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Abstract
The Print-and-Scan (P&S) process is generally considered

as being a random process that can be modeled by a white addi-
tive normal process, ergodic in the wide sense. This study aims at
experimentally validate or invalidate this hypothesis. Moreover,
the experiments we carried on have been conducted in order to
separate the printing from scanning impact. The main conclu-
sion of these experiments is that the usual hypothesis cannot be
supported by the experiments. The normal modeling can be in-
validated for the whole P&S process. Moreover, it has been high-
lighted that this process cannot be considered as being neither
white nor ergodic in the wide sense. The scanner noise seems to
be mean ergodic and closer to a Laplace, than to a normal distri-
bution.

Introduction
The degradation of information due to Print-and-Scan (P&S)

processes is a major issue in digital forensics and printed docu-
ment as well as in image authentication. This degradation is usu-
ally considered as being a stochastic process that can be modeled
by an additive or a multiplicative normal or lognormal distribution
[1, 2]. These models include a random noise due to ink dispersion
on the paper during the printing as well as the illumination con-
ditions during the scanning process. It is generally acknowledged
that these two degradations cannot be separated.
In this paper, we aim at experimentally determine the nature of the
printer and the scanner noise, as well as identify the distribution
of white and black pixels after the P&S process.
One of the main goals of this paper is to propose a way to charac-
terize the nature of a stochastic process in image processing and
particularly answer the following questions:

1. Does this process follow a given statistical distribution (e.g.
normal or Laplace)?

2. Can we consider the noise as being additive?
3. Can we consider the noise as being stationary?
4. Can we consider the noise as being ergodic?
5. Can we consider the noise as being white?

To answer those questions, we propose a series of statistical tests.
We experiment those tests on a large image database that con-
tains black-and-white images of textured image [4] that have been
collected after numerous printing and scanning operations. We
use these images since they have a very high contrasted structure
made of black and white patterns. All statistical tests presented in
this paper are performed with real data.
In the next section, we introduce some statistical definitions and
explain how the statistical tests we use work. Then we propose
different methodologies to verify weather the considered process
is stationary and ergodicy or not. An overview of P&S models,

as well as the description of textured image we use are discussed.
The experiments and their outcomes are presented in following
section. The experimental results we obtain on color changes after
P&S process are discussed. Finally, we conclude and determine
several future paths in the last section.

Statistical definitions and tests
In this section we present the characteristics of random pro-

cess as well as several hypothesis test, that are used for our exper-
iments.

Random process characteristics
A random variable, X(s), is a single-valued real function that

assigns a real number, called the value of X(s), to each sample
point s ∈ S [3].
A random process can be defined as a family of random variables
{X(t,s)|t ∈ T,s ∈ S} defined over a given probability space and
indexed by the time parameter t [3]. The X(t,s) is a collection of
time functions, one for each sample point s (see Fig. 1).

Figure 1: A sample random process [3].
A parameter is called statistical, if it is calculated using X(t,s)
with a fixed value of t. A parameter is called spatial, if it is calcu-
lated using X(t,s) with a fixed value of s.
Stationary process. A random process is called a strict sense
stationary process if its Cumulative Distribution Function (CDF)
FX is invariant to a shift in the time origin [3]. That means that
X(t,s) is strict sense stationary if its CDF is identical to the CDF
of X(t + ε,s) for any arbitrary shift ε:

FX (X(t,s)) = FX (X(t + ε,s)). (1)

When the CDF is differentiable, the equivalent condition for strict
sense stationarity is that the Probability Distribution Function
(PDF) fX is invariant to a shift ε in the time origin:

fX (X(t,s)) = fX (X(t + ε,s)). (2)
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In practice, we often work only with the mean and the autocovari-
ance functions of a random process. A random process in which
the mean and autocovariance function does not depend on abso-
lute time is called a wide-sense stationary process. Thus, for a
wide-sense stationary process X(t), we have:

E[X(t,s)] = µX , constant, (3)

E(X(t,s),X(t + τ,s)) = RXX (τ),∀t ∈ T. (4)

Ergodic process. The time average of random process X(t,s)
is calculated at a fixed sample point s (i.e. calculated over
X(t1,s), . . . ,X(tn,s)). Considering a random process X(t,s)
whose observed sample is x(t), the time average of the function
x(t) is defined by:

x̄ = lim
τ→∞

1
2τ

∫
τ

−τ

x(t)dt. (5)

