed, U. Srivastava, R. Kumar, A. Tomkins, Pig
latin: a not-so-foreign language for data processing, in: SIG-
MOD, 2008.

[11] A. Floratou, J. M. Patel, E. J. Shekita, S. Tata, Column ori-
ented storage techniques for mapreduce, PVLDB 4 (7) (2011)
419–429.

16

[12] Y. Lin, D. Agrawal, C. Chen, B. C. Ooi, S. Wu, Llama: leverag-
ing columnar storage for scalable join processing in the mapre-
duce framework, in: SIGMOD, 2011.

[13] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, R. E. Gruber, Bigtable:
A distributed storage system for structured data, ACM Trans.
Comput. Syst. 26 (2) (2008) 4–26.

[14] Y. Bu, B. Howe, M. Balazinska, M. D. Ernst, The haloop ap-
proach to large-scale iterative data analysis, VLDB J. 21 (2).

[15] J. Dittrich, J.-A. Quiané-Ruiz, A. Jindal, Y. Kargin, V. Setty,
J. Schad, Hadoop++: Making a yellow elephant run like a chee-
tah (without it even noticing), PVLDB 3 (1) (2010) 518–529.

[16] I. Elghandour, A. Aboulnaga, Restore: reusing results of mapre-
duce jobs in pig, in: SIGMOD, 2012.

[17] F. N. Afrati, A. D. Sarma, D. Menestrina, A. G. Parameswaran,
J. D. Ullman, Fuzzy joins using mapreduce, in: ICDE, 2012.

[18] J. Huang, R. Zhang, R. Buyya, J. Chen, MELODY-JOIN: ef-
ficient earth mover’s distance similarity joins using mapreduce,
in: ICDE, 2014.

[19] H. chih Yang, A. Dasdan, R.-L. Hsiao, D. S. Parker, Map-
reduce-merge: simplified relational data processing on large
clusters, in: SIGMOD, 2007.

[20] D. Jiang, A. K. H. Tung, G. Chen, Map-join-reduce: Toward
scalable and efficient data analysis on large clusters, IEEE
Trans. Knowl. Data Eng. 23 (9) (2011) 1299–1311.

[21] Y. N. Silva, J. M. Reed, Exploiting mapreduce-based similarity
joins, in: SIGMOD, 2012.

[22] A. Okcan, M. Riedewald, Processing theta-joins using mapre-
duce, in: SIGMOD, 2011.

[23] D. Deng, G. Li, S. Hao, J. Wang, J. Feng, Massjoin: A
mapreduce-based method for scalable string similarity joins, in:
ICDE, 2014.

[24] S. Fries, B. Boden, G. Stepien, T. Seidl, Phidj: Parallel similar-
ity self-join for high-dimensional vector data with mapreduce,
in: ICDE, 2014.

[25] B. Gufler, N. Augsten, A. Reiser, A. Kemper, Load balancing in
MapReduce based on scalable cardinality estimates, in: ICDE,
IEEE, 2012.

[26] S. R. Ramakrishnan, G. Swart, A. Urmanov, Balancing reducer
skew in mapreduce workloads using progressive sampling, in:
ACM Symposium on Cloud Computing (SoCC), 2012.

[27] S. Rao, R. Ramakrishnan, A. Silberstein, M. Ovsiannikov,
D. Reeves, Sailfish: a framework for large scale data process-
ing, in: ACM Symposium on Cloud Computing, SOCC ’12, San
Jose, CA, USA, October 14-17, 2012, 2012.

[28] A. Shinnar, D. Cunningham, B. Herta, V. A. Saraswat, M3r: In-
creased performance for in-memory hadoop jobs, PVLDB 5 (12)
(2012) 1736–1747.

[29] K. Elmeleegy, C. Olston, B. Reed, Spongefiles: Mitigating data
skew in mapreduce using distributed memory, in: SIGMOD,
2014.

[30] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmele-
egy, R. Sears, Mapreduce online, in: NSDI, 2010.

17

	Introduction
	MapReduce Background
	Job Execution in Hadoop
	An Abstract View

	FP-Hadoop Principles
	Programming Model
	IR and FR Functions

	Design Details
	IR Fragments for Constructing IR Splits
	Scheduling Strategies
	Multiple Iterations
	Reduce Scheduler
	Fault Tolerance
	Task Failure
	Worker Failure

	Performance Evaluation
	Setup
	Queries and Datasets
	Scalability
	Effect of Cluster Size
	Effect of the Number of Intermediate Keys
	Effect of High Skew in Reduce Workers Load
	Effect of Data Skew on Different Queries
	Effect of Intermediate Data Filtering
	Analysis of FP-Hadoop Parameters
	Comparison with SkewTune
	Effect of Map Split Size
	Discussion

	Related Work
	Conclusion