A stationary random process X(t,s) is said to be ergodic if every
member of the set exhibits the same statistical behavior as the set.
This implies that it is possible to determine the statistical behavior
of the set by examining only one typical sample function [3]. An
ergodic process can be represented by only one stochastic process
realization. As for stationarity, ergodicity is often restricted to its
two first orders.
A random process X(t,s) is defined as being first order ergodic
(or ergodic in the mean) if time mean function has the same dis-
tribution as statistical mean function:

x̄ = µX . (6)

A random process X(t,s) is defined to be second order ergodic if
time autocovariance function has the same distribution as statisti-
cal covariance function:

RXX =CovXX . (7)

White-noise process. The random process X(t,s) is a white noise
if its autocovariance function is close to a Dirac impulse:

RXX (τ) =
σ2

X
2

δ (τ), (8)

where σ2
X is the variance of the random process X(t,s) and δ (τ)

is the impulse function.
The Fourier transform (if it exists) of the autocovariance func-
tion of a stationary in the wide sense random process X(t,s) is

called its power spectral density. Since RXX (τ) =
σ 2

X
2 δ (τ), then

SXX (τ) = T F{RXX (τ)} = σ 2
X

2 does not depend on the frequency.
This is why it is called white noise (by analogy with the spectral
property of the white light).

χ2 goodness of fit test
The χ2 goodness of fit test is used to identify whether sam-

ple data are consistent with a given distribution or not [13]. This
test can be used when the sample data are categorical and when
the number of observations in each variable level is at least 5.
The null hypothesis of this test is: the data are consistent with
the specified distribution. The alternative hypothesis is: the data
are not consistent with the specified distribution. Generally, only

one reject of null hypothesis is enough to ensure, at a given sig-
nificant level, that the data are not consistent with the distribution.
However, several tests are needed to be confident that the null hy-
pothesis can be accepted at the same significance level. The sig-
nificance level is chosen by the user. It is often equal to 0.01,0.05,
or 0.10.
Let X be a discrete random variable, whose domain can be di-
vided into k partition classes A1, A2, . . . , Ak. Let ni, i = 1, . . . ,k be
the number of samples in each class i, with N = n1 +n2 + · · ·+nk
being the total number of samples in A. Let pi, i = 1, . . . ,k be
the probabilities of the class i based on the specified distribution.
The χ2 goodness of fit test considers the statistics D2 defined as
follow:

D2 =
k

∑
i=1

(ni−N pi)
2

N pi
. (9)

The degree of freedom of χ2 goodness of fit test equals to k− 1.
The null hypothesis can be accepted if:

D2 ∼ χ
2. (10)

The table of critical values for the χ2 goodness of fit test presents
threshold values χ2

k−1,α for this test for different significance lev-
els α (also called p-value). The null hypothesis is rejected if:

D2 > χ
2
k−1,α . (11)

If the same A is used to estimate l parameters of the specified
distribution, then the χ2

k−1−l,α critical value has to be chosen.

Kolmogorov-Smirnov test
The Kolmogorov-Smirnov (KS) test can be used to verify

whether two probability distributions differ or not [13]. The null
hypothesis of this test is: the two distributions are close. The
alternative hypothesis is: the two distributions are different. Ac-
ceptance or rejection are also done at significance level chosen by
user.
This test uses the maximal distance between the empirical distri-
bution functions of both probability distributions. The empirical
distribution function Fn for n observations xi of X is defined as:

Fn(x) =
1
n

n

∑
i=1

I]−∞,x](xi), (12)

where I]−∞,x](xi), the indicator function of ]−∞,x], equals to 1 if
xi ≤ x and to 0 otherwise.
Let X1 and X2 be two discrete random variables. Let F1,n and F2,n′

be the empirical distribution functions of random variables X1 and
X2 respectively. The KS test considers the statistics Dn,n′ defined
as follow:

Dn,n′ = sup
x
|F1,n(x)−F2,n′(x)|. (13)

The null hypothesis is rejected at significant level α if:

Dn,n′ > c(α)

√
n+n′

nn′
, (14)

where c(α) is defined using the table of critical values for the
Kolmogorov-Smirnov test [14]. For example, c(α) = 1.36, if α =
0.05 or c(α) = 1.22, if α = 0.1.
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Mann-Whitney test
The Mann-Whitney U-test (also called Wilcoxon rank-sum

test) is a non-parametric test that is used to test whether two inde-
pendent random variables have identical distributions or not [13].
The null hypothesis of this test is: the two distributions are identi-
cal. The alternative hypothesis is: the two distributions are differ-
ent. As in the previous hypothesis tests, acceptance or rejection
are done at a user chosen significance level.
This test is based on the idea that the information about the rela-
tionship between two random variables X1 and X2 can be obtained
from n1 observations of the random variable X1 and n2 observa-
tions of the random variable X2 that are arranged together in in-
creasing order.
The test aims at testing whether the two random variables X1 and
X2 are mixed or not. Let us suppose that the random variable X1
has less observations, e.g. n1 < n2. The combined set of data is
first arranged in ascending order with tied scores receiving a rank
equal to the average position of those scores in the ordered se-
quence. Then, the ranks for the observations which came from X1
are summed up to provide the rank sums R1. The Mann-Whitney
U-test considers the statistics U defined as follow:

U = n1n2 +
n1(n1 +1)

2
−R1. (15)

The test consists of comparing the value U with the value given in
the table of critical values for the Mann-Whitney U-test Un1,n2,α ,
where the critical values are provided for given values n1, n2 and
α . The null hypothesis is rejected if:

U >Un1,n2,α . (16)

Proposed methodologies
In this section, we present how to use the proposed tests to

verify the random process stationarity and ergodicity of first order
and its stationarity of second order. Let us consider the discrete
random process X(t,s) defined in finite sequences t = (t1, · · · , tm)
and s = (s1, · · · ,sn).

Stationarity of first order test
As it was mentioned before, the process is stationary of first

order if its statistical average E[X(t,s)] is constant over the tem-
poral separation t, i.e. E[X(t,s)] = µX .
To verify the first order stationarity of random process X(t,s), we
calculate its statistical mean values for each time ti, i.e. we have
a set of m mean values. In order to show the constancy of statisti-
cal mean, we divide this set into two independent random subsets
and apply the Kolmogorov-Smirnov test. The null hypothesis of
this test is formulated as: the two independent random subsets of
mean value set have the same distributions.
If the null hypothesis is rejected at significant level α at least once,
the random process X(t,s) is not stationary of first order. Other-
wise, the random process X(t,s) can be considered as being sta-
tionary of first order.

Ergodicity of first order test
The process is ergodic of first order if the spatial mean equals

the statistical mean. As the random process is stationary of first
order, we have the set of m statistical mean values. Then we cal-
culate the spatial mean value for each state s j (thus we obtain a

set of n spatial mean values).
To verify the first order ergodicity of random process X(t,s), we
perform a Mann-Whitney U-test. The null hypothesis is formu-
lated as: the spatial mean and statistical mean are identical.
If the null hypothesis is rejected at significant level α , the random
process X(t,s) is not ergodic of first order. Otherwise, we declare
that the random process X(t,s) can be considered as being ergodic
of first order.

Stationarity of second order test
We want to verify whether the random process X(t,s) is sta-

tionary of second order or not. As it was mentioned before, the
process is stationary of second order if the autocovariance func-
tion does not depend on absolute time, i.e.

E(X(t,s),X(t + τ,s)) = RXX (τ),∀t ∈ T.

To verify the second order stationarity, we calculate its autoco-
variance function at each time t (i.e. we have a set of m′ auto-
covariance values). In order to show its constancy, we divide this
set of autocovariance values into two independent random subsets
and apply the Kolmogorov-Smirnov test. The null hypothesis of
this test is formulated as: the two independent random subsets of
autocovariance set have the same distributions.
If the null hypothesis is rejected at significant level α at least once,
the random process X(t,s) is not stationary of second order, and
therefore, it is neither wide-sense stationary nor wide-sense er-
godic. Otherwise, we declare that the random process X(t,s) can
be considered as being stationary of second order.

P&S impact
In this section we present the state of the art of P&S pro-

cess modeling as well as the description of images used for our
experiments.

P&S process modeling
Here we review some previous interesting work dedicated to

characterize the P&S process.
The purpose of a printer model is to accurately predict the gray
level of a binary image produced by a printer. The authors in [5]
suggest such a printer model that can be used by halftoning algo-
rithms. They use a previously proposed physical model to train
the adaptive signal processing model offline. Then this model is
used to calculate the average exposure of each subpixel for any
input pattern in real time.
In [6], a print-quality perception model has been proposed. This
model uses an image analysis system and a neural network trained
to be able to differentiate different print qualities.
The authors in [7] model the P&S process by considering the
pixel value and the geometric distortions separately. According
to this model, the distortion of pixel values is caused by the lumi-
nance, contrast, gamma correction, chrominance variations and
blurring of adjacent pixels. This distortion introduces a visual
quality change into the scanned image. The distortion of the geo-
metric boundary is caused by rotation, scaling and cropping. That
may introduce considerable changes at the signal level, especially
on the DFT coefficients.
The pixel value distortion model for inkjet printers and flatbed
scanners, proposed in [7], consists of a high-pass filter like a point
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spread function, a white normal random noise, a thermal noise and
a dark current noise. The size of P&S image is usually different
from the original, as printer and scanner resolutions may be dif-
ferent [7]. The authors consider the image geometric distortions
to be an important factor and view it as an additional source of
noise.
In [8], the authors view the image cropping as a cause of blurring
in frequency domain. They model the P&S process on three main
components: mild cropping, correlated high-frequency noise and
nonlinear effects. The conclusions of the authors, based on ob-
serving the DFT coefficient magnitudes during their experiments
for laser printers, are as follows:

• The low and mid frequency coefficients are less sensitive to
P&S process than the high frequencies,

• The coefficients of the low and mid frequency bands with
low magnitudes suffer from a much higher noise than their
neighbors with high magnitudes,

• Coefficients with higher magnitudes have a gain of roughly
unity,

• Slight modifications of the high magnitude low frequency
coefficients do not add significant distortion to the image.

These observations suggest that the printing operation does not
cause blurring, since several dots are used to print each pixel of a
digital image [8].
As the halftone introduces distortions in the P&S image too,
the authors in [9] proposed an accurate linear model for error
diffusion during halftoning. This model predicts the high-
frequency noise and the edge sharpening effects introduced by
halftone. The authors in [10] use this halftone model to represent
halftone/inverse halftone printing channel by an equivalent chan-
nel. This model was constructed for inkjet printer by supposing
that the scanning process does not introduce any distortion.
Some researchers model the P&S channel as an authentication
channel [11]. The printing process at a very high resolution can
be seen as a stochastic process due to the nature of the printer
characteristics [12]. The authors simulate the printing process
as a generalized normal distribution or a log-normal distribution
(proposed by [1]). Assuming the statistical properties of the P&S
channel, the authors in [1] experimentally show that the metric
values of black/white blocks of pixels are related to random
variables following an asymmetric log-normal distribution.
The modeling of P&S process is a well-known challenging field.
Due to difficulties and randomness of this process, according to
our expertise, no suitable mathematical model has been suggested
yet. Meanwhile, some interesting earlier work are presented in
this section.

Textured image description
In order to visualize the impact of the P&S process, we

printed and scanned the same textured image several times. The
original textured image is illustrated in Fig. 2.a and its printed and
scanned in 600 dpi version is illustrated in Fig. 2.b. The textured
patterns have a size of 12×12 pixels. Their characteristics are de-
scribed in [4]. From the zoomed parts of these samples (Fig. 2),
we note that the internal textured structure of the patterns is lost,
the image becomes blurred and the colors are changed.
As mentioned before, these textured images will be used in our

experiments due to their frequent color changes and also to the
fact that the texture influences the color distortion.

(a) Textured image

(b) Printed and scanned textured image

Figure 2: Examples of a) Original textured image and b) Printed
and scanned textured image (a).

It is possible to compensate some color changes by using a color
Look-Up-Table (LUT), dedicated to each printer-scanner pair.
Such a LUT can be constructed by measuring the color changes
after a P&S process. An example of such a LUT is presented in
Fig. 3.

Figure 3: Example of color changes after P&S process. Red line:
original colors, blue line: colors after P&S process.

We note from Fig. 3 an especial loss in dark colors. The LUT can
correct some color defects. However, it is impractical to construct
such a LUT for each printer-scanner pair and each type of paper.
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Experiments: noise after P&S impact
In this section, we present a series of experiments dedicated

to the study of the nature of the noise added by a P&S process.
First, we isolate the scanner noise and perform several statistical
tests to study its nature and to investigate its characteristics. Then,
we perform the same experiments to study the noise added by the
whole P&S process.

Study of scanner noise
Experimental setup. This experiment aims at isolating the

scanner noise. To achieve this isolation, we propose to print an
image once and then scan it n times. Let I be the original image,
P be the printed image of original image I and S j ( j = 1, . . . ,n)
be the n scanned samples of printed image P. The scheme can be
picked as:

I→ Print→ P→ Scan→ S j. (17)

Let us consider P as a function of I and εP, S j as a function of I,
εP and εS, i.e:

P = f (I,εP),

S j = g(P,εS j ) = P+ εS j = f (I,εP)+ εS j ,

where f () is the function associated to the printing process, g()
is the function associated to the scanning process and εP and εS j

are the noises introduced by the printer and the scanner respec-
tively. The + operator shows that the printed and scanned image
S j can be represented by a function of the printing process and
the scanner noise (that also depends on the function of the print-
ing process).
If the noise has a regularity, we can consider to calculate the dif-
ference among samples in order to study the noise nature. We
propose thus to calculate the differences among each pair of n
samples, i.e. subtract pairs of scanned images to provide samples
of the scanner noise:

S j−S j′ = εS j − εS j′ , (18)

The ε j j′ = εS j − εS j′ can be used to characterize the stationarity
and the ergodicity of the noise introduced by the scanning
process. These characteristics, that are inherent to ε j j′ , are also
inherent to εS j and εS j′ . Therefore, we can characterize the
scanner noise by characterizing the stationarity and ergodicity of
ε j j′ .

Let us introduce the same experimental setup when using
the terminology of random processes. After a P&S process each
image can be considered as random variable X(t,s). Therefore,
the set of n P&S images can be considered as random process
X(t,s), where s = {1, . . . ,n} is the dimension of our data set and
t = {1, . . . ,m}×{1, . . . ,m} is the set of pixels in an image I.
As shown before, the scanner noise function can be obtained by
subtracting every two random variables X(t,s j) and X(t,s j′), in
order to create a new random process Y (t,s) with s = {1, . . . ,n′}:

Y (t,s) = X(t,s j)−X(t,s j′), j 6= j′,s j = s j′ = {1, . . . ,n′}, (19)

where n′ = n(n−1)
2 .

Database description. We print one textured image once
and then scan it n = 90 times. Each P&S image has a 300× 300
pixel size, i.e. m = 300. The number of noise samples is then
equal to 360,450,000.
Let us visualize the distribution of Y (t,s) for any values of t and s
(i.e. as if it was an ergodic process) in Fig. 4. The mean value of
this distribution is equal to µ = −0.0187, its standard deviation
is equal to σ = 10.2264.

Figure 4: Scan noise distribution.

Characterization of the Y (t,s) distribution. In this experiment,
we want to verify whether the Y (t,s) follow a given classical
distribution (a normal or a Laplace) or not. In order to answer
this question, we compare the distribution of the random process
Y (t,s) with each specified distribution using the χ2 goodness-of-
fit test described previously.
A reduced sample data set has been created by randomly select-
ing n′ = 100 vectors of Y (t,s) (for lower computational time).
We therefore work with a data subset of 9,000,000 samples. To
counteract working with a subsample, we perform each test sev-
eral times.
An algorithm of χ2 goodness-of-fit test involving the estimation
of mean and variance is presented in Algorithm 1. The result of
this test is that both hypotheses are rejected at a significance level
of 0.05. Thus our data-set has neither a normal nor a Laplace
distribution.
We computed two distances to see how far the empirical CDF
based on the initial data is from the CDF of a normal or of a
Laplace distribution. The comparison involves:

• the maximal distance dmax between the CDFs (the measure
used in Kolmogorov-Smirnov test):

dmax = sup
x
|Fn(x)−F(x)|, (20)

• the squared distance d2 between the CDFs (the measure
used in Cramer-von Mises test):

d2 = ∑
i
(Fn(xi)−F(xi))

2(xi− xi−1). (21)
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Algorithm 1 Chi-square goodness-of-fit test

Require: Data X = {x1, . . . ,xN}
1: Calculate the data histogram h with k bins
2: ni number of samples in bin i
3: µ ← mean(X)
4: σ ← std(X)
5: for i = 1 : k do
6: pi←

∫
f (x,µ,σ)dx

7: end for
8: D2← ∑

k
i=1 (

(ni−N pi)
2

N pi
)

9: if D2 < χ2
k−3 then

10: X has distribution, that corresponds to probability density
function f

11: end if

Table 1 presents the differences among the CDF based on our
data-set and the CDF(s) of a normal and a Laplace distributions.
We notice that these distances are rather stable under the changes
of sample size.

Number of Laplace distibution Normal distibution
samples N dmax d2 dmax d2

30,000 0.0933 0.0712 0.1482 0.2507
100,000 0.0936 0.0722 0.1483 0.2496
200,000 0.0922 0.0704 0.1474 0.2482
300,000 0.0934 0.0719 0.1490 0.2488
400,000 0.0925 0.0714 0.1484 0.2497

Table 1: Distances among CDFs of initial data (scanner noise)
and estimated Laplace and normal distributions.

Figure 5: CDF of scanner noise (blue line), estimated Laplace
(green line) and estimated normal (red line) distributions.

We illustrate these distances among CDFs in Fig. 5. We note
that the CDF of the initial data (blue line) is closer to the CDF of
the Laplace distribution (green line) than the CDF of the normal
distribution (red line). Therefore the scanner noise can be said
to be closer to a Laplace distribution than to a normal distribution.

Additive noise. After a P&S process, the image obtained
with one of the textured images consists of gray level pixels when

the original textured image is binary. Therefore, all gray level
pixels can be separated into two classes: the black class, that
consists of black pixels from textured image, and the white class,
that consists of white pixels from textured image.
The noise cannot be assumed to be additive if the error distribu-
tion of the black pixels is different from the error distribution of
the white pixels. As we know the true map of black and white
pixel placement, we separate the ε j j′ in two classes: black class
and white class. This leads to two random processes B(t,s) and
W (t,s). The histograms of error black random processes and
white random processes are illustrated in Fig. 6.
We apply the Mann-Whitney test in order to decide whether or
not the error distribution can be said to be additive, i.e. quantify
the hypothesis that the black and white distributions are the same.
The hypothesis that the distributions are the same is rejected at
a significance level of 0.05. Therefore, the noise added by the
scanning process cannot be considered as being additive.

(a) Black pixel class

(b) White pixel class
Figure 6: Histograms of scan noise introduced to a) Black pixels
and b) White pixels.

Stationarity of first order. To verify the first order stationarity of
random process Y (t,s), we use the method described previously.
The null hypothesis of Kolmogorov-Smirnov test is formulated
as: the two independent random subsets of mean value set have
the same distributions. The Kolmogorov-Smirnov test cannot
reject the null hypothesis at a significance level of 0.05, therefore
our process can be supposed being stationary of first order, i.e.
the statistical average respects E[Y (t,s)] = µY .
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Ergodicity of first order. To verify the first order ergodic-
ity of the random process Y (t,s), we use the method described
previously. The null hypothesis is formulated as: the spatial
mean and statistical mean are identical. The Mann-Whitney test
cannot reject the null hypothesis at a significance level of 0.05.
Therefore, our process can be supposed being ergodic of first
order.

Stationarity of second order. To verify the second order
stationarity of the random process Y (t,s), we use the method
described previously. The null hypothesis of the Kolmogorov-
Smirnov test is formulated as: the two independent random
subsets of autocovariance set have the same distributions.
The Kolmogorov-Smirnov test rejects the null hypothesis at a
significance level of 0.05, therefore our process is not stationary
of second order. That means our process is not wide-sense
stationary.

Test for white noise. A random process can be a white-
noise process if it is wide-sense stationary. Our process is not
wide-sense stationary, therefore our process is not a white-noise
process.

Study of P&S noise
Experimental setup. This experiment aims at studying the

noise added by P&S process. To achieve this noise, we propose to
print an image n times and then scan each printed image once. Let
I be the original image, Pi (i = 1, . . . ,n) be the n printed images
of original image I and Si be the n scanned samples of printed
images Pi. The scheme can be picked as:

I→ Print→ Pi→ Scan→ Si. (22)

Let us consider Pi as a function of I and εPi , Si as a function of I,
εPi and εSi , i.e:

Pi = f (I,εPi),

Si = g(Pi,εSi) = Pi + εSi = f (I,εPi)+ εSi ,

where f () is the function associated to the printing process, g() is
the function associated to the scanning process and εPi and εSi are
the noises introduced by the printer and the printer-and-scanner
respectively. The + operator shows that the printed and scanned
image Si can be represented by a function of the printing process
and the scanner noise (that also depends on the function of the
printing process).
If the noise has a regularity, we can consider to calculate the dif-
ference among samples in order to study the noise nature. We
propose thus to calculate the differences among each pair of n
samples, i.e. subtract pairs of scanned images to provide samples
of the P&S noise:

Si−Si′ = εSi − εSi′ (23)

= εP + εPSi − εP− εPSi′

= εPSi − εPSi′ ,

The εii′ = εPSi − εPSi′ can be used to characterize the stationarity
and the ergodicity of the noise introduced by the P&S process.
These characteristics, that are inherent to εii′ , are also inherent to

εPSi and εPSi′ . Therefore, we can characterize the P&S noise by
characterizing the stationarity and ergodicity of εii′ .

Let us introduce the same experimental setup when using
the terminology of random processes. After a P&S process each
image can be considered as random variable X(t). Therefore,
the set of n P&S images can be considered as random process
X(t,s), where s = {1, . . . ,n} is the dimension of our data set and
t = {1, . . . ,m}×{1, . . . ,m} is the set of pixels in an image I.
As shown before, the P&S noise function can be obtained by
subtracting every two random variables X(t,s j) and X(t,s j′), in
order to create a new random process Y (t,s) with s = {1, . . . ,n′}:

Y (t,s) = X(t,s j)−X(t,s j′), j 6= j′,s j = s j′ = {1, . . . ,n′}, (24)

where n′ = n(n−1)
2 .

Database description. We print one textured image n = 30 times
and then scan all printed images once. Each P&S image has a
300×300 pixel size, i.e. m = 300. The number of noise samples
is then equal to 39,150,000.
Let us visualize the distribution of Y (t,s) for any values of t and s
(i.e. as if it was an ergodic process) in Fig. 7. The mean value of
this distribution is equal to µ = −0.3563, its standard deviation
is equal to σ = 14.6581.

Figure 7: P&S noise distribution.

Characterization of the Y (t,s) distribution. In this experiment,
we want to verify whether the Y (t,s) follow a given classical
distribution (a normal or a Laplace) or not. In order to answer
this question, we compare the distribution of the random process
Y (t,s) with each specified distribution using the χ2 goodness-of-
fit test described previously.
A reduced sample data set has been created by randomly select-
ing n′ = 100 vectors of Y (t,s) (for lower computational time).
We therefore work with a data subset of 9,000,000 samples. To
counteract working with a subsample, we perform each test sev-
eral times.
An algorithm of χ2 goodness-of-fit test involving the estimation
of mean and variance is presented in Algorithm 1. The result of
this test is that both hypotheses are rejected at a significance level
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of 0.05. Thus our data-set has neither a normal nor a Laplace dis-
tribution.
We computed two distances to see how far the empirical CDF
based on the initial data is from the CDF of a normal or of a
Laplace distribution. This comparison involves the calculation
of the maximal distance dmax between the CDFs (see the formula
(20)) and the squared distance d2 between the CDFs (see the for-
mula (21)).

Number of Laplace distibution Normal distibution
samples N dmax d2 dmax d2

30,000 0.0405 0.0141 0.0884 0.1208
100,000 0.0471 0.0185 0.0929 0.1297
200,000 0.0434 0.0168 0.0929 0.1247
300,000 0.0431 0.0158 0.0909 0.1225
400,000 0.0424 0.0158 0.0922 0.1233

Table 2: Distances among CDFs of initial data (P&S noise) and
estimated Laplace and normal distributions.

Table 2 presents the differences among the CDF based on our
data-set and the CDF(s) of a normal and a Laplace distributions.
We notice that these distances are rather stable under the changes
of sample size.

Figure 8: CDF of P&S noise (blue line), estimated Laplace (green
line) and estimated normal (red line) distributions.

We illustrate these distances among CDFs in Fig. 8. We note
that the CDF of the initial data (blue line) is closer to the CDF of
the Laplace distribution (green line) than the CDF of the normal
distribution (red line). Therefore the P&S noise can be said
to be closer to a Laplace distribution than to a normal distribution.

Additive noise. After a P&S process, the image obtained
with one of the textured images consists of gray level pixels when
the original textured image is binary. Therefore, all gray level
pixels can be separated into two classes: the black class, that
consists of black pixels from textured image, and the white class,
that consists of white pixels from textured image.
The noise cannot be assumed to be additive if the error distribu-
tion of the black pixels is different from the error distribution of
the white pixels. As we know the true map of black and white
pixel placement, we separate the εii′ in two classes: black class
and white class. This leads to two random processes B(t,s) and

W (t,s). The histograms of error black random processes and
white random processes are illustrated in Fig. 9.

(a) Black pixel class

(b) White pixel class
Figure 9: Histograms of P&S noise introduced to a) Black pixels
and b) White pixels.

We apply the Mann-Whitney test in order to decide whether or
not the error distribution can be said to be additive, i.e. quantify
the hypothesis that the black and white distributions are the same.
The hypothesis that the distributions are the same is rejected at
a significance level of 0.05. Therefore, the noise added by the
printing and scanning process cannot be considered as being
additive.

Stationarity of first order. To verify the first order sta-
tionarity of random process Y (t,s), we use the method described
previously. The null hypothesis of Kolmogorov-Smirnov test
is formulated as: the two independent random subsets of mean
value set have the same distributions. The Kolmogorov-Smirnov
test cannot reject the null hypothesis at a significance level of
0.05, therefore our process can be supposed being stationary of
first order, i.e. the statistical average respects E[Y (t,s)] = µY .

Ergodicity of first order. To verify the first order ergodic-
ity of the random process Y (t,s), we use the method described
previously. The null hypothesis is formulated as: the spatial
mean and statistical mean are identical. The Mann-Whitney
test rejects the null hypothesis at a significance level of 0.05.
Therefore, our process is not ergodic of first order.
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Stationarity of second order. To verify the second order
stationarity of the random process Y (t,s), we use the method
described previously. The null hypothesis of the Kolmogorov-
Smirnov test is formulated as: the two independent random
subsets of autocovariance set have the same distributions.
The Kolmogorov-Smirnov test rejects the null hypothesis at a
significance level of 0.05, therefore our process is not stationary
of second order. That means our process is not wide-sense
stationary.

Test for white noise. A random process can be a white-
noise process if it is wide-sense stationary. Our process is not
wide-sense stationary, therefore our process is not a white-noise
process.

First experiment of color distributions after
P&S process

The authors in [1] experimentally show that the black/white
block of pixels are related to random variables following asym-
metric log-normal distributions. Using our database, we have de-
cided to do the same experiment. Nevertheless, as in our experi-
ments we used textured images, the black and white pixels could
be isolated.

(a)

(b)
Figure 10: Histogram of 90 P&S samples a) all pixels together
and b) pixels separated in black (blue color) and white (green
color) classes.

The results presented in this section are the work-in-progress, and
we suppose to continue the study of color changes after P&S pro-
cess.
Experimental setup. We print and scan a textured image 90
times. Therefore we have 90 samples of textured images (see
Fig.2). The histogram of all these images is illustrated in
Fig. 10.a. Then, using the true map, we separate our pixels in two
classes: black class and white class. We illustrated the histograms
of obtained classes in Fig. 10.b.

(a)

(b)

(c)
Figure 11: Histogram of 90 P&S samples a) Black pixels, b)
White pixels from textured patterns and c) White pixels from
white modules.
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As expected, the histogram of black pixels is uni-modal (see
Fig. 11.a). However, the bi-modal histogram of white pixels
needs a more throughout study. Indeed, our P&S samples contain
three different kinds of pixels: black pixels from textured pat-
terns, white pixels from textured patterns and white pixels from
completely white modules (see Fig. 2). Therefore, we separate
the white pixels again in two classes: white pixels of textured
patterns and white pixels of white modules. The results of this
separation are illustrated in Fig. 11.b and Fig. 11.c.
These histograms (Fig. 11.b and Fig. 11.c) clearly show that the
white pixels of textured patterns are placed at the same part of
histogram as the black pixels. This could be simply explained by
the structure of our textured patterns, where the black and white
pixels change frequently.
We have applied the χ2 goodness-of-fit test to verify whether
these distributions have normal or log-normal nature. The χ2 test
rejects the null hypothesis, that these distributions are normal, at a
significance level of 0.05. In the same time, it accepts the null hy-
pothesis, that they are log-normal, at a significance level of 0.05.
These results are only the beginning of this study. These experi-
ments need to be evaluated better, using different statistical tests.
These first results highlight several open questions:

• The histograms seem to present artifacts (looking like quan-
tification effects). We should find the nature of these arti-
facts and find the possibility to remove them.

• Raw histograms seem to present a log-normal distribution.
Several additional statistical test need to be done in order to
confirm or disprove these observations.

Conclusions
In this paper we proposed to experimentally study the impact

of P&S process as a random process. The main results of this pa-
per are: the characterization of the scanning noise is done inde-
pendently from the printing noise, the invalidation of the classical
hypothesis that the P&S noise is normal distributed, and either
white or ergodic. Additionally, we show that the scanning noise
and the P&S noise are both closer to Laplace distribution, than
to normal distribution. The first experiment of color distributions
after P&S process are presented. We conclude that this problem
needs a more throughout study, but the first experimental results
are interesting.
In future work we want to study the quantification effects pre-
sented in histograms, try to find the parameters of P&S pixel
distribution, and simulate this P&S process using convolution of
original textured image with a filter extrapolated from the P&S
distribution.
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